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Abstract
We consider a geographic optimization problem in which we are given a region R, a probability density

function f(·) defined on R, and a collection of n utility density functions ui(·) defined on R. Our objective is
to divide R into n sub-regions Ri so as to “balance” the overall utilities on the regions, which are given by the
integrals

˜
Ri

f(x)ui(x) dA. Using a simple complementary slackness argument, we show that (depending on
what we mean precisely by “balancing” the utility functions) the boundary curves between optimal sub-regions
are level curves of either the difference function ui(x)−uj(x) or the ratio ui(x)/uj(x). This allows us to solve the
problem of optimally partitioning the region efficiently by reducing it to a low-dimensional convex optimization
problem. This result generalizes, and gives very short and constructive proofs of, several existing results in the
literature on equitable partitioning for particular forms of f(·) and ui(·). We next give two economic applications
of our results in which we show how to compute a market-clearing price vector in an aggregate demand system
or a variation of the classical Fisher exchange market. Finally, we consider a dynamic problem in which the
density function f(·) varies over time (simulating population migration or transport of a resource, for example)
and derive a set of partial differential equations that describe the evolution of the optimal sub-regions over time.
Numerical simulations for both static and dynamic problems confirm that such partitioning problems become
tractable when using our methods.

1 Introduction
Dividing a given territory into pieces is a fundamental geographic problem with many application areas, including
logistics, economics, and natural resource allocation. A simple mathematical formulation of such a problem is as
follows: suppose that R is a geographic region in the plane which we are to partition among n agents, that is, we
are to select n sub-regions R1, . . . , Rn of R such that Ri∩Rj = ∅ for all pairs and

⋃
iRi = R. In this paper, we will

assume that R is a connected, polygonal region with non-empty interior. Letting ui(·) denote a “utility density”
function associated with agent i, we can represent the overall utility of agent i as the integral

˜
Ri
ui(x) dA, where

Ri denotes the sub-region assigned to agent i. In order to generalize this model further, let us also assume that f(·)
is a given probability density function (representing population or distribution of a natural resource, for example)
on R, so that the overall utility of agent i is the integral

˜
Ri
f(x)ui(x) dA. This problem has been previously

considered in many different domains for various particular forms of f(·) and ui(·) which we will discuss shortly.
The key issue in the preceding problem is how to construct the sub-regions in a balanced, or equitable, fashion.

One way to partition the region is to maximize the overall utilities of the agents while imposing constraints on the
amounts of f(·) that are contained in them. That is, our problem can be written as

maximize
R1,...,Rn

n∑
i=1

¨
Ri

f(x)ui(x) dA s.t. (1)
¨
Ri

f(x) dA = qi ∀i

Ri ∩Rj = ∅ ∀i 6= j⋃
i

Ri = R
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where the qi are given constants. A second way to partition the region in a balanced way is to maximize the
minimum utility of all of the sub-regions:

maximize
R1,...,Rn

min
i

{¨
Ri

f(x)ui(x) dA
}

s.t. (2)

Ri ∩Rj = ∅ ∀i 6= j⋃
i

Ri = R .

In this paper we show that the boundaries between the optimal sub-regions to problem (1) are curves of the
form

x : ui(x)− uj(x) = constant
and that the boundaries between the optimal sub-regions to problem (2) are curves of the form

x : ui(x)
uj(x) = constant

provided that either ui(x) > 0 for all i and x or ui(x) < 0 for all i and x (except for possibly a set of measure zero).
Although this turns out to be a simple and immediate consequence of complementary slackness in vector space
optimization, it allows us to obtain very concise, constructive proofs to well-known existing results in equitable
partitioning. Moreover, our proof technique reduces both balanced partitioning problems to n-dimensional convex
optimization problems, which allows us to actually solve both problems efficiently in practice by computing a set
of shadow prices associated with the agents. The remaining contributions of this paper are as follows: in Section 4,
we give fast algorithms for solving (1) and (2) by showing how to compute a subgradient vector for either problem,
which enables us to use (for example) a cutting plane method to find the optimal partition. Section 6 gives two
economic applications of these principles to compute a market-clearing price vector in an aggregate demand system
or a variation of the classical Fisher exchange market. Section 9 then considers a dynamic problem in which the
density function f(·) varies over time (simulating population migration or transport of a resource, for example) and
we derive a set of partial differential equations that describe the evolution of the optimal sub-regions over time.

Related work
Problems (1) and (2) have already been studied for specific forms of the functions ui(·). The case of problem (1)
where ui(x) = −‖x− pi‖2 for fixed points pi ∈ R was first analyzed in [5] and later in [33, 34]; the former gives
a fast algorithm for optimal partitioning for the case where f(·) is an atomic distribution and the latter gives a
control scheme that converges to an optimal partition for smooth f(·). The case of (1) where ui(x) = −‖x− pi‖
and f(·) is a uniform distribution was analyzed in [3] (whose analysis also extends cleanly to general distributions
f(·)) who also give an approximation algorithm for simultaneously locating the points pi and designing partitions.

Our recent paper [12] considers the special case of problems (1) and (2) where ui(x) = −‖x − pi‖, where we
derive solutions for the optimal partition using complementary slackness techniques.

Notational conventions
In this paper we adopt the standard notation of vector calculus; in particular, we let ∂(·) denote the boundary
operator and we let ∇· denote the divergence operator. We use a double integral

˜
R
f(x) dA to denote integration

over a planar region whereas we use a triple integral
˝

R
f(x) dV to denote integration over a domain of arbitrary

dimension.

2 Applications
Before discussing the solution method for problems (1) and (2), we first give several geographic applications thereof.

Power diagrams A power diagram of a set of points {p1, . . . , pn} ⊂ Rd is a generalization of the well-known
Voronoi diagram in which additive weights wi are associated with each of the points. Specifically, an arbitrary
point x ∈ Rd is said to belong to the power cell Ci of the point pi if

‖x− pi‖2 − wi ≤ ‖x− pj‖2 − wj
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for all indices j ∈ {1, . . . , n}. It turns out that the cells Ci in any power diagram are always convex. Power
diagrams are widely applied in such diverse domains as robotics [33, 34, 35], air traffic control [14], and sensor
placement [16]. The paper [5] proves that the optimal solution to problem (1) is always a power diagram whenever
ui(x) = −‖x− pi‖2, i.e. when our objective is to minimize the sum of the mass moments of the sub-regions. An
immediate corollary (which was independently re-derived in [33, 34]) is that, given any set of points {p1, . . . , pn}
in a region R, a probability density f(·) defined on R, and any positive vector (q1, . . . , qn) whose entries sum to 1,
there always exists a set of weights whose resulting power diagram satisfies

˜
Ci
f(x) dA = qi for each i.

Fair division In a fair division problem we are concerned with dividing the region R “fairly” [9]. One interpreta-
tion of fairness is precisely the formulation (2) with f(x) = 1 everywhere and generic functions ui(·). It turns out (as
we will show momentarily) that the optimal solution to (2) has equal values of

˜
Ri
f(x)ui(x) dA (i.e.

˜
Ri
ui(x) dA

in our case) for all i; thus, each agent’s utility is equal at optimality.

Maximizing influence The gravity hypothesis [39] is a well-known geographic theory that states that the “in-
teraction” between two points x and y generally decays at a rate proportional to the inverse square of the distance
between them, i.e. 1/‖x − y‖2. Here “interaction” might be measured by economic activity [6], migration [24], or
transport [38], for example. It follows that if pi is the “capital” of region Ri then the total “influence” (economic,
political, or cultural) that pi exercises over Ri can be approximated as

¨
Ri

f(x)
‖x− pi‖2

dA

where f(·) represents a population density, so that ui(x) = 1/‖x− pi‖2. Since the integral blows up near the points
pi it is natural to truncate ui(x) in a small ε-neighborhood of pi. A natural application of problems (1) and (2)
arises in the division of territory among a collection of “capital cities” {p1, . . . , pn} so as to maximize the influence
that the cities exercise over their respective domains Ri while respecting overall constraints on the populations
of these domains. The related geographic potential model [40] postulates that the interaction between two points
decays at a rate directly proportional to the inverse of the distance between them, which gives ui(x) = 1/‖x− pi‖.

Hospital districting It has been observed among geographers that, in rural regions, the frequency of a person’s
visits to a hospital decays exponentially in their distance to the hospital [19, 41]. Thus, if a hospital located at
a point pi provides service to a region Ri, the long-term workload that the hospital experiences can roughly be
approximated by ¨

Ri

f(x) exp(−‖x− pi‖) dA

where f(·) represents a population density. Since the goal of districting among hospitals is generally to ensure
equity among the service regions, it is therefore natural to consider problem (2) with ui(x) = exp(−‖x− pi‖).
Exponential distance decay also occurs in measuring ecological similarity between areas [30, 36]; in this case, problem
(2) determines a partition of R into various sub-regions whose overall similarity with test sites pi is maximized.

Facility districting In the recent paper [12] we have considered the problem of dividing a territory among a
collection of facilities {p1, . . . , pn} so as to balance the workloads of those facilities, where we model the workload
of a facility covering region Ri as ¨

Ri

f(x)‖x− pi‖ dA .

The simple intuition is that the cost of pi providing service to a point x is simply proportional to the distance
between x and pi. Thus here we can consider either problem (1) or (2) with ui(x) = −‖x − pi‖. We can also
extend this to consider the case where each agent i has a collection of facilities {pi1, . . . , pini} (representing multiple
branches of a store, for example), which gives ui(x) = −minj∈{1,...,ni} ‖x− pij‖.

When the region R contains obstacles (or “holes”), it may not be appropriate to measure the distance between
a point x and a facility pi under the Euclidean norm. Instead, we may use the distance function d(x, pi) which gives
the length of the shortest path between x and pi.
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Districts for vehicle routing In a vehicle districting problem our objective is to design a collection of sub-regions
that minimize the workloads of a fleet of vehicles that provide service to a region [18]. Suppose that, on each day,
a set of N demand points {X1, . . . , XN} is sampled from a probability distribution f̃(·) defined on a service region
R, and each demand point must be serviced by a vehicle (each of which is originally located at a depot pi ∈ R).
The workload of a vehicle assigned to cover region Ri is simply the length of a travelling salesman tour of all of the
sampled points in Ri plus the depot point pi, TSP(pi ∪ {Xj} ∩ Ri). As we have shown previously in [11], it turns
out that with probability one we have

TSP(pi ∪ {Xj} ∩Ri)→ β

¨
Ri

√
f̃c(x) dA+ o(

√
N)

as N → ∞, where f̃c(·) denotes the absolutely continuous part of f̃(·). In order to balance the workloads of the
vehicles, we should then solve an instance of (1) where f(·) =

√
f̃c(x) (normalized so that f(·) integrates to 1)

and qi = 1/n, so that all vehicles have the same asymptotic workload. As a utility function it is natural to use
ui(x) = −‖x− pi‖ or ui(x) = −‖x− pi‖2 so that our sub-regions are as “compact” as possible. We will see that in
fact the optimal sub-regions will always be connected when such functions are chosen.

Police dragnet design It has been hypothesized [10, 32] that a logarithmic relationship exists between the
distance from a criminal’s home base to a potential target location and the likelihood that the offender chooses to
offend in that location, i.e. that

Pr(criminal strikes at x|home base at y) = max{a− b log ‖x− y‖, 0}

with a, b ≥ 0. It follows that if a crime has occurred at a point pi then the probability that the criminal’s home
base is located in region Ri is proportional to¨

Ri

f(x) max{a− b log ‖x− pi‖, 0} dA

where f(x) represents a population density. Thus, given a collection of recent crime locations {p1, . . . , pn}, one can
thus consider the problem of designing police “search regions” to maximize the likelihood of catching the criminals
by formulating problem (1) with ui(x) = max{a− b log ‖x− pi‖, 0}. Here we might set qi = 1/n in the constraint˜
Ri
f(x) dA = qi for all i, representing a restriction that each district have an equal population (and thus roughly

equal “workloads” for the police investigators).

3 Optimal sub-regions for (1) and (2)
In this section we show that the optimal sub-regions for problems (1) and (2) can be described easily in terms of
complementary slackness. For ease of intuition, we give proof sketches based on discretizing the problem; the same
result can be derived rigorously using infinite-dimensional vector space optimization theory, specifically Theorem 1
of [26], and we do so in Section A of the online supplement.

3.1 Sub-regions for (1)
In this section we consider the structure of problem (1). We provide a proof sketch that characterizes the optimal
solutions and refer the reader to Section A.1 of the online supplement for a rigorous proof:

Theorem 1. The boundaries between any optimal sub-regions R∗i and R∗j to problem (1) are of the form

∂(R∗i ) ∩ ∂(R∗j ) ⊆
{
x ∈ R : ui(x)− uj(x) = λ∗i − λ∗j

}
where λ∗i and λ∗j are the optimal solutions to the dual problem

minimize
λ

¨
R

f(x) max
i
{ui(x)− λi} dA s.t.

qTλ = 0 .

Moreover, if x and i are a point and an index such that ui(x)− λ∗i > uj(x)− λ∗j for all j 6= i, then x ∈ R∗i . Thus,
the optimal partition {R∗1, . . . , R∗n} can be recovered from the optimal dual variables λ∗1, . . . , λ∗n.
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Proof sketch. We begin by formulating problem (1) as an infinite-dimensional integer program. Setting Ii(x) to be
a {0, 1}-valued function indicating whether point x is assigned to agent i, we obtain the equivalent formulation

maximize
I1(·),...,In(·)

n∑
i=1

¨
R

f(x)ui(x)Ii(x) dA s.t. (3)
¨
R

f(x)Ii(x) dA = qi ∀i

n∑
i=1

Ii(x) = 1 ∀x

Ii(x) ∈ {0, 1} ∀i, x .

The linear programming relaxation of (3) is given by

maximize
I1(·),...,In(·)

n∑
i=1

¨
R

f(x)ui(x)Ii(x) dA s.t. (4)
¨
R

f(x)Ii(x) dA = qi ∀i

n∑
i=1

Ii(x) = 1 ∀x

Ii(x) ≥ 0 ∀i, x .

We can discretize the above problem into N grid cells �j of area ε, where fj denotes the average value of f(x) on
�j , uij denotes the average value of ui(x) on �j , and zij denotes the fraction of cell �j assigned to agent i, to
obtain the approximate formulation

maximize
Z

n∑
i=1

N∑
j=1

εfjuijzij s.t. (5)

N∑
j=1

εfjzij = qi ∀i

n∑
i=1

zij = 1 ∀j

zij ≥ 0 ∀i, j .

The dual problem to (5), which has variables λ ∈ Rn and ς ∈ RN , is

minimize
λ,ς

n∑
i=1

qiλi +
N∑
j=1

ςj s.t.

εfiλi + ςj ≥ εfjuij ∀i, j .

Introducing new variables σj := ςj/(εfj), we can rewrite the above as

minimize
λ,σ

n∑
i=1

qiλi +
N∑
j=1

εfjσj s.t.

σj ≥ uij − λi ∀i, j

which is a discretization of the problem

minimize
λ,σ(·)

n∑
i=1

qiλi +
¨
R

f(x)σ(x) dA s.t. (6)

σ(x) ≥ ui(x)− λi ∀i, x

5



which is equivalent to the unconstrained problem

minimize
λ

n∑
i=1

qiλi +
¨
R

f(x) max
i
{ui(x)− λi} dA .

Finally, we note that the above problem is invariant under scalar addition to λ because we have assumed that∑n
i=1 qi =

˜
R
f(x) dA = 1 and thus we obtain the convex, n-dimensional dual problem

minimize
λ

¨
R

f(x) max
i
{ui(x)− λi} dA s.t. (7)

qTλ = 0 .

It remains to show that the optimal partition {R∗1, . . . , R∗n} for the original problem (1) can be recovered from
problem (7). Let {I∗1 (·), . . . , I∗n(·)} denote the optimal solution to the LP relaxation (4) and consider any point
x ∈ R and the optimal solution λ∗ to (7). Suppose ī is the index such that ui(x)−λ∗i is maximal (assuming such an
index is unique). From the complementary slackness conditions of problem (6), it must be the case that I∗i (x) = 0
for all indices i other than ī, and consequently that I∗

ī
(x) = 1. This completes the proof.

Remark 2. The dual variables λi have a natural interpretation as shadow prices associated with the agents; specif-
ically, suppose that a client at point x must pay a fee of −(ui(x)− λi) for selecting agent i. Obviously, each client
will choose the agent for which his or her fee is minimized. Thus, the dual problem asks us to choose rates λi that
maximize the overall revenue that the agents receive from the clients, subject to a cap on the total rate at which
they are allowed to charge them.

3.2 Sub-regions for (2)
In this section we consider the structure of problem (2). Again, we provide a proof sketch here and refer the reader
to Section A.2 of the online supplment for a rigorous proof:

Theorem 3. Provided that either ui(x) > 0 for all i and x or ui(x) < 0 for all i and x (except for possibly a set
of measure zero), the boundaries between any optimal sub-regions R∗i and R∗j to problem (2) are of the form

∂(R∗i ) ∩ ∂(R∗j ) ⊆
{
x ∈ R : ui(x)

uj(x) =
λ∗j
λ∗i

}
where λ∗i and λ∗j are the optimal solutions to the dual problem

minimize
λ

¨
R

f(x) max
i
{λiui(x)} dA s.t.

n∑
i=1

λi = 1

λi ≥ 0 ∀i .

Moreover, if x and i are a point and an index such that λ∗i ui(x) > λ∗juj(x) for all j 6= i, then x ∈ R∗i . Thus, the
optimal partition {R∗1, . . . , R∗n} can be recovered from the optimal dual variables λ∗1, . . . , λ∗n, and at optimality, it
turns out that all sub-regions have the exact same utility

˜
R∗
i
f(x)ui(x) dA.

Proof sketch. We can similarly formulate problem (2) as an infinite-dimensional integer program given by

maximize
t,I1(·),...,In(·)

t s.t. (8)

t ≤
¨
R

f(x)ui(x)Ii(x) dA ∀i

n∑
i=1

Ii(x) = 1 ∀x

Ii(x) ∈ {0, 1} ∀i, x .
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The discretization of the linear programming relaxation of (8) is given by

maximize
t,Z

t s.t. (9)

t ≤
N∑
j=1

εfjuijzij ∀i

n∑
i=1

zij = 1 ∀j

zij ≥ 0 ∀i, j .

The dual problem to (9), which has variables µ ∈ Rn and ς ∈ RN , is

minimize
µ,ς

N∑
j=1

ςj s.t.

εfjuijµi + ςj ≥ 0 ∀i, j

−
n∑
i=1

µi = 1

µi ≤ 0 ∀i, j .

Introducing new variables λi := −µi and σj := ςj/(εfj), we can rewrite the above as

minimize
λ,σ

N∑
j=1

εfjσj s.t.

σj ≥ uijλi ∀i, j
n∑
i=1

λi = 1

λi ≥ 0 ∀i, j

which is a discretization of the problem

minimize
λ,σ(·)

¨
R

f(x)σ(x) dA s.t.

σ(x) ≥ λiui(x) ∀i, x
n∑
i=1

λi = 1

λi ≥ 0 ∀i

which is equivalent to the convex problem

minimize
λ

¨
R

f(x) max
i
{λiui(x)} dA s.t. (10)

n∑
i=1

λi = 1

λi ≥ 0 ∀i .

As before, let {I∗1 (·), . . . , I∗n(·)} denote the optimal solution to the LP relaxation of (8) and consider any point
x ∈ R and the optimal solution λ∗ to (10). Again, if the index ī that maximizes λiui(x) is unique, it must be
the case that I∗

ī
(x) = 1 and I∗i (x) = 0 for all other i. In addition, by our initial assumption that ui(x) > 0 for

all i and x or ui(x) < 0 for all i and x (except for possibly a set of measure zero), it is not hard to show (by a
simple perturbation argument) that we must have λ∗i > 0 for all i. Complementary slackness then tells us that
t∗ =

˜
R
f(x)ui(x)I∗i (x) dA for all i at optimality, i.e. the sub-regions all have the exact same utility.
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Remark 4. The dual variables λi again have a natural interpretation as shadow prices associated with the agents;
specifically, suppose that a client at point x must pay a fee of −λiui(x) for selecting agent i. Obviously, each client
will choose the agent for which his or her fee is minimized. Again, the dual problem asks us to choose rates λi that
maximize the overall revenue that the agents receive from the clients, subject to a cap on the total rate at which
they are allowed to charge them.

4 Solving (1) and (2)
In this section we show that problems (1) and (2) can be solved efficiently using convex optimization. Specifically,
we show that subgradients [8]to the dual problems (7) and (10) are cheap to compute, and therefore the optimal
partition can be computed quickly using, for example, an analytic center cutting plane method [7].

4.1 Computing subgradients for (1)
It is straightforward to verify that the vector g ∈ Rn, defined by setting

gi := −
¨
Ri

f(x) dA ,

is a subgradient for the objective function

h(λ) :=
¨
R

f(x) max
i
{ui(x)− λi} dA

for the dual problem (7). To see this, consider two vectors λ and λ
′
and the corresponding partitions {R1, . . . , Rn}

and {R′1, . . . , R
′

n}. We want to show that h(λ
′
) ≥ h(λ) + gT (λ

′
− λ), i.e. that

¨
R

f(x) max
i

{
ui(x)− λ

′

i

}
dA ≥

¨
R

f(x) max
i
{ui(x)− λi} dA+ gT (λ

′
− λ)

or equivalently that
¨
R

f(x) max
i

{
ui(x)− λ

′

i

}
dA ≥

n∑
i=1

¨
Ri

f(x)(ui(x)− λi) dA+ gi(λ
′

i − λi) .

Consider the right-hand side of the above; for each i, we have
¨
Ri

f(x)(ui(x)− λi) dA+ gi(λ
′

i − λi) =
¨
Ri

f(x)(ui(x)− λi) dA− (λ
′

i − λi)
¨
Ri

f(x) dA

=
¨
Ri

f(x)(ui(x)− λ
′

i) dA

and therefore we have

h(λ
′
) =
¨
R

f(x) max
i

{
ui(x)− λ

′

i

}
dA ≥

n∑
i=1

¨
Ri

f(x)(ui(x)− λ
′

i) dA︸ ︷︷ ︸
(∗)

= h(λ) + gT (λ
′
− λ)

as desired, where (∗) follows from the fact that, by construction, the sub-regions of the partition {R′1, . . . , R
′

n} are
defined by taking the maximal value of ui(x) − λ′i and are therefore maximal over all partitions. This completes
the proof.

4.2 Computing subgradients for (2)
It is straightforward to verify that the vector g ∈ Rn, defined by setting

gi :=
¨
Ri

f(x)ui(x) dA ,
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is a subgradient for the objective function

h(λ) :=
¨
R

f(x) max
i
{λiui(x)} dA

for the dual problem (10). To see this, consider two vectors λ and λ
′
and the corresponding induced partitions

{R1, . . . , Rn} and {R
′

1, . . . , R
′

n}. We want to show that h(λ
′
) ≥ h(λ) + gT (λ

′
− λ), i.e. that¨

R

f(x) max
i
{λ
′

iui(x)} dA ≥
¨
R

f(x) max
i
{λiui(x)} dA+ gT (λ

′
− λ)

or equivalently that
¨
R

f(x) max
i
{λ
′

iui(x)} dA ≥
n∑
i=1

¨
Ri

λif(x)ui(x) dA+ gi(λ
′

i − λi) .

Consider the right-hand side of the above; for each i, we have¨
Ri

λif(x)ui(x) dA+ gi(λ
′

i − λi) =
¨
Ri

λif(x)ui(x) dA+ (λ
′

i − λi)
¨
Ri

f(x)ui(x) dA

=
¨
Ri

λ
′

if(x)ui(x) dA

and therefore we have

h(λ
′
) =
¨
R

f(x) max
i
{λ
′

iui(x)} dA ≥
n∑
i=1

¨
Ri

λ
′

if(x)ui(x) dA︸ ︷︷ ︸
(∗)

= h(λ) + gT (λ
′
− λ)

as desired, where (∗) follows from the fact that, by construction, the sub-regions of the partition {R′1, . . . , R
′

n} are
defined by taking the maximal value of λiui(x) and are therefore maximal over all partitions. This completes the
proof.

4.3 Algorithms for (1) and (2)
For the sake of completeness, we give formal descriptions of two algorithms, MaxSumPartition and MaxMinPartition,
that solve problems (1) and (2), in Algorithms 1 and 2.
Remark 5. We would like to point out two advantages that Algorithms 1 and 2 possess over existing methods. First,
we compute λ∗ by solving a convex optimization problem for which subgradients are cheap to compute. Therefore,
these approaches inherit better theoretical convergence properties than, say, the scheme of [33, 34], which uses
a gradient descent method for the case where ui(x) = −‖x − pi‖2 and whose associated objective function (i.e.
the equivalent of h(λ)) is not convex (although the scheme proposed therein is proven to be globally convergent).
Secondly, the scheme of [33, 34] requires an explicit expression for the boundary components of the power cells Ri
(which are line segments), while ours merely requires that we be able to integrate over the Ri, say using Monte
Carlo or quasi-Monte Carlo approximation. This is not an issue when R ⊂ R2 (since explicitly representing the
boundary components – curves or line segments – is not difficult), but when R ⊂ Rd for high d, these boundary
components may be difficult to enumerate. Monte Carlo and quasi-Monte Carlo integration methods, on the other
hand, do not suffer from this “curse of dimensionality” because they involve merely sampling a large collection of
points in R and estimating integrals by working with those points that lie in each region Ri; the convergence rate
of the integral is inversely proportional to the square root of the number of samples

√
N . Of course, such methods

bring with them their own drawbacks, as described in Section 9.9.6 of [37]:

Such a convergence rate does not depend on the dimension n of the integration domain, and this is
a most relevant feature of the Monte Carlo method. However, it is worth noting that the convergence
rate is independent of the regularity of f ; thus, unlike interpolatory quadratures, Monte Carlo methods
do not yield more accurate results when dealing with smooth integrands.

[The convergence rate of 1/
√
N ] is extremely weak and in practice one does often obtain poorly ac-

curate results. A more efficient implementation of Monte Carlo methods is based on composite approach
or semi-analytical methods; an example of these techniques is provided in [28], where a composite Monte
Carlo method is employed for the computation of integrals over hypercubes in Rn.
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Input: A connected, polygonal region R with non-empty interior, a probability density function f(·) defined on R, a collection
of n utility density functions ui(·), a vector q ∈ Rn

+ such that
∑

i
qi = 1, and a threshold ε.

Output: A partition of R into n regions R1, . . . , Rn that solves problem (1) within tolerance ε.
Note: this is simply a standard analytic center cutting plane method applied to problem (7).

Define the initial polyhedron by Λ =
{
λ ∈ Rn : qTλ = 0 and ‖λ‖∞ ≤M

}
for a threshold M ;

/* See Lemma 14 of the online supplement to see how to construct a suitable M. */
while vol(Λ) > ε do

Let λ0 be the analytic center of Λ;
for i ∈ {1, . . . , n} do

Let Ri denote the sub-region in R for which ui(x)− λ0
i is strictly maximal;

end
Allocate the remaining mass of R (i.e. that which has not been assigned to a subset Ri, if any) lexicographically;
/* This lexicographic allocation will not generally be feasible for the original partitioning problem. */
for i ∈ {1, . . . , n} do

Set gi := −
˜

Ri
f(x) dA;

end
Set Λ := Λ ∩ {λ : gTλ ≥ gTλ0};

end
Let λ0 be the analytic center of Λ;
for i ∈ {1, . . . , n} do

Let Ri denote the sub-region in R for which ui(x)− λ0
i is strictly maximal;

end
Allocate the remaining mass of R (i.e. that which has not been assigned to a subset Ri, if any) as described in Section B.2 of
the online supplement;
return {R1, . . . , Rn};

Algorithm 1: Algorithm MaxSumPartition partitions a given region into sub-regions with pre-specified masses
while maximizing the overall utility of n agents.

Given a sample x ∈ R, we can easily determine the region Ri containing x by merely checking which index i
maximizes either ui(x)− λi or λiui(x) (depending on what problem we are solving). Of course, we will eventually
desire some kind of expression for the boundary components of the optimal regions R∗1, · · · , R∗n, be it implicit or
explicit.

5 Applications revisited
Here we discuss the implications of Theorems 1 and 3 on the applications listed in Section 2.

Power diagrams By applying Theorem 1 to the case where ui(x) = −‖x− pi‖2 for points pi ∈ R, we find concise
proofs of Theorems 1 and 3 and Corollary 1 from [5] (and equivalently Theorem 4.1 from [33] and Theorem 3.1
from [34]), all of which say (in one form or another) that the boundaries between optimal sub-regions to problem
(1) are a power diagram, and therefore for any set of points {p1, . . . , pn} ⊂ R and any constraint vector q with
qi ≥ 0 for all i and

∑
i qi = 1, there exists a power diagram based at the points pi such that

˜
Ci
f(x) dA = qi for

each cell Ci. As Algorithm 1 shows, it is simple to compute the optimal weight vector λ∗ via the formulation (7),
which improves over the control policy proposed in [33, 34] (which also provably converges to λ∗) as mentioned in
Remark 5. Note that, at optimality, it may be the case that pi /∈ R∗i (since the cells in a power diagram are not
guaranteed to contain their associated point).

An additional observation is that the boundaries between optimal sub-regions to problem (2) are level sets of the
function ‖x− pi‖2 / ‖x− pj‖2 which are always arcs of a circle (specifically, an “Apollonian circle” [31]), as shown
in Figure 1.

Fair division Consider the fair division problem (2) where each utility function ui(x) is a bivariate normal
distribution with mean µi and covariance matrix Σi. Taking logarithms, it is easy to see that the boundaries
between optimal sub-regions are level sets of the function

(x− µi)TΣ−1
i (x− µi)− (x− µj)TΣ−1

j (x− µj) , (11)

which are conic sections, as shown in Figure 2. It is worth mentioning that the sub-regions may not be connected.
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Figure 1: Apollonian circles, that is, the level sets of the function ‖x− pi‖2 / ‖x− pj‖2.

(a) (b) (c)

Figure 2: In (2a) and (2b) we have two normal distributions and in (2c) we show the level sets of the function (11);
the light gray curves are the level sets of the normal distributions.
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Input: A connected, polygonal region R with non-empty interior, a probability density function f(·) defined on R, a collection
of n utility density functions ui(·), and a threshold ε.

Output: A partition of R into n regions R1, . . . , Rn that solves problem (2) within tolerance ε.
Note: this is simply a standard analytic center cutting plane method applied to problem (10).

Define the initial polyhedron by Λ =
{
λ ∈ Rn :

∑
i
λi = 1 and λ ≥ 0

}
;

while vol(Λ) > ε do
Let λ0 be the analytic center of Λ;
for i ∈ {1, . . . , n} do

Let Ri denote the sub-region in R for which λ0
i ui(x) is strictly maximal;

end
Allocate the remaining mass of R (i.e. that which has not been assigned to a subset Ri, if any) lexicographically;
for i ∈ {1, . . . , n} do

Set gi :=
˜

Ri
f(x)ui(x) dA;

end
Set Λ := Λ ∩ {λ : gTλ ≥ gTλ0};

end
Let λ0 be the analytic center of Λ;
for i ∈ {1, . . . , n} do

Let Ri denote the sub-region in R for which λ0
i ui(x) is strictly maximal;

end
Allocate the remaining mass of R (i.e. that which has not been assigned to a subset Ri, if any) as described in Section B.2 of
the online supplement;
return {R1, . . . , Rn};

Algorithm 2: Algorithm MaxMinPartition partitions a given region into sub-regions while maximizing the
minimum utility of n agents.

Maximizing influence Theorem 1 tells us that when ui(x) = 1/‖x − pi‖2, the boundaries between optimal
sub-regions to problem (1) are quartic curves that are level sets of the function

1
‖x− pi‖2

− 1
‖x− pj‖2

.

We are not aware of any name given to such curves, although they can easily be parameterized by expressing them
in bipolar coordinate form and then applying a Euclidean transformation [25]. Such curves are shown in Figure 3.
When we consider problem (2), it is easy to see that the boundaries between optimal sub-regions are Apollonian
circles again.

Hospital districting When we consider problem (2) with ui(x) = exp(−‖x− pi‖), it is easy to see that the
boundaries between optimal sub-regions are simply hyperbolas, that is, the level sets of

‖x− pi‖ − ‖x− pj‖ .

Facility districting In the paper [12] we have previously considered problems (1) and (2) with ui(x) = −‖x−pi‖;
it is easy to see that the boundaries between optimal sub-regions to (1) are hyperbolas and that the boundaries
between optimal sub-regions to (2) are Apollonian circles.

As mentioned previously, when the region R contains obstacles (or “holes”), it may instead be appropriate to
model the workload in a region Ri as ¨

Ri

f(x)d(x, pi) dA ,

where d(x, pi) is the length of the shortest path between x and pi. We then find that the optimal sub-regions to
(1) are piecewise hyperbolic arcs, as shown in Figure 4. It turns out that the sub-regions are relatively star convex
to R and the points pi: that is, if point x is contained in sub-region Ri, then the entire shortest path from x to pi
is contained in Ri as well; see Figure 5. In this sense, the sub-regions are both compact and connected. Given an
optimal dual vector λ∗, we can construct the sub-regions Ri using the continuous Dijkstra paradigm in O(N5/3)
steps (see [27]).

Districts for vehicle routing As we have seen in the preceding examples, in the vehicle districting problem as
formulated previously, we are guaranteed to have either hyperbolic arcs (when ui(x) = −‖x− pi‖) or straight lines
(when ui(x) = −‖x−pi‖2) as boundary components, and in either case the optimal sub-regions are guaranteed to be
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Figure 3: Level sets of the function 1/‖x− pi‖2 − 1/‖x− pj‖2.
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Figure 4: The partition above has hyperbolic arcs defining the boundary components between sub-regions.
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Figure 5: The partition from Figure 5 is relatively star-convex to R.

(a) (b)

Figure 6: In (6a) we show the level sets of the function ‖x−pi‖1−‖x−pj‖1 and in (6b) we show an optimal solution
to (1) on the unit square where f(·) is the uniform distribution, qi = 1/n for all n, and ui(x) = −‖x − pi‖1. The
problem of recovering an optimal partition given the dual variables λ∗i is not entirely trivial because the boundary
components may not be one-dimensional (i.e. the shaded regions in (6a)), although a partition satisfying the
necessary properties can indeed be recovered as explained in Section B.1 of the online supplement.

at least connected (if not convex). If we insist that our boundary components be line segments (for the appearance
of simplicity, for example) but we also want pi ∈ R∗i for all i (which does not necessarily hold for a power diagram),
another possibility is to use ui(x) = −‖x − pi‖1 or ui(x) = −‖x − pi‖∞; the resulting boundary components are
shown in Figure 6.

Police dragnet design When ui(x) = max{a− b log ‖x−pi‖, 0}, it is easy to verify that the boundaries between
optimal sub-regions to problem (1) are Apollonian circles, by the same arguments put forth earlier in this section.

6 Economic applications
Our analysis of problems (1) and (2) can actually be applied to non-geographic contexts. In this section, we apply
Theorems 1 and 3 to look at the interaction between an aggregate demand system and an address model, which are
commonly encountered in discrete choice theory in economics. Section 6.1 combines the results of this paper with
the theory developed in [2] to show how to efficiently compute a market-clearing price vector in a variety of demand
models for a differentiated product. Section 6.2 describes a variant on the classical Fisher exchange market [15] in
which consumers are distributed according to a continuum.
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6.1 Computing a market-clearing price vector in an aggregate demand system
Let p = (p1, . . . , pn) denote the prices of n variants of a differentiated product. An aggregate demand system (ADS)
D : Rn+ → Rn+ is a vector-valued function D(p) such that Di(p) represents the total demand for variant i from a
given population of consumers when the variants are priced according to p. The paper [2] considers ADSs D(·)
satisfying four conditions:

(A1) D(·) obeys the gross substitutes property:

∂Di

∂pj
> 0 ∀i 6= j .

(A2) D(·) is invariant under scalar addition:

D(p + c) = D(p) ∀c ∈ R+ .

(A3) Aggregate demand for the product is constant:
n∑
i=1

Di(p) = 1 ∀p ∈ Rn+ .

(A4) A technical constraint on the partial derivatives of D(·):

ϕ(p1 − pn, . . . , pn−1 − pn) := ∂n−1Di

∂p1 · · · [∂pi] · · · ∂pn
> 0

where the right hand side is the (n− 1)-th partial derivative of Di(·) with respect to all prices except for pi.

As explained in that paper, conditions (A1)-(A4) are satisfied under many standard discrete choice models, such
as the logit, probit, linear probability, and CES models. One can also relax condition (A3) by regarding the fraction
of demand attributed to each of the n variants rather than the true aggregate demand (this is explained in the
“Conclusions” section thereof).

An alternative model to the ADS is the address model, defined as follows:

(B1) Each of the n product variants is represented as a point xi in a “characteristics space” Rm.

(B2) There is a continuum of consumers distributed in Rm according to a continuous and strictly positive density
function f(x), with ˚

Rm
f(x) dV = 1 ,

where “dV ” denotes a volume differential in Rm.

(B3) Each consumer purchases one unit of the variant that offers the greatest utility. The utility of a consumer
located at x, purchasing variant i, is

ui(x) = αi − ‖x− xi‖2 − pi

where αi is a perceived “quality index” of variant i and pi is the price of variant i as in the ADS.

Under the address model, we then see that the total demand for variant i, written D̃i(p), is

D̃i(p) =
˚

Ri

f(x) dV , (12)

where Ri is the “market space” for variant i, i.e. the region for which variant i offers the greatest utility:

Ri =
{
x ∈ Rm : αi − ‖x− xi‖2 − pi ≥ αj − ‖x− xj‖2 − pj ∀j 6= i

}
.

Note that for any price vector p, the partition R1, . . . , Rn is simply a power diagram as described in Section 2. We
will assume without loss of generality that αi = 0 for all i.

The major insight of [2] is that there exists an equivalence between the ADS and address models of demand:
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Theorem (ADS-address equivalency). Given any ADS D(·) satisfying conditions (A1)-(A4), there exists a density
function f(·) and a placement of points {x1, . . . xn} ⊂ Rm (where it turns out that m = n−1) such that D̃(p) = D(p)
for all p ∈ Rn+, with D̃(·) as defined in (12).

It is also worth noting that the equivalence established above is constructive; the authors give a closed-form
expression for the placement of points xi and the consumer density function f(·) in terms of D(·). We can apply
our Theorem 1 to the above result to show that, given an ADS D(·) and a vector d ∈ Rn+ such that

∑
i di = 1, we

can easily find a market-clearing price vector, that is, a vector p∗ such that Di(p∗) = di for all i. Conceptually, we
construct the placement of points {x1, · · · , xn} and the consumer density function f(·) as in the above theorem,
then solve an instance of problem (1) in which we set R = Rm, qi = di, and ui(x) = −‖x− xi‖2. We find that the
optimal solution λ∗ to the dual problem (7) is precisely the desired price vector p∗.

What is more striking, however, is that we can in fact solve problem (1) without taking any integrals whatsoever!
Recall from Section 4.1 that the key to solving (1) is that we can easily construct a subgradient vector g by defining

gi := −
˚

Ri

f(x) dV .

However, by construction, we know that
˝

Ri
f(x) dV = D̃i(p) = Di(p), and thus the vector −D(p) is itself a

subgradient vector for the dual problem (7). To conclude this section, Algorithm 3 describes formally how to find
p∗ given the ADS D(·).

Input: An ADS D(·) that satisfies (A1)-(A4), a vector d ∈ Rn
+ such that

∑
i
di = 1, and a threshold ε.

Output: A market-clearing price vector, i.e. a vector p∗ ∈ Rn
+ such that ‖D(p∗)− d‖ ∈ O(ε).

Define the initial polyhedron by P = {p ∈ Rn : dT p = 0 and ‖p‖∞ ≤M for a threshold M ;
/* See Lemma 14 of the online supplement to see how to construct a suitable M. */
while vol(P) > ε do

Let p0 be the analytic center of P;
Set g := −D(p0);
Set P := P ∩ {p : gT p ≥ gT p0};

end
Let p0 be the analytic center of P;
Set p := p0 −mini{p0

i } (we do this so as to ensure that p ∈ Rn
+);

return p;

Algorithm 3: Algorithm MarketClearingADS finds a market-clearing price vector in an ADS.

6.2 Relating (1) and (2)
Using Theorems 1 and 3, we can show that the optimal solutions to problems (1) and (2) are related in a particular
fashion:
Claim. Let R∗1, . . . , R∗n be an optimal solution to problem (2) with generic utility functions ūi(x) and define q∗i :=˜
R∗
i
f(x) dA for all i. Then R∗1, . . . , R∗n is also an optimal solution to problem (1) with the same density f(·) and

utility functions ui(x) = log ūi(x) with qi = q∗i .

Proof. This is immediate; R∗1, . . . , R∗n satisfies the KKT conditions for problem (1), as follows from our proofs of
Theorems 1 and 3.

This result seems to be relevant in general problems of fair allocation of divisible goods [9], although we are not
aware of its existence elsewhere in the literature. One particular application arises when we consider a continuous
version of the classical Fisher exchange market, as discussed below.

Fisher’s exchange market

Fisher’s exchange market [15] is a special case of the general Arrow-Debreu problem [4] in which an economy consists
of producers and consumers. A collection of N consumers have money to buy goods and maximize their (linear)
utility functions; a collection of n producers sell their goods for money. We assume that each producer produces one
unique good, so that the unit prices for the goods are denoted by a vector p ∈ Rn+. Without loss of generality we
assume that each producer has exactly one unit of his or her unique good to sell, which can be divided among the
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consumers. Associated with each consumer is a utility vector ui ∈ Rn+, a budget bi, and a decision vector xi ∈ Rn+.
Each agent chooses a bundle of goods by solving the simple linear program

maximize
xi

uTi xi s.t. (13)

pTxi ≤ bi

xi ≥ 0 .

The objective of a market organizer is to determine a price vector p∗ such that the market clears, i.e. that when
each consumer selects his or her optimal decision vector x∗i , we have

N∑
i=1

x∗i = e

where e ∈ Rn is a vector whose entries are all 1’s. A classical result of Eisenberg and Gale [13] explains how to
construct p∗:

Theorem. The optimal Lagrange multiplier for the equality constraints in the following optimization problem is a
market-clearing price vector:

maximize
x1,...,xN

N∑
i=1

bi log(uTi xi) s.t. (14)

N∑
i=1

xi = e

xi ≥ 0 ∀i .

In keeping with the spirit of this paper, we will use a mild variant of Fisher’s model in which agents are distributed
according to a continuum f(x) defined on a domain R ∈ Rm, rather than by the index set {1, . . . , N} (here Rm
would be a “characteristics space” in the language of Section 6.1). In this setting, an agent located at point x ∈ R
has a utility vector u(x) = (u1(x), . . . , un(x)), a given budget b(x), and a decision vector J(x) = (J1(x), . . . , Jn(x)).
The relevant equivalents of (13) and (14) are then

maximize
J1(x),...,Jn(x)

n∑
i=1

ui(x)Ji(x) s.t. (15)

n∑
i=1

piJi(x) ≤ b(x)

Ji(x) ≥ 0 ∀i

and

maximize
J1(·),...,Jn(·)

˚
R

f(x)b(x) log
(

n∑
i=1

ui(x)Ji(x)
)
dV s.t. (16)

˚
R

f(x)Ji(x) dV = 1 ∀i

Ji(x) ≥ 0 ∀i, x

respectively.
Rather than clearing the market by selling fixed quantities of goods (which we would accomplish by solving

(16)), we will show how to solve a related problem apropos of that encountered in Section 6.1: suppose that a
market organizer wants to select a price vector p with the intention of setting, for each good i, the fraction of
customers that prefer good i to all other goods. The budgets of the agents, b(x), and the amounts available of
each good (which we assumed to be 1), are now disregarded. This is a useful model when the market consists of
competing variants of products whose aggregate demand is inelastic (as opposed to the traditional Fisher market
which is perfectly elastic), such as sanitation services or health insurance. For lack of a better phrase, we will call
such a price vector an “allocation-clearing price vector”.
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Theorem 6. Let q ∈ Rn+ be a vector such that
∑
i qi = 1 representing desired consumer allocations and suppose

that f(x) is a probability density function such that
˝

R
f(x) dV = 1 on a domain R ⊂ Rm. Then the vector p

defined by setting pi = eλ
∗
i for all i, where λ∗ is the optimal Lagrange multiplier for the top equality constraints in

the following optimization problem, is an “allocation-clearing price vector”:

maximize
I1(·),...,In(·)

˚
R

f(x)
n∑
i=1

(log ui(x))Ii(x) dV s.t. (17)
˚

R

f(x)Ii(x) dV = qi ∀i

n∑
i=1

Ii(x) = 1 ∀x

Ii(x) ≥ 0 ∀i, x .

Proof. Since (17) is an instance of (1), Theorem 1 says that at optimality, the region R∗i (i.e. the region where
I∗i (x) = 1) consists of those points x where log ui(x) − λ∗i > log uj(x) − λ∗j for all j 6= i, or equivalently, where
ui(x)/eλ∗i = ui(x)/pi > uj(x)/pj . Conversely, in order to maximize (15), a consumer located at point x will allocate
its entire budget to precisely that same index i that maximizes ui(x)/pi.

For the sake of completeness, problem (18) below is simply the discrete analogue of problem (17), where we
assume that q ∈ Rn+ satisfies

∑
i qi = N . We believe this to be of independent interest because Theorem 6 still

holds, provided we allow consumers to be fractionally allocated to two or more goods if they are indifferent:

maximize
x1,...,xN

N∑
i=1

log(ui)Txi s.t. (18)

N∑
i=1

xi = q

eTxi = 1 ∀i
xi ≥ 0 ∀i .

7 Computational complexity
Up to this point we have described how to solve the dual problems (7) and (10) efficiently by constructing subgradient
vectors. However, we have not yet discussed the added computational complexity incurred by evaluating these
integrals numerically. To this end, we find the following result (originally given in Section 7.4 of [20], but re-stated
using the language of Section 9.9 of [37]) useful:

Theorem 7. Let Ω ⊂ R2 be a domain of integration equipped with a triangulation Th consisting of NT triangles,
where h is the maximum edge length in Th. There exists a positive constant K1, independent of h, such that the
error E induced using either the composite midpoint formula

¨
Ω
f(x) dA ≈

∑
T∈Th

Area(T )f(centroid(T ))

or the composite trapezoidal formula

¨
Ω
f(x) dA ≈ 1

3
∑
T∈Th

Area(T )
3∑
j=1

f(vertexj(T ))

is bounded by
|E| ≤ K1h

2 Area(Ω)M2 ,

where M2 is the maximum value of the modules of the second derivatives of the integrand f(·).
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It follows that, if our desired error in integration is ε in our problem, then the maximum length of any edge
in the triangulation must be at most ε1/2(Area(R)M2K1)−1/2 (since we often have curved arcs separating the Ri,
an exact triangulation is impossible, but the added computational complexity therein is beyond the scope of this
paper). If we break R into NT triangles, the maximum edge length will generally be O(

√
Area(R)/NT ) and we

therefore need to break R into O(Area(R)2M2/ε) triangles. Thus, the complexity of evaluating the sub-gradient
vectors in Section 4 is quadratic in Area(R), linear in the maximum modules of the second derivatives of f(·), and
inversely proportional to the desired precision ε.

8 Enforcing connectivity
We have seen previously that the optimal partition to an instance of (1) or (2) may not be connected. In practice,
connectivity is clearly a desirable property; for example, by state constitution, statute, or guideline, 23 US states
have passed rulings that their congressional districts must be contiguous [23]. Having observed that the optimal
solution to problem (1) is always connected when ui(x) = −‖x−pi‖, one way to enforce connectivity of sub-regions
is to augment problems (1) or (2) with a penalty term −‖x− pi‖, giving the modified problems

maximize
R1,...,Rn

(1− µ)
n∑
i=1

¨
Ri

f(x)ui(x) dA− µ
n∑
i=1

¨
Ri

f(x)‖x− pi‖ dA s.t. (19)
¨
Ri

f(x) dA = qi ∀i

Ri ∩Rj = ∅ ∀i 6= j⋃
i

Ri = R

and

maximize
R1,...,Rn

(1− µ) min
i

{¨
Ri

f(x)ui(x) dA
}
− µ

n∑
i=1

¨
Ri

f(x)‖x− pi‖ dA s.t. (20)

Ri ∩Rj = ∅ ∀i 6= j⋃
i

Ri = R .

It is obvious that problem (19) is itself merely an instance of (1) (with a modified utility function) and thus its
boundary components may be solved using duality as before. It is not hard to show that the dual to problem (20)
is

minimize
λ

¨
R

f(x) max
i
{λiui(x)− µ‖x− pi‖} dA s.t.∑

i

λi = 1− µ

λi ≥ 0 ∀i

and consequently the optimal boundaries to (20) must satisfy

λiui(x)− µ‖x− pi‖ = λjuj(x)− µ‖x− pj‖ .

Figure 7 shows the effect of this penalty term on an instance of (20) where we use the gravity model utility functions
given by ui(x) = 1/‖x− pi‖2.

9 Dynamic partitioning
In this section we consider the problem of partitioning a region optimally when the density f(x) varies over time.
For ease of exposition we shall focus on the case where R is a planar region, although the analysis herein extends
naturally to higher dimensions. We consider the case where f(x; t) is a probability density on R ∈ R2 that evolves
according to a vector field ~V (x, t) : R × R → R2 that maps a given point x ∈ R at a specified time t to a vector
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(a) µ = 0 (b) µ = 0.167 (c) µ = 0.333 (d) µ = 0.5

(e) µ = 0.67 (f) µ = 0.83 (g) µ = 1 (h) µ∗ = 0.3863

Figure 7: The optimal partitions to problem (20) with varying µ, where f(x) is the uniform distribution and we
use the gravity model utility functions given by ui(x) = 1/‖x − pi‖2 (it turns out that we can parameterize the
boundary curves efficiently by using a transformation to bipolar two-center coordinates). Disconnected regions are
indicated by shading. Figure (7h) shows the partition induced when µ = µ∗ = 0.3863 is the “threshold” value
(which we found using the method of bisection) for which the partition is connected.
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(v1(x, t), v2(x, t)); the physical interpretation of this system, naturally, is that an infinitesimal amount of mass
located at point x moves in the direction (v1(x, t), v2(x, t)) at time t at a speed of ‖(v1(x, t), v2(x, t))‖. Such a
model of transport is canonical in a variety of contexts, including population migration [42], meteorology [17], and
oceanography [29]. In such a setting, the density f(x; t) is known to obey the advection equation

∂f(x; t)
∂t

+∇ · (f(x; t)~V (x, t)) = 0 (21)

where ∇· is the divergence operator, defined as

∇ ·
(
h1(x1, x2; t)
h2(x1, x2; t)

)
:= ∂h1(x1, x2; t)

∂x1
+ ∂h2(x1, x2; t)

∂x2
.

In this section we will show how equation (21) allows us to define the changes in the optimal Lagrange multiplier
vector λ∗ over time, and thereby the optimal partition R∗1(t), . . . , R∗n(t) (since λ∗ uniquely defines the optimal
sub-regions R∗i ). Let λ∗(t) denote the optimal Lagrange multiplier vector at time t and let Ri(λ∗(t)) denote the
ith sub-region constructed according to Theorem 1 (it is of course true that Ri(λ∗(t)) = R∗i (t), but for notational
purposes we prefer to emphasize the dependence of R∗i (t) on λ∗(t)). Using the result of Section 4.1, we can easily
see that the optimality conditions of problem (7) simply require that

Fi(λ; t) = qi (22)

for all i ∈ {1, . . . , n} and all t, where we have defined (for ease of notation)

Fi(λ; t) :=
¨
Ri(λ)

f(x; t) dA .

Since
∑
i qi =

˜
R
f(x; t) = 1 for all t, we find that one of these constraints is redundant and therefore it will

suffice to require that (22) holds for i ∈ {1, . . . , n − 1} and all t; we also commensurately assign λn = −(q1λ1 +
· · ·+ qn−1λn−1)/qn, to comply with the dual constraint that qTλ = 0. We shall now use (22) to define the partial
derivatives ∂λ∗i /∂t. We first introduce two well-known lemmas:

Lemma 8. Let Rτ be a family of compact regions in the plane defined by

Rτ := {x ∈ R2 : h(x) ≤ τ}

where h(x) : R2 → R is a smooth function. Suppose f(x) is a density on R2 and define

m(τ) :=
¨
Rτ

f(x) dA

for all τ . Then
dm

dτ
=
ˆ
∂Rτ

f(x)
‖∇h‖

ds ,

where ds denotes a line integral over the boundary of Rτ , ∂Rτ .

Proof. This is a special case of the coarea formula [21].

Lemma 9. (Divergence theorem [1]) Let R be a compact planar region with a smooth boundary. If ~W (x) is a
smooth vector field defined on R, then ¨

R

∇ · ~W dA =
ˆ
∂R

~w · ~n ds ,

where ~n denotes the outward-facing unit normal vector pointing out of R.

Note that Lemma 8 gives us a clean expression for the partial derivatives ∂Fi/∂λj :

∂Fi
∂λj

=


0 if ∂Ri ∩ ∂Rj = ∅∑
j′ :∂Ri∩∂Rj′ 6=∅

´
∂Ri∩∂Rj′

f(x;t)
‖∇ui(x)−∇u

j
′ (x)‖ ds if i = j

−
´
∂Ri∩∂Rj

f(x;t)
‖∇ui(x)−∇uj(x)‖ ds otherwise
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where we have suppressed the dependency of the Ri’s on λ purely for notational compactness. Similarly, combining
equation (21) with Lemma 9 gives us a clean expression for the partial derivatives ∂Fi/∂t:

∂Fi
∂t

= ∂

∂t

¨
Ri(λ)

f(x; t) dA

=
¨
Ri(λ)

∂

∂t
f(x; t) dA

= −
¨
Ri(λ)

∇ · (f(x; t)~V (x, t)) dA

= −
ˆ
∂Ri(λ)

(f(x; t)~V (x, t)) · ~n ds .

We thus have in hand expressions for ∂Fi/∂λj and ∂Fi/∂t. The following result allows us to describe the optimal
dual variables λ∗ in terms of t:

Theorem 10. (Special case of the implicit function theorem [1]) Consider the system of n − 1 equations in n
variables

F1(λ1, . . . , λn−1; t)− q1 = 0
...

Fn−1(λ1, . . . , λn−1; t)− qn−1 = 0

and a point (λ0, t0) that satisfies the system. Suppose that each of the functions Fi has continuous first partial
derivatives with respect to each of the variables λi and t near (λ0, t0). Finally, suppose that

det
[
∂Fi
∂λj

]∣∣∣∣
(λ0,t0)

6= 0 , (23)

where [∂Fi/∂λj ] denotes the Jacobian matrix of functions F1, . . . , Fn−1 with respect to λ1, . . . , λn−1. Then there
exist functions φ1(t), . . . , φn−1(t) such that

φi(t0) = λi

for i ∈ {1, . . . , n− 1} and such that the equations

F1(φ1(t), . . . , φn−1(t); t)− q1 = 0
...

Fn−1(φ1(t), . . . , φn−1(t); t)− qn−1 = 0

hold for all t sufficiently near t0. Moreover,

∂φj
∂t

= −
det
[

∂Fi
∂λ1···∂t···∂λn−1

]
det
[
∂Fi
∂λj

] ,

where the numerator denotes the matrix obtained by replacing the jth column of [∂Fi/∂λj ] with the vector of partial
derivatives ∂Fi/∂t.

Corollary 11. If λ∗(t0) is an optimal solution to problem (7) at time t0, and if f(x; t) evolves according to equation
(21), then the optimal dual variables λ∗(t) satisfy the differential equation

∂λ∗i
∂t

∣∣∣∣
t=t0

= −
det
[

∂Fi
∂λ1···∂t···∂λn−1

]
det
[
∂Fi
∂λj

]
∣∣∣∣∣∣
t=t0

. (24)

Remark 12. We can further elaborate on a sufficient condition for (23) to hold. Let J = [Jij ] := [∂Fi/∂λj ] denote
the Jacobian matrix of partial derivatives with respect to λ1 through λn−1 as before and note that Jij = 0 if regions
i and j do not share a boundary. Construct a graph G with n − 1 nodes, where notes i and j share an edge if
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Figure 8: The average number of cutting plane method iterations for various utility functions.

regions i and j share a boundary (G may not be connected since region n does not have a corresponding node).
Assume without loss of generality that J is decomposed into a block-diagonal form wherein each block Bk consists
of the connected components of G. Further note that, by construction, J is diagonally dominant. If Jij < 0 for all
neighboring regions i and j (which always holds in all of our examples if f(x) > 0, for instance), then in each block,
there exists at least one row (namely, any row i such that regions i and n share a boundary) at which this diagonal
dominance is strict. Each block Bk is therefore irreducibly diagonally dominant and thus nonsingular [43], which
guarantees nonsingularity of J.

10 Computational experiments
In what follows we give the results of three numerical simulations: in the first two simulations, we solve various
instances of (1) and (2) when R is either the unit square or a geographic map, and f(·) is either the uniform
distribution or a population density. In the second simulation we consider a dynamic partitioning problem among
four agents in the unit square and show how Corollary 11 can be used effectively.

10.1 Static partitioning
In this section, we provide the results of two numerical simulations: in the first simulation, R is the unit square and
f(·) is the uniform distribution; in the second, R is a map of Ramsey County, Minnesota, and f(·) is a population
density. For all problems we use qi = 1/n for all i; the agents’ locations are randomly chosen. Figure 8 shows the
number of cutting plane iterations (averaged over 5 random samples) required for n = 6 through n = 50 for the
unit square. Figures 9 and 11 show the convergence of our algorithm for n = 6 in the unit square and n = 7 in
Ramsey County from both a primal and dual perspective. Figures 10 and 12 show the various optimal partitions
that are computed by our algorithm. For all simulations we used a tolerance threshold of 1%.

10.2 Dynamic partitioning
In this section, we consider a problem in which the density f(·) varies over time as in equation (21). We let R be
the unit square and we let f(x; t = 0) be a normal distribution with mean (0.5, 0.5) and variance 0.3 with zero
covariance. We let ui(x) := −‖x− pi‖ where the points pi are regularly spaced in R.

As a vector field ~V (x; t) we use v1(x1, x2, t) := − sin(x′1) cos(x′2) + 0.1 and v2(x1, x2, t) := cos(x′1) sin(x′2), where
x
′

1 and x
′

2 are obtained by applying an affine map to x1 and x2 (we use such a map so as to have a vector field
that is not aligned with the coordinate axes), and we also apply a dampening filter to force ‖~V (x, t)‖ to be small
when x is near the boundary of R (this allows us to sidestep the issue of mass entering or exiting R). The field is
shown in Figure 13. Note that we have chosen to keep ~V constant over time in order to make the flow of f(x; t)
more recognizable.

In order to simulate the advection over time we use the Clawpack simulator [22] for the period t ∈ [0, 10],
with 200 × 200 grid cells, using a timestep of ∆t = 0.01. For each of the 1000 advection iterations we compute
the optimal dual variables λ∗i (t) and the optimal partitions, which are shown in Figure 14. We also compute
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(a) Objective function - unit square (b) Normalized areas of the partitions - unit square

Figure 9: Convergence of the analytic center cutting plane algorithm for the unit square.

approximately optimal dual variables λ†i (t) using Corollary 11 as follows: for t ∈ {0, 1, . . . , 9}, we let λ†i (t) = λ∗i (t),
and for non-integer t, we let λ†i (t) be the value of λ∗i (t) as prescribed by equation (24). Thus, λ†i (t) is a piecewise
linear function that “resets” itself whenever t is an integer. For purposes of comparison we also let λ‡i (t) be a step
function that “resets” itself whenever t is an integer, that is, λ‡i (t) := λ∗i (btc). In summary, λ†i (t) is a first-order
approximation of λ∗i (t) and λ‡i (t) is a zeroth-order approximation. Figure 15a shows the trajectories of these two
approximations against the true optimal trajectories λ∗i (t). Figure 15b shows the resulting values of Fi(λ; t) under
these two approximations; note that the regions defined by λ†i (t) are, not surprisingly, consistently more balanced
than those of the step approximation λ‡i (t).
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Figure 14: Advection over the unit square for t ∈ [0, 10] and the optimal partitions R∗1(t), R∗2(t), R∗3(t), R∗4(t).
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Online supplement to “Shadow prices in
territory division”
A Proofs of Theorem 1 and 3
In order to prove Theorems 1 and 3, we find it helpful to first state an important result from Section 8.6 of [26]:

Theorem 13. (Lagrange Duality) Let f be a real-valued convex functional defined on a convex subset Ω of a vector
space X, and let G be a convex mapping of X into a normed space Z. Suppose there exists x1 ∈ X such that G (x1) < θ,
where θ denotes the zero element, and that µ0 := inf {f (x) : G (x) ≤ θ, x ∈ Ω} is finite. Then

inf
x∈Ω,G(x)≤θ

f (x) = max
z∗≥θ

ϕ (z?)

where
ϕ (z?) = inf

x∈Ω
f (x) + 〈G (x) , z?〉 ,

and the maximum on the right is achieved by some z?0 ≥ θ.

We will assume in this section, without loss of generality, that ui(x) > 0 for all i and all x ∈ R.

A.1 Proof of Theorem 1
We find it helpful to begin our proof by first considering the dual problem (7), which we will prove is equivalent to
the original problem (1). The reason that we prefer to do things in this order is because it is easier to verify that a
bounded optimal solution to (7) actually exists, as demonstrated by the following:

Lemma 14. A bounded optimal solution λ∗ to problem (7) exists.

Proof. Let S =
˜
R
f(x) maxi ui(x) dA denote the objective function value of (7) at λ = 0 and letQ = −2 maxi

˜
R
f(x)|ui(x)| dA,

which implies that Q ≤ S. Note that for any indices j and k there exists a finite threshold mjk such that, if
λj − λk ≥ mjk, then

˜
Rj
f(x) dA ≤ ε, where ε = 1/2n. Let M ′ be the maximum of all such thresholds mjk, let

M
′′ = 4(S −Q), and let M = max{M ′

,M
′′}.

Suppose that λ satisfies qTλ = 0 and ‖λ‖∞ > (n − 1)M . Let λj = maxi λi > 0 and λk = mini λi < 0; by
definition, we must have λj ≤ (n − 1)|λk| and |λk| > M . Let Rj := {x ∈ R : uj(x) − λj ≥ uk(x) − λk} and let
Rk = R \Rj . (Note that this is different from our usual definition of the regions Ri because we are disregarding all
indices other than j and k.) The objective function value of (7) is then
¨
R

f(x) max
i
{ui(x)− λi} dA ≥

¨
R

f(x) max{uj(x)− λj , uk(x)− λk} dA

=
¨
Rj

f(x)(uj(x)− λj) dA+
¨
Rk

f(x)(uk(x)− λk) dA

=
¨
Rj

f(x)uj(x) dA− λj
¨
Rj

f(x) dA︸ ︷︷ ︸
≤1/2n

+
¨
Rk

f(x)uk(x) dA− λk
¨
Rk

f(x) dA︸ ︷︷ ︸
≥1−1/2n

≥
¨
Rj

f(x)uj(x) dA︸ ︷︷ ︸
≥−
˜
R
f(x)|uj(x)| dA

+
¨
Rk

f(x)uk(x) dA︸ ︷︷ ︸
≥−
˜
R
f(x)|uk(x)| dA

−λj2n + |λk|
(

1− 1
2n

)

≥ Q− λj
2n + |λk|

(
1− 1

2n

)
≥ Q− n− 1

2n |λk|+ |λk|
(

1− 1
2n

)
= Q+ |λk|/2 ≥ S

and therefore λ has an objective value no better than that induced by the zero vector. Thus, we can assume
without loss of generality that problem (7) is restricted to the compact set ‖λ‖∞ ≤ (n− 1)M , which completes the
proof.
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To prove Theorem 1, we find it helpful to use the alternate formulation (6) of (7), reproduced below:

minimize
λ,σ(·)

n∑
i=1

qiλi +
¨
R

f(x)σ(x) dA s.t. (25)

σ(x) ≥ ui(x)− λi ∀i, x .

We now apply Theorem 13: in problem (25), the optimization variables are λ and σ(·), so we let X = Ω = Rn⊕L1,
where L1 represents all functions h (·) defined on R such that |h (x)| is Lebesgue integrable on R. We let f (x) be
defined by

f :
(

λ
σ (·)

)
7→ qTλ+

¨
R

f(x)σ(x) dA

and we let G : X→ Z be defined by

G :
(

λ
σ (·)

)
7→

 ξ1 (·)− λ1
...

ξn (·)− λn


where ξi (x) := ui(x) − σ (x), so that Z = L1 ⊕ · · · ⊕ L1︸ ︷︷ ︸

n

. By the preceding existence argument for λ∗, we can

replace the infimum operator of Theorem 13 with the minimum operator. From basic functional analysis, we have
Z? = L∞ ⊕ · · · ⊕ L∞︸ ︷︷ ︸

n

, where L∞ denotes all bounded functions on R. Let (J1 (·) , . . . , Jn (·)) denote an element of

Z?. Theorem 13 says that

min
x∈Ω,G(x)≤θ

f (x)

= max
z∗≥θ

{
inf
x∈Ω

f (x) + 〈G (x) , z?〉
}

= max
Ji(·)≥0

{
inf
λ,σ(·)

qTλ+
¨
R

f(x)σ (x) dA+
¨
R

n∑
i=1

Ji (x) (ξi (x)− λi) dA
}

= max
Ji(·)≥0

{
inf
λ,σ(·)

[
n∑
i=1

(
qi −

¨
R

Ji (x) dA
)
λi

]
+
¨
R

(
n∑
i=1

Ji (x)ui(x)− Ji (x)σ(x)
)

+ f(x)σ (x) dA
}

= max
Ji(·)≥0

{
inf
λ,σ(·)

[
n∑
i=1

(
qi −

¨
R

Ji (x) dA
)
λi

]
+
¨
R

σ (x)
(
f(x)−

n∑
i=1

Ji (x)
)
dA+

¨
R

n∑
i=1

Ji (x)ui(x) dA
}

Clearly we need
˜
R
Ji (x) dA = qi for all i and

∑
i Ji (x) = f (x) for all x ∈ R (the infimum term over all λ and

σ(·) is unbounded below otherwise). Introducing new functions Ii (x) := Ji (x) /f (x), the above is equivalent to

max
Ii(·)≥0

{
inf
λ,σ(·)

[
n∑
i=1

(
qi −

¨
R

f(x)Ii (x) dA
)
λi

]
+
¨
R

f(x)σ (x)
(

1−
n∑
i=1

Ii (x)
)
dA+

¨
R

n∑
i=1

f(x)ui(x)Ii (x) dA
}

so that
˜
R
f(x)Ii (x) dA = qi for all i and

∑
i Ii (x) = 1 for all x ∈ R. Thus, the problem (7) and the problem

maximize
I1(·),...,In(·)

¨
R

n∑
i=1

f(x)ui(x)Ii (x) dA s.t.

¨
R

f(x)Ii (x) dA = qi ∀i

n∑
i=1

Ii (x) = 1 ∀x

Ii (x) ≥ 0 ∀i, x .

are primal-dual pairs as desired, and by Theorem 13 we know that an optimal solution I∗1 (·) , . . . , I∗n(·) to problem
(1) exists. This completes the proof.
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A.2 Proof of Theorem 3
To prove Theorem 3, we will again consider the dual problem (10) first and show that this is equivalent to problem
(2). Using a very similar argument to that of Lemma 14, which we omit for brevity, it is not hard to verify that
there must exist an optimal solution λ∗ to problem (10). In order to apply Theorem 13 directly, we will alter
problem (10) without loss of generality by substituting an inequality in the linear constraint on λ and by writing
the problem as a linear program:

minimize
λ,σ(·)

¨
R

f(x)σ(x) dA s.t. (26)

σ(x) ≥ λiui(x) ∀i, x
n∑
i=1

λi ≥ 1

λi ≥ 0 ∀i

In problem (26), the optimization variables are λ and σ(·), so we let X = Rn ⊕ L1, where L1 represents all
functions h (·) defined on R such that |h (x)| is Lebesgue integrable on R. Let Ω denote the positive orthant, i.e.
λi ≥ 0 and σ (x) ≥ 0 for all x ∈ R. We let f (x) be defined by

f :
(

λ
σ (·)

)
7→
¨
R

f(x)σ(x) dA

and we let G : X→ Z be defined by

G :
(

λ
σ (·)

)
7→


ξ1 (·)
...

ξn (·)
1−

∑
i λi


where ξi (x) := λiui(x) − σ (x), so that Z = L1 ⊕ · · · ⊕ L1︸ ︷︷ ︸

n

⊕R. We can again replace the infimum operator in

Theorem 13 with the minimum operator. Let (J1, . . . , Jn, t) ∈ L∞ ⊕ · · · ⊕ L∞︸ ︷︷ ︸
n

⊕R denote an element of the dual

space Z?, and as before define Ii(x) := Ji(x)/f(x). We then find that

min
x∈Ω,G(x)≤θ

f (x)

= max
z∗≥θ

{
inf
x∈Ω

f (x) + 〈G (x) , z?〉
}

= max
Ji(·),t≥0

{
inf

λ≥0,σ(·)≥0

¨
R

f(x)σ (x) dA+
¨
R

n∑
i=1

Ji (x) ξi (x) dA+ t

(
1−

n∑
i=1

λi

)}

= max
Ji(·),t≥0

{
inf

λ≥0,σ(·)≥0

¨
R

f(x)σ (x) +
n∑
i=1

Ji (x) ξi (x) dA+
¨
R

f(x)t
(

1−
n∑
i=1

λi

)
dA

}

= max
Ji(·),t≥0

{
inf

λ≥0,σ(·)≥0

¨
R

(
n∑
i=1

Ji (x) ξi (x)− f(x)tλi

)
+ f(x)σ (x) + f(x)t dA

}

= max
Ji(·),t≥0

{
inf

λ≥0,σ(·)≥0

¨
R

σ (x)
(
f(x)−

n∑
i=1

Ji (x)
)

+
[

n∑
i=1

λi (Ji (x)ui(x)− f(x)t)
]

+ f(x)t dA
}

= max
Ii(·),t≥0

{
inf

λ≥0,σ(·)≥0

¨
R

σ (x) f(x)
(

1−
n∑
i=1

Ii (x)
)
dA+

[
n∑
i=1

λi

(¨
R

f(x)ui(x)Ii (x) dA− t
)]

+ t

}

which implies that
∑
i Ii(x) ≤ 1 for all x ∈ R and

˜
R
f(x)Ii (x)ui(x) dA ≥ t for all i. Thus, problem (26) and
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the problem

maximize
t,I1(·),...,In(·)

t s.t. (27)

t ≤
¨
R

f(x)ui(x)Ii(x) dA ∀i

n∑
i=1

Ii(x) ≤ 1 ∀x

Ii(x) ≥ 0 ∀i, x

are primal-dual pairs. We see that problem (27) differs from the linear relaxation of problem (8) only by the
inequality

∑n
i=1 Ii(x) ≤ 1 for all x; it is of course trivial to see that equality must hold at optimality for problem

(27) which confirms that the two problems are equivalent. This completes the proof.

B Ambiguities arising due to duality
Section 4, and Algorithms 1 and 2, show how to solve problems (1) and (2) by way of complementary slackness:
given the optimal Lagrange multiplier λ∗ to either problem, we define each optimal region R∗i to be those points
x ∈ R such that either ui(x)− λ∗i or λ∗i ui(x) is maximal over all i (depending on what problem we want to solve).
For most of the examples used in this paper, this characterization is sufficient, because the set of “ambiguous points”
x where this maximal index is not unique has measure zero. In this section, we show how to define the optimal
partition when there exists a set with positive measure on which the maximal index i is not unique. As we noted
in Section 5, one case where this arises is when R contains a set of obstacles and we set ui(x) = −d(x, pi), where
d(x, pi) is the length of the shortest path between x and pi.

B.1 Ambiguities in (1)
Let λ∗ denote an optimal Lagrange multiplier for problem (7), the dual of (4). Let R+

1 , . . . , R
+
n denote the strict

dominance regions where ui(x) − λ∗i is strictly maximal for some i, and let R−1 , . . . , R
−
k denote the ambiguous

dominance regions where strict optimality does not hold. Associated with each ambiguous dominance region R−j is
an index set Ij ⊆ {1, . . . , n} that indicates the set of indices i for which ui(x)− λ∗i is maximal.

Recall that Theorem 13 guarantees that an optimal solution to the linear relaxation of (1), i.e. (4), must exist.
Let I∗1 (·), . . . , I∗n(·) denote this optimal solution, which would of course be unknown to us. By Theorem 13, we are
guaranteed that strong duality holds, i.e. that

OPT :=
¨
R

f(x) max
i
{ui(x)− λ∗i } dA =

n∑
i=1

¨
R

f(x)ui(x)I∗i (x) dA

=
(

n∑
i=1

¨
R+
i

f(x)ui(x) dA
)

+

 k∑
j=1

¨
R−
j

f(x)
∑
i∈Ij

ui(x)I∗i (x) dA

 .

Consider a particular ambiguous dominance region R−j ; by construction, we are guaranteed that ui(x) − λ∗i =
ui′ (x)− λ∗

i′
for all i, i′ ∈ Ij and all x ∈ R−j . Let ū(x) = ui(x)− λ∗i for any (equivalently, all) i ∈ Ij , so that
¨
R−
j

f(x)
∑
i∈Ij

ui(x)I∗i (x) dA =
¨
R−
j

f(x)
∑
i∈Ij

(ū(x) + λ∗i )I∗i (x) dA

=
¨
R−
j

f(x)ū(x)
∑
i∈Ij

I∗i (x)

︸ ︷︷ ︸
=1

dA+
¨
R−
j

f(x)
∑
i∈Ij

λ∗i I
∗
i (x) dA

=
¨
R−
j

f(x)ū(x) dA︸ ︷︷ ︸
=:aj (known)

+
∑
i∈Ij

λ∗i

¨
R−
j

f(x)I∗i (x) dA .
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Observe that the second term in the above,
∑
i λ
∗
i

˜
R−
j
f(x)I∗i (x) dA, does not actually depend on the functions

I∗i (·), but merely the amount of the mass in R−j that is allocated to i. In other words, setting bj =
˜
R−
j
f(x) dA,

we see that ∑
i∈Ij

λ∗i

¨
R−
j

f(x)I∗i (x) dA =
∑
i∈Ij

λ∗iαijbj

for some coefficients αij ≥ 0 such that
∑
i∈Ij αij = 1 for all j. Given an optimal Lagrange multiplier λ∗, and the

dual optimal objective value OPT, it is therefore easy to find the optimal coefficients αij because we can write

OPT =
¨
R

f(x) max
i
{ui(x)− λ∗i } dA =

n∑
i=1

¨
R

f(x)ui(x)I∗i (x) dA

=
(

n∑
i=1

¨
R+
i

f(x)ui(x) dA
)

︸ ︷︷ ︸
=:c (known)

+

 k∑
j=1

¨
R−
j

f(x)
∑
i∈Ij

ui(x)I∗i (x) dA



= c+
k∑
j=1

aj +
∑
i∈Ij

λ∗iαijbj


and solve for the terms αij using linear programming. It is then a trivial matter to divide each ambiguous region
R−j into components with mass αijbj in whatever manner we like.

B.2 Ambiguities in (2)
Let λ∗ denote an optimal Lagrange multiplier for problem (10), the dual of the linear relaxation of (8). Define
regions R+

1 , . . . , R
+
n , R−1 , . . . , R

−
k , and I1, . . . , Ik analogously as in Section B.1. Theorem 13 again guarantees that

an optimal solution to the linear relaxation of (8) must exist, so that

OPT :=
¨
R

f(x) max
i
{λ∗i ui(x)} dA = t∗ =

¨
R

f(x)ui(x)I∗i (x) dA ∀i

=
¨
R+
i

f(x)ui(x) dA+
∑
j:i∈Ij

¨
R−
j

f(x)ui(x)I∗i (x) dA ∀i

where we have used the fact that, at optimality, it must be true that t∗ =
˜
R
f(x)ui(x)I∗i (x) dA for all i (this

occurs because we have assumed that f(x) > 0 and ui(x) > 0 for all i and x ∈ R, and thus λ∗i > 0 for all i as well).
Consider a particular ambiguous dominance region R−j ; by construction, we are guaranteed that λ∗i ui(x) = λ∗

i′
ui′ (x)

for all i, i′ ∈ Ij and all x ∈ R−j . Let ū(x) = λ∗i ui(x) for any (equivalently, all) i ∈ Ij , so that
¨
R−
j

f(x)ui(x)I∗i (x) dA = 1
λ∗i

¨
R−
j

f(x)ū(x)I∗i (x) dA .

We again observe that the term
˜
R−
j
f(x)ū(x)I∗i (x) dA does not actually depend on the function I∗i (·) but merely

the amount of the mass in R−j that is allocated to i. In other words, setting bj =
˜
R−
j
f(x)ū(x) dA, we see that

1
λ∗i

¨
R−
j

f(x)ū(x)I∗i (x) dA = αijbj
λ∗i

for some coefficients αij ≥ 0 such that
∑
i∈Ij αij = 1 for all j. Thus, given an optimal Lagrange multiplier λ∗, and

the dual optimal objective value OPT, it is therefore easy to find the optimal coefficients αij because we can write

OPT =
¨
R+
i

f(x)ui(x) dA︸ ︷︷ ︸
ci (known)

+
∑
j:i∈Ij

¨
R−
j

f(x)ui(x)I∗i (x) dA ∀i

= ci + 1
λ∗i

∑
j:i∈Ij

αijbj ∀i
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and solve for the terms αij using linear programming. It is then a trivial matter to divide each ambiguous region
R−j into components with mass αijbj in whatever manner we like.
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