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Abstract

We consider the problem of dividing a territory into sub-regions so as to balance the workloads of a collection
of facilities or vehicles over that territory. We assume that the territory is a connected polygonal region, i.e. a
simply connected polygon containing a set of simply connected obstacles. The territory also contains a collection
of facilities, represented by a set of n fixed points in the territory. We give a fast analytic center cutting plane
method that divides the territory into n compact, connected sub-regions, each of which contains a facility, such
that the workloads in each sub-region are “balanced”. Our approach can also be used to design a control policy
that allows us to design the sub-regions in a decentralized fashion.
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1 Introduction

Efficiently dividing a workload among a collection of service facilities, vehicles, or agents is a common objective
in many disciplines. The most natural objective is to distribute workloads in such a way as to minimize the total
amount of work done by all agents. In practice, it is also often desirable to find a balanced assignment so as not
to overload any particular group and to ensure uniform service levels. Such assignment policies are commonly
encountered in queueing theory [3, 16, 19], vehicle routing [10, 15, 24], facility location [1, 4, 7, 11], and robotics
[18, 25, 26|, among others.

In this paper we consider the problem of dividing a given territory among a set of facilities in such a way as
to minimize the total workload imposed on those facilities while simultaneously ensuring that their workloads are

sufficiently balanced. Specifically, we are given a planar region R that contains a set of obstacles {O1,...,0,}, a
set of n fixed landmark points (“facilities”) P = {p1,...,pn}, and a continuous demand density function f(-) defined
on R. Our objective is to design service districts {R1, ..., R,}, such that point p; is assigned to provide service to

R;. The set {Ry,..., R,} should obviously be a partition of R, that is, we should require that | J; R; = R and that
the interiors do not overlap, int(R;) Nint(R;) = @ for all distinct pairs ¢, j. It is also natural that we require that
p; € R; for all ¢. In addition, our partition should be compact, in the sense that a facility should not be assigned
to service points that are far away from it, and connected, i.e. all districts should be contiguous. See Figure 1.
We present a fast algorithm that transforms our partitioning problem into an n-dimensional convex optimization
problem that determines the optimal partition boundaries using a sequence of cutting planes.

We have previously considered the problem of dividing a region into smaller pieces when the input region R is
convex or simply connected. Specifically, in [9, 10], we give a fast algorithm that takes as input a convex polygon
C and a point set P = {p1,...,p,} and divides C into n sub-regions {C1,...,C,} such that each C; is convex,
each C; contains a point, and all sub-regions have equal area. In [8] we extend this algorithm to the case where the
input region is a simply connected polygon S (i.e. a connected polygon and devoid of any obstacles) and we have
an arbitrary probability density f(-) defined on S. Rather than producing equal-area sub-regions {S1,...,S,}, our
objective is to find a partition such that [J s, f(z) dA is equal for all sub-regions (the previous paper is thus a special
case of this problem in which f(-) is a uniform distribution). Since it is not always possible to divide S into convex
pieces in this case, our algorithm divides .S into sub-regions that are relatively convexr to S: for any two points z,y
contained in a sub-region S;, the shortest path in S from z to y (which may not be a straight line segment) is itself
contained in S; (see Figures 2, 3, and 12 of [8] for examples). This is clearly a natural generalization of convexity,
because when S happens to be convex, the shortest path from z to y in S is indeed a straight line segment, and
therefore all sub-regions S5; will be convex.
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Figure 1: Inputs and outputs to our partitioning problem; the shading indicates the probability density function
f(-). Note that we have not yet precisely defined our objective function in designing the service districts R;.

U

Figure 2: The partition from Figure 2 is relatively star-convex to R.

The algorithm of this paper presents two clear advantages over our previous methods: first, it is easy to show
that when the input region R contains obstacles (and is thus no longer simply connected), an equitable relatively
convex partition of the type just described may not exist (see Figure 1 of [5]), and thus our prior work is of little
utility. Second, the algorithms of [9, 10] and [8] do not force regions to be compact: it is possible for the output
regions to be extremely long and skinny, which is clearly undesirable from a practical standpoint (see Figure 10
of [9] and Figure 14 of [8]). Here we tackle these two problems in the following way: first, as we will show, our
algorithm produces sub-regions {R1, ..., R, } that are relatively star-convezr to R: for any point x in sub-region R;,
the shortest path in R from x to p; is itself contained in R; (see Figure 2). This is a weaker condition than relative
convexity but still offers considerable practical utility; for example, it automatically produces connected sub-regions.
Second, we are able to explicitly enforce our sub-regions to be compact by imposing a particular objective function
on our partition. In fact, one interpretation of our problem is that we are trying to find the partition that is as
compact as possible; we will make this explicit in Section 2. The algorithm in this paper is also novel in that our
prior work generally uses well-established principles of discrete geometry such as ham sandwich cuts and binary and
ternary space partitions, whereas here we use techniques from vector space optimization and linear programming
complementarity.



Related work

In addition to our own previous work that we have already mentioned, the general problem of equitably partitioning
a region has been studied from many perspectives. The paper [26] considers the problem of dividing a convex region
into convex equal-area sub-regions using Power diagrams, a natural extension of Voronoi diagrams. The authors give
a decentralized control policy that provably converges to the desired partition. More recently, [12] considers a hybrid
problem in which the objective is to simultaneously place the facilities P and design coverage regions associated
with the facilities using only asynchronous (and possibly noisy) pairwise communication between facilities. The
authors give an algorithm that provably converges to a centroidal Voronoi partition, that is, a Voronoi diagram
{Vi1,...,V,} such that p; is the center of mass of each sub-region V;. Other papers making use of power diagrams
as a partitioning policy include [2], [21], and [27].

One notion of “partitioning” discussed in [6] is to allow facilities to have variable “coverage radii” r;, where the
cost ¢ (r;) is a monotonically increasing function; the problem is to find the optimal number, location, and coverage
radii of a collection of facilities. Another paper [1] considers the problem of partitioning a convex region C' so as to
minimize the aggregate workload over all facilities while imposing an equal-area constraint. The authors describe
a constant-factor approximation algorithm for dividing C into equal-area convex pieces to maximize the minimum
“fatness” of any piece. This in turn gives an approximation algorithm for the problem of minimizing the aggregate
workload over all facilities when facility placement is variable, as well as the sub-region boundaries.

Notational conventions and technical assumptions

Our notational conventions in this paper will be as follows: we let d(z,y) denote the distance between points x and
y in R when obstacles are taken into account. When we refer to the input region R, we implicitly take the obstacles
into account (so that R = S\ |J, O;, for some simply connected polygon S). We also assume throughout this paper
that f(z) > 0 on R.

2 Problem formulation and applications

We begin by formally stating our optimization problem for designing the service districts R;. Suppose that the cost
of service between a demand point = and facility i is of the form d(z,p;) + «;, where «; denotes some “fixed cost”
associated with facility ¢ such as dispatching a vehicle or initiating a transaction. In the remainder of this paper,
we will assume that a; = 0 for simplicity; our analytical results are unaffected by this assumption. If demand is
distributed over R according to an absolutely continuous probability density function f(-), the average workload
on facility i is therefore [[,, f(z)(d(z,p;) + i) dA = [ f(z)d(w,p;)dA. Tt is clear that the total workload on
all facilities is minimized when each point x is merely assigned to its nearest facility, i.e. when {R;,...,R,} is a
Voronoi partition of P in R. In order to balance the workloads of the facilities, we will impose the constraint that
ffRi f(x)dA = ¢; for each i, where ¢ = (c1,...,c,)T is a given input parameter vector such that ¢; > 0 for all 4 and
> ¢i = 1; we typically expect that ¢; = 1/n for all . We can thus write our optimization problem as

I%llr}iffléie;/l%i f(z)d(z,p;)dA s.t. (1)

//Rif(x)dA -
LWJRi - R.
=1

It is easy to see that the objective function of (1) forces regions to be compact because it minimizes the average
distance between customers and their assigned facilities. It is also worth mentioning that (1) is a special case of the
famous Monge-Kantorovich transportation problem [29] in the plane in which one Radon measure is continuous and
the other is atomic: our objective is to “transport” the continuously distributed demand to the finite collection of
facilities, while obeying capacity constraints and minimizing the aggregate transportation cost. Before describing
the solution strategy for (1), we describe three practical applications of this problem.

Short trip deployment An obvious application of the above problem is the case where f(-) represents the
locations of likely surveillance targets in R and the facilities represent launching sites of a fleet of UAVs. Suppose



that, due to short battery life, each UAV must return to its depot after visiting a target for recharging. It follows
that the average workload on all facilities is precisely the objective function of problem (1).

Multi-depot vehicle routing The formulation (1) is useful even when we remove the constraint that vehicles
return to their depots after visiting each destination. Suppose now that likely targets are distributed by an ab-
solutely continuous probability density function f (1) and that, each day, a collection of N independent samples
X = {Xy,..., Xy} from f(-) is drawn. As before, each vehicle is assigned to visit all of the samples that lie
in region R;. Thus, each vehicle’s workload is a TSP tour of all of the sampled points in R;, X N R;, plus the

starting depot point p;. As we have shown in [8], it turns out that the workload of each vehicle is approximately

BVN fva \/f(m) dA, where 3 € (0.6250,0.9204) is a constant. More precisely, with probability one as N — oo, we

have
TSP(X N R;) = BVN / VF(z)dA+o (\/N) .
R;

It therefore follows that, if our goal is to balance the workloads of all vehicles, we should require that []’ R\ f (x)dA
be equal for all vehicles (this guarantees that the TSP tours are all equal within a term of o(v/N)). Therefore we
can formulate this problem as an instance of (1) where f(z) = 1/ f(x) (normalized so that f(x) integrates to 1 on

R) and ¢; = 1/n. Note that when f(z) is the uniform distribution, our objective is to divide the service region into
equal-area sub-regions.

Carbon capture and storage The term “carbon sequestration” refers to the uptake of carbon-containing natural
substances, in particular carbon dioxide, into forests, grasslands, peat swamps, and other terrestrial ecosystems.
By storing this carbon in local biomass, ecosystems keep carbon dioxide out of the atmosphere. A typical Carbon
Capture and Storage (CCS) scheme consists of three stages:

1. Carbon dioxide is captured at the source (power plants, refineries, or other industrial facilities) and compressed.
2. Carbon dioxide is then transported via pipelines to a storage site.

3. Finally, carbon dioxide is stored into a geologic sink or reservoir, where it is sequestered from the atmosphere.

The problem of optimally distributing carbon dioxide can be formulated as an instance of (1) in the following sense:
suppose that P is a collection of facilities with fixed locations in R, and suppose that each facility 7 emits an amount
of carbon ¢;. Let f(-) denote the probability density function that represents the capacity of a portion of land to
absorb carbon dioxide. Further assume that ), c¢; = [[, f (z) dz = 1, i.e. that the region is capable of absorbing
exactly the amount of carbon being output. Our problem is to divide R into n parcels of land R; (one per facility),
so that each piece R; can absorb an amount ¢;, i.e. that [ R, f (z) dA = ¢;. Since pipelines for carbon transport are
costly (up to $800,000 per mile [22]), our objective is to minimize the average transport distance between a facility
and the absorptive substances in R;. Here the obstacles might represent areas in which it is prohibitively expensive
or illegal to construct pipelines, such as rocky terrain or protected areas for regional flora and fauna. It is sensible
that we should also require that the pipelines from different facilities should not intersect; indeed, as we will show
in the following section, this is guaranteed to happen automatically by solving problem (1).

3 Optimal partitioning
We will now formulate our problem (1) as an infinite-dimensional optimization problem, which we will then transform

into an n-dimensional convex optimization problem. It is clear that problem (1) admits an infinite-dimensional
integer program given by

Irlr(u)rurnllnz(e)//Réf(x)d(x,pl)Il (z) dA s.t. (2)
//Rf(x)l,; (x)dA = ¢ Vi

Y Ii(z) = 1 VzeR

L(z) € {0,1} Vi,x



where the I;(-)’s are indicator functions. The linear relaxation of this problem is obviously given by

mmlmlze // Z f(@)d(z,p:)I; (x) dA s.t. (3)

//R F@L(x) dA = o Vi

Y Ii(x) = 1 VzeR
ILi(z) > 0 Viz.

It turns out that the dual of (3) can be expressed in terms of n Lagrange multipliers \; and that we can recover
the optimal partition to the primal problem (3) via complementary slackness. Before proving our main theorem,
we state an important result from Section 8.6 of [20]:

Theorem 1. (Lagrange Duality) Let § be a real-valued convex functional defined on a convex subset Q0 of a vector
space X, and let & be a convex mapping of X into a normed space 3. Suppose there exists x1 € X such that & (r1) < 0,
where 0 denotes the zero element, and that po := inf {f (r) : & (r) < 0,r € Q} is finite. Then

" _
o mf T () = maxp(7)

where

p(67) = b i) +(&[).57)

and the mazimum on the right is achieved by some 3§ > 6.
Our main result follows below:

Theorem 2. The dual problem to (8) is given by the n-dimensional conver optimization problem

maxmnze// flx mm{d x,pi) — N dA s.t. (4)
X = 0.

Moreover, the optimal solution I (-),...,I%() to the primal problem (3) must satisfy

Li(x) 0 ifd(z,pi) — A} > d(z,p;) — A} for some j
() =
L dfd(z,pi) — Af < d(z,p;) = A; for all j #i.

If neither of the two cases above holds at a point x, then if IF(x) > 0 at a point x, then it must be the case that
d(z,pi) — A} < d(z,p;j) — Aj for all j, i.e. the index i is among the minimal indices.

Proof. A proof sketch of this result can readily be obtained by discretizing the region R and taking the dual of the
resulting linear program; the following proof is precisely the infinite-dimensional equivalent of this, which we have
included for the sake of rigor (and possibly at the expense of some clarity). It is clear that an optimal solution
to problem (4) exists because we must have A} < \ := max; max,¢cr d(z,p;) for all 4, since otherwise we have a
negative objective function value in problem (4) which is clearly sub-optimal. Thus, we can assume without loss
of generality that problem (4) is defined on a compact set and hence attains its minimizer. It is also clear that
problem (4) is equivalent to the infinite-dimensional linear program given by

mgcimize // fa st (5)

o(x) d(x,pi) — N Vi,x
' = 0.

IN

Since Y, ¢; = [[5 f(z) =1, this is in turn equivalent to

maxumzec X+ // f(z s.t. (6)



We now apply Theorem 1: in problem (6), the optimization variables are A and o(-), so we let X = Q =R"® Ly,
where L, represents all functions h (-) defined on R such that |k (z)| is Lebesgue integrable on R. We let §(x) be

defined by
;e ( U’(‘.) ) . ch)\f//Rf(x)a(x) dA

and we let & : X — 3 be defined by
&)+ M
A .
6 — :
( o () ) '

where &; (z) := o (z)—d(z,p;), so that 3 = Ly & - - - @ L;. By the preceding existence argument for A* we can replace
—_——

n
the infimum operator with the minimum operator. From basic functional analysis, we have 3* = Lo @ -+ @ Lo,
—_————

where Lo, denotes all bounded functions on R. Let (Ji (),...,J, (-)) denote an element of 3*. Theorem 1 says
that
" reaatyze’ ¥
- ?%’é{;ggﬂ )+(©() >}

_Jf??ggo{ki’g(f.) —eTA— //R f@)o (@) dA + //R iJ (@) (& () + \) dA}
— _J??go{klg(f)l (// dA—cZ) ; // (ZJ Ji (@) d(z, pz)) f(x)o (z) dA}
_Jf??go{;g(f)l (// dA—cz) A —l—//Ra(x) (Z:J (@)= f ) dA - // ZJ d(z, ps dA}

Clearly we need [ Ji(x) dA = ¢; for all i and ), J; (z) = f(x) for all z € R. Introducing new functions

L (2) = Ji (2) /f (@), e equivalent to
+//Rf(m)a(a:) (i[i( —1> A — //Zf xpl)dA}

— max { inf (// flx ) dA — cz) A
L;()>0 | Ao () Pt

so that [[,, f(z)I; (z) dA = ¢; for all i and ), I; (x) = 1 for all z € R. Thus the problem (5) and the problem
minimize d(x, p:)I; dA s.t.
()5 dn ()// Zf P (@)

//Rf(x)l z) dA

C; Vi

1 VzeR

@A
I M:
I

>~

=

I

ILi(x) > 0 Vizx.

are primal-dual pairs as desired, and by Theorem 1 we know that an optimal solution I (-),..., *(-) to problem
(3) exists. This completes the first claim of the proof.

We now turn our attention to the second claim: consider an optimal primal dual pair IF(),...,I:(-) and
X", 0% (-). We have [[, f(z)I} (z) dA = ¢;, and therefore ¢c" X" = AF JJ R ( ) dA, and therefore since
Theorem 1 guarantees

N+ [ sy mingie.p) -y aa- ] f(r)Z::d(w,pi)If (1) dd = 0,
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Figure 3: As A1 and Ay vary, the induced sub-regions change as indicated above. The points x in the shaded region
do not have a unique minimal index 4, because Ay — Ao = d(v,p1) — d(v,p2). The point v is therefore the reflex
vertex associated with the shaded region.

we must have
//R e [o—* () = 3 (dlap) = A I} ()| d4=0.

Recall that o* () < d(x,p;) — Aj for all z € R and 4 and that ), I (x) = 1 for all 2 € R. For any point z,
suppose that ipiy is the index such that d(z, p;) — A} is minimal (assuming such an index is unique). The integrand
above is always negative unless we set I (x) =1 and I (x) = 0 otherwise. Therefore, the optimal dual vector
A corresponds to a solution to the primal problem (3) in which

I} (z) = 0 if d(x,p;) — A} > d(x,p;) — A] for some j
' S| d(z,pi) — A} < d(z,p;) — A for all j #i

as desired. It is similarly straightforward to show more generally that if I () > 0 for a point = and a given index

i, then index i must be among the minimal indices of d(z,p;) — A}, which completes the proof. O

Having proven Theorem 2 we now turn our attention to the problem of recovering the optimal regions Rj,. .., R}
(equivalently I3 (), ..., I:(:)) from the dual vector A*. Given A*, we define the “strict dominance regions” R} C R}
as

RZT" = {xGR:d(x,pi)f)\’{ <d(m,pj)f)\;f for allj#i} .

It is easy to see by construction that each Ri+ is relatively star-convexr to R: if x € Rj , the shortest path (or
paths) in R from z to p; is contained in R;. From basic Euclidean geometry it is also clear that the boundary
between two strict dominance regions R; and R;' consists of a collection of hyperbolic arcs, since a hyperbola is
the locus of points where the absolute value of the difference of the distances to two foci is constant (if we measure
point-to-point distances using the ¢; or ¢, norms, while still taking obstacles into account, the boundary between
two strict dominance regions consists instead of a collection of line segments). Given A*, we can construct these
arcs for all Rj efficiently using the continuous Dijkstra paradigm [23].

The question remains of how to allocate the remaining area of R that does not lie in a strict dominance region (see
Figure 3). It is not hard to show that each such region is polygonal (as opposed to being bounded by hyperbolic
arcs). Since each such “ambiguous dominance region” is potentially associated with more than one facility, we
associate with each such region R,  (not indexing by i because these regions are not yet associated with individual
facilities) an index set Zj, C {1,...,n}. By construction, each R, must have a reflex vertex ry, that is, a point in
R, such that d(z,p;) = d(z,ry) + d(ry, p;) for all © € R, and i € Zj; an example of this is the point marked v in



Figure 3. Consider the functions I;(-) (which we have not yet defined on R, ) for i € 7. The total cost due to R}

J 3 s@apr @ da = S e+ oot @) s

k €Ly k 1€y

- /R_f(x (z,73) (ZI* )dA+// > f@)d(ry,p)I; () dA

1€, k i1€Lk

_ /R_f(x) 2,7%) dA+Zdrk,pz// F(@)If (2

1€Ly

constant

ier, 17 (x) dA, that is, the amounts of mass f(z) of region R

assigned to the facilities ¢ € Zj,, as opposed to the particular assignment patterns I} (z). Thus, in order to assign
these amounts to the facilities, we can simply construct a matrix A such that

{1 if i € o,
Qi =

which we observe only depends on [ rof (x) >

0 otherwise

and then consider the problem of constructing a matrix Z that gives the amounts of mass assigned to each facility
from each R, , i.e. satisfying the constraints

Ek AikZik (& / i f(.’L') t

zik > 0 Vik.

It follows from the argument above that the total cost due to these allocations is then Zi’k bikzik, where B is
a matrix such that by, = d(rg,p;). In fact, it is not hard to show that all feasible solutions to (7) have the
same objective value > ik bikZik: this is precisely because, for any ambiguous dominance region R, , we must have
d(rg,pi) — d(rg,pj) = Ai — A; for all i,j € Zj,. Thus, the columns of B are simply the vector A*, translated by a
scalar, and with all indices j ¢ T set to 0:

| | |
B = A_:*Zl +ﬂ17 ) A}k +Bk}a R} Af*ZK +6K
| | |

where K is the number of ambiguous dominance regions.

After finding a feasible (and therefore optimal) set of allocations Z*, we merely have to find a way to assign the
areas zJj, so that the final regions R} are relatively star-convex. This is trivial as shown in Figure 4.

For completeness we will now verify that the partition {R7,..., R} } that we obtain is in fact optimal, i.e. that
strong duality in the sense of Theorem 1 holds. This is straightforward; since 7 (x) = 1 holds only when iis a
minimal index of d(z, p;) — Af, we have

J[ sormintate.y - xyia = Z y RECam
- Z//f d(w,pi) = NI (2) dA

:Z//f d(z,pi) I} (z) dA — )\*//f VI (x

://Zf d(z,pi)L ()dAfc //Zf d(z,pi)1] (z) dA
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Figure 4: Given an ambiguous dominance region R, (4a) and a set of allocations Z*, it is straightforward to divide
R, into pieces that are relatively star-convex by constructing a shortest-path tree (4a and 4b) and then assigning
regions based on (for example) a depth-first search of the tree (4c and 4d).



Figure 5: Equitable partitioning under the ¢; norm (5a) versus the ¢ norm (5b)

as desired. The following result is immediately evident:

Theorem 3. There exists an optimal solution to the relazation (3) in which I} (z) € {0,1} for all i and all z € R.
Thus, the integrality gap of problem (2) is unity.

Remark 1. A related result to Theorem 2 can be found in [2], which considers a version of the primal problem (1)
without obstacles where the weights between points are the squares of the Fuclidean distances. The authors show
(without using complementarity) that the optimal assignment is a kind of Voronoi partition called a Power diagram.

Remark 2. If we desire regions with line segments as boundaries instead of hyperbolas (perhaps for computational
efficiency), we may measure point-to-point distances using the {1 or Lo, norms (while still taking obstacles into
account). Figure 5 shows the difference between partitions induced by using such a distance metric.

4 Computing supergradients

In the previous section, we showed that our partitioning problem can be reduced to a low-dimensional convex
optimization problem. In this section, we describe how to efficiently compute the supergradient of the dual problem
(4). For the moment, for a given weight vector A, we let R; denote the dominance region of facility 4, with ambiguous
dominance regions assigned lexicographically. That is, point z is in region R; if and only if d(x, p;) — A; is minimal
and if index ¢ is the lowest of the minimal indices (we make this assignment only so that the regions R; can be

assigned in a unique way).
gi = // f(x)dA
R;

h(A) = //R f(@) min{d(z, pi) — A} dA.

Theorem 4. The vector g defined by

s a supergradient for the concave function

Proof. Consider two vectors A and A" and the corresponding partitions {Ry,...,R,} and {R},..., R, }. We want
to show that h(X) < h(A) +gT (X — ), ie. that

//R () min{d(z, p,) — X} dA < //R f(@) min{d(z,p) ~ A} dA g (A — )
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or equivalently that

Zj://R f(@)(d(@,pi) — A;) dA < zj://R Fl@)(d(z,ps) — X)) dA — g; (A — No) -

Consider the right-hand side of the above; for each i, we have

/ F@)(d(x.ps) — A)dA — gi(\ — ) = / F(@)(d(,p) — M) dA — (X — A) / f(z)dA
R; R; R;

/ F(@)(d(z,ps) — N)) dA
R;

and therefore we have

ZE://R f(z)(d(x, p;) — /\;) dA > Zi://R; f(@)(d(z, p;) — ,\;) dA

since by construction, the sub-regions of the partition {Rll, cee R’n} are defined by looking at the minimal value of
d(x,p;) — A; and are therefore minimal over all partitions. This completes the proof. O

We thus have in hand a fast method for computing supergradients for problem (4). We can therefore solve this
problem quickly using an analytic-center cutting plane method (ACCPM), as given in Algorithm 1. In the next
section we will describe the computational complexity of this algorithm.

Note that each agent can compute its component of the supergradient vector using only knowledge of its own
induced region, which can be determined using only local information to that agent, i.e. its neighbors in the
induced partition. Therefore, an alternative to the ACCPM just described is to use a decentralized supergradient
ascent-based control scheme; at any given instant, given a multiplier vector A°, we have each agent compute its
supergradient component g;, and we then set Y — A + €(g; — 1/n), where we have subtracted 1/n so as to retain
feasibility of dual problem (4), and where € is a small discretization coefficient.

5 Computational complexity

Since Algorithm 1 is simply an analytic center cutting plane method (whose complexity is well-understood [14])
for solving the convex problem (4), it will suffice to discuss the computational complexity of each iteration. For
any given vector A, we can construct the corresponding strict and ambiguous dominance regions (i.e. the weighted
Voronoi diagram) using the continuous Dijkstra paradigm in O(N®/3) steps, where N is the total number of vertices
of R and the obstacles [23]. When f(-) is the uniform distribution on R, we can also compute the areas of these
cells in O(N®/3) steps and therefore each iteration requires only O(N°/3) computations. When f(-) is non-uniform,
the computational complexity depends on the chosen numerical integration scheme. To describe this we use the
following result (originally given in Section 7.4 of [17], but re-stated using the language of Section 9.9 of [28]):

Theorem 5. Let  C R? be a domain of integration equipped with a triangulation T;, consisting of Ny triangles,
where h is the mazximum edge length in Ty. There exists a positive constant K1, independent of h, such that the
error E induced using either the composite midpoint formula

/ f(x)dA~ Z Area(T) f(centroid(T))
@ TET

or the composite trapezoidal formula

//ﬂ F(z)dA %% S Area(T) S f(vertex; (T))

T€Th j=1

s bounded by
|E| < K1h? Area(Q)Ms, ,

where My is the mazimum value of the modules of the second derivatives of the integrand f(-).
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Input: A polygonal region R containing a collection of obstacles Oq, ..., O,,, a probability density f(-)
defined on R, a collection of points P = {p1,...,pn} C R, a vector ¢ such that
>i¢i = [[p f(z)dA =1, and a threshold e.

Output: A partition of R into n compact relatively star-convex regions Ry, ..., R,, such that p; € R; and

‘fqu‘, f(x)dA —¢;| € O(e) for all i.

Note: this is simply a standard analytic center cutting plane method applied to the dual problem (4).

Define the initial polyhedron by A = {/\ eR":cTA=0and |\ — )| < d(pi,pj)};

while vol(A) > e do

Let A° be the analytic center of A;

Construct the strict dominance regions R,f with multiplier vector A° ;

Allocate the remaining area in ambiguous dominance regions lexicographically; that is, assign region R,
to the facility ¢ with minimal index i € Zy;
/* This lexicographic allocation will not generally be feasible for the primal problem.
*/
forie {1,...,n} do
| Set gi = [[5, f(x)dA;
end
Set A :=AN{x:g"Ax>gTA%;
end
Let A° be the analytic center of A;
Construct the strict dominance regions R;r with multiplier vector A° ;
Allocate the remaining area in ambiguous dominance regions so that [[| R, f(z)dA = ¢; for all i;
return {Ry,..., R, };

Algorithm 1: Algorithm ObstaclePartition(R, O, P, f(-),c) partitions a region with obstacles into compact
relatively star-convex sub-regions.

It follows that, if our desired error in integration is € in our problem, then the maximum length of any edge
in the triangulation must be at most €'/?(Area(R)MoK;)~'/? (since we have hyperbolic arcs separating the R;,
an exact triangulation is impossible, but the added computational complexity therein is beyond the scope of this
paper). If we break R into Np triangles, the maximum edge length will generally be O(y/Area(R)/Nt) and we
therefore need to break R into O(Area(R)?Ma/€) triangles. Thus, the added complexity of non-uniform f(-) is
quadratic in Area(R), linear in the maximum modules of the second derivatives of f(-), and inversely proportional
to the desired precision e. Each iteration of Algorithm 1 therefore requires O(N°/3 4+ Area(R)%Ms/e) total steps.

6 Computational experiments

In this section, we present the results of two numerical simulations based on two natural practical applications.
The first example involves designing districts for “Code Blue” emergency telephones within a university campus.
Code Blue emergency telephones are located throughout many university campuses for safety enhancement. In
our simulation, we assume that the phones are located in fixed positions, as obtained from a map of the St. Paul
campus of the University of Minnesota; the input is shown in Figure 8a. We consider the buildings in the area
as impenetrable obstacles. Assuming that the demand for these phones arises uniformly throughout the campus,
our aim is therefore to divide the map into compact sub-regions so that each sub-region contains a phone and all
sub-regions have equal area.

In the second simulation, we consider a military conflict zone which is located in a hilly region. Unmanned
aerial vehicles (UAV’s) are used for aerial surveillance to monitor activities in such regions. A fixed number of
UAV’s are available for this purpose. Our task is to strategically divide the area into sub-regions such that the total
work load for all the UAV’s is minimized, i.e. such that all regions have equal area, as in the second example of
Section 2. Typical low-cost UAV’s used by the military for aerial surveillance have a service ceiling, or maximum
usable altitude, of 5000 meters. As a sample dataset we use the troubled region of Jammu & Kashmir close to the
India-Pakistan border in the Himalayan mountains, whose high altitude peaks pose an obstruction for the UAV’s.
Using a contour map of the Drass Sector obtained from Google Maps, we set all regions with an altitude exceeding
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Figure 6: Convergence of the analytic center cutting plane algorithm for St Paul and Drass

5000m as “obstacles” for the UAV’s and built polygonal approximations for them. We choose six UAV launch sites
randomly in the basin of the region since one generally prefers a flat terrain to launch such vehicles. The setup to
this simulation is shown in Figure 9a.

6.1 Finding optimal partitions

Given a set of fixed facilities P (the emergency phones or the UAV launch sites), our objective is to find a globally
optimal partition of the map C by solving the dual problem (4). We implemented Algorithm 1 in C++ on a Dell
E8400 computer. We found that Algorithm 1 converged to a globally optimal partition within a tolerance of 0.01%
after 89 and 48 iterations for the St. Paul and Drass cases respectively, as shown in Figure 6. The optimal partitions
for these problems are shown in Figures 8b and 9b.

6.2 Variable facilities

In this section we present the results of a simulation in which facility positions are also allowed to vary, in addition
to the partitions. Since determining the optimal placement of facilities is a non-convex problem, we are only able
to look for locally optimal solutions. To this end, we use a natural variation of the well-known Lloyd algorithm for
computing centroidal Voronoi partitions [30]. The variation is straightforward: for a given initial set of facilities P,
we compute the optimal partition using Algorithm 1 as before. Then, we relocate each facility p; to the geometric
median (the Fermat- Weber center) of its associated region R;. The new optimal partitions are then re-computed,
and so on and so forth. This algorithm is guaranteed to converge to a solution because the objective function value
(the total weighted distance between facilities and their assigned sub-regions) decreases at each of the two steps.
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Figure 7: Moving the facility to the geometric median of the corresponding discretized partition

The problem of locating each facility p; to the geometric median of its associated region R; is called the continuous
Fermat-Weber problem and was studied in [13]. For our purposes, we merely estimated the geometric median by
discretizing R; and selecting the best point in the discretization, as shown in Figure 7.

The locally optimal facility locations and their corresponding partitions for the St. Paul and Drass maps are
shown in Figures 8c and 9c. The algorithm takes fewer than 15 iterations to converge to the locally optimum
solution in both cases and the convergence to this local optimum is shown in Figure 10.
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