CSCI 420 Computer Graphics
Lecture 5
Viewing and Projection

Shear Transformation
Camera Positioning
Simple Parallel Projections
Simple Perspective Projections
[Angel, Ch. 5]

Jernej Barbic
University of Southern California

Reminder: Affine Transformations

- Given a point [x y z], form homogeneous coordinates [x y z 1].

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- The transformed point is [$\left.x^{\prime} y^{\prime} z^{\prime}\right]$.

Transformation Matrices in OpenGL

- Transformation matrices in OpenGL are vectors of 16 values (column-major matrices)
- In glLoadMatrixf(GLfloat *m);
$\mathrm{m}=\left\{\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{16}\right\}$ represents
- Some books transpose all matrices!

Specification via Shear Angle

- $\cot (\theta)=\left(x^{\prime}-x\right) / y$
- $x^{\prime}=x+y \cot (\theta)$
- $y^{\prime}=y$
- $z^{\prime}=z$
$H_{x}(\theta)=\left[\begin{array}{cccc}1 & \cot (\theta) & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Shear Transformations

- x-shear scales x proportional to y
- Leaves y and z values fixed

Specification via Ratios

- For example, shear in both x and z direction
- Leave y fixed
- Slope α for x -shear, γ for z -shear
- Solve $H_{x, z}(\alpha, \gamma)\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]=\left[\begin{array}{c}x+\alpha y \\ y \\ z+\gamma y \\ 1\end{array}\right]$
- Yields

$$
H_{x, z}(\alpha, \gamma)=\left[\begin{array}{llll}
1 & \alpha & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \gamma & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Composing Transformations

- Let $\mathrm{p}=\mathrm{Aq}$, and $\mathrm{q}=\mathrm{B}$ s.
- Then $p=(A B) s$.

Composing Transformations

- Fact: Every affine transformation is a composition of rotations, scalings, and translations
- So, how do we compose these to form an x-shear?
- Exercise!

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

Transform Camera $=$ Transform Scene

- Camera position is identified with a frame
- Either move and rotate the objects
- Or move and rotate the camera
- Initially, camera at origin, pointing in negative z-direction

The Look-At Function

- Convenient way to position camera
- gluLookAt(ex, ey, ez, fx, fy, fz, ux, uy, uz);
- e = eye point
- $\mathrm{f}=$ focus point
- u = up vector

OpenGL code

```
void display()
{
    glClear (GL_COLOR_BUFFER_BIT 
        GL_DEPTH_BUFFER_BIT);
    glMatrixMode (GL_MODELVIEW);
    gILoadldentity();
    gluLookAt (e ex, ey, e}\mp@subsup{e}{z}{},\mp@subsup{f}{x}{},\mp@subsup{f}{y}{},\mp@subsup{f}{z}{},\mp@subsup{u}{x}{},\mp@subsup{u}{y}{},\mp@subsup{u}{z}{})
    glTranslatef(x,y,z)
    renderBunny();
    glutSwapBuffers();
}
```


Implementing the Look-At Function

Plan:

1. Transform world frame to camera frame

- Compose a rotation R with translation T
- $\mathrm{W}=\mathrm{TR}$

2. Invert W to obtain viewing transformation V
$-\quad V=W^{-1}=(T R)^{-1}=R^{-1} \mathrm{~T}^{-1}$

- Derive R, then T, then $\mathrm{R}^{-1} \mathrm{~T}^{-1}$

World Frame to Camera Frame I

- Camera points in negative z direction
- $\mathrm{n}=(\mathrm{f}-\mathrm{e}) /|\mathrm{f}-\mathrm{e}|$ is unit normal to view plane
- Therefore, R maps $\left[\begin{array}{lll}0 & 0 & -1\end{array}\right]^{\top}$ to $\left[\begin{array}{lll}n_{x} & n_{y} & n_{z}\end{array}\right]^{\top}$

World Frame to Camera Frame II

- R maps $[0,1,0]^{\top}$ to projection of u onto view plane
- This projection v equals:
$-\alpha=(u \cdot n) /|n|=u \cdot n$
- $v_{0}=u-\alpha n$
$-\mathrm{v}=\mathrm{v}_{0} /\left|\mathrm{v}_{0}\right|$

World Frame to Camera Frame III

- Set w to be orthogonal to n and v
- w = nx v
- ($\mathrm{w}, \mathrm{v},-\mathrm{n}$) is right-handed

Summary of Rotation

- gluLookAt($\left.e_{x}, e_{y}, e_{z}, f_{x}, f_{y}, f_{z}, u_{x}, u_{y}, u_{z}\right)$;

World Frame to Camera Frame IV

- Translation of origin to $e=\left[\begin{array}{llll}e_{x} & e_{y} & e_{z} & 1\end{array}\right]^{\top}$

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & e_{x} \\
0 & 1 & 0 & e_{y} \\
0 & 0 & 1 & e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Camera Frame to Rendering Frame

- $\mathrm{V}=\mathrm{W}^{-1}=(\mathrm{TR})^{-1}=\mathrm{R}^{-1} \mathrm{~T}^{-1}$
- R is rotation, so $R^{-1}=R^{\top}$

$$
R^{-1}=\left[\begin{array}{cccc}
w_{x} & w_{y} & w_{z} & 0 \\
v_{x} & v_{y} & v_{z} & 0 \\
-n_{x} & -n_{y} & -n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- T is translation, so T^{-1} negates displacement

$$
T^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & -e_{x} \\
0 & 1 & 0 & -e_{y} \\
0 & 0 & 1 & -e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Putting it Together

- Calculate $\mathrm{V}=\mathrm{R}^{-1} \mathrm{~T}^{-1}$

$$
V=\left[\begin{array}{cccc}
w_{x} & w_{y} & w_{z} & -w_{x} e_{x}-w_{y} e_{y}-w_{z} e_{z} \\
v_{x} & v_{y} & v_{z} & -v_{x} e_{x}-v_{y} e_{y}-v_{z} e_{z} \\
-n_{x} & -n_{y} & -n_{z} & n_{x} e_{x}+n_{y} e_{y}+n_{z} e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- This is different from book [Angel, Ch. 5.3.2]
- There, u, v, n are right-handed (here: $u, v,-n$)

Other Viewing Functions

- Roll (about z), pitch (about x), yaw (about y)

- Assignment 2 poses a related problem

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

Projection Matrices

- Recall geometric pipeline

- Projection takes 3D to 2D
- Projections are not invertible
- Projections are described by a 4×4 matrix
- Homogenous coordinates crucial
- Parallel and perspective projections

Parallel Projection

- Project 3D object to 2D via parallel lines
- The lines are not necessarily orthogonal to projection plane

Parallel Projection

- Problem: objects far away do not appear smaller
- Can lead to "impossible objects" :

Orthographic Projection

- A special kind of parallel projection: projectors perpendicular to projection plane
- Simple, but not realistic
- Used in blueprints (multiview projections)

Orthographic Projection Matrix

- Project onto $\mathrm{z}=0$
- $x_{p}=x, y_{p}=y, z_{p}=0$
- In homogenous coordinates

Perspective

- Perspective characterized by foreshortening
- More distant objects appear smaller
- Parallel lines appear to converge
- Rudimentary perspective in cave drawings:

Lascaux, France
soure: Whipedia

Middle Ages

- Art in the service of religion
- Perspective abandoned or forgotten

Projection (Viewing) in OpenGL

- Remember: camera is pointing in the negative z direction

Orthographic Viewing in OpenGL

- glOrtho(xmin, xmax, ymin, ymax, near, far)

$z_{\text {min }}=$ near, $z_{\text {max }}=$ far

Field of View Interface

- gluPerspective(fovy, aspectRatio, near, far);
- near and far as before
- aspectRatio = w/h
- Fovy specifies field of view as height (y) angle

OpenGL code

```
void reshape(int x, int y)
{
    gIViewport(0, 0, x, y);
    glMatrixMode(GL_PROJECTION);
    gILoadIdentity();
    gluPerspective(60.0, 1.0 * x / y, 0.01, 10.0);
    glMatrixMode(GL_MODELVIEW);
}
```


Perspective Viewing Mathematically

- $\mathrm{d}=$ focal length
- $y / z=y_{p} / d$ so $y_{p}=y /(z / d)=y d / z$
- Note that y_{p} is non-linear in the depth z !

Perspective Projection Matrix

- Use multiple of point

$$
(z / d)\left[\begin{array}{c}
\frac{x}{z / d} \\
\frac{y}{z / d} \\
d \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z \\
z \\
z
\end{array}\right]
$$

- Solve

$$
M\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z \\
z \\
z
\end{array}\right] \quad \text { with } \quad M=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{d} & 0
\end{array}\right]
$$

Exploiting the $4^{\text {th }}$ Dimension

- Perspective projection is not affine:

$$
M\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{x}{z / d} \\
\frac{y}{z / d} \\
d \\
1
\end{array}\right] \text { has no solution for } \mathrm{M}
$$

- Idea: exploit homogeneous coordinates

$$
p=w\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \text { for arbitrary } \mathrm{w} \neq 0
$$

Projection Algorithm

Input: 3D point (x, y, z) to project

1. Form $[x y z 1]^{\top}$
2. Multiply M with $[\mathrm{x} \text { y z } 1]^{\top}$; obtaining $[\mathrm{X} \mathrm{Y} \mathrm{Z} \mathrm{W}]^{\top}$
3. Perform perspective division:

X/W, Y/W, Z/W
Output: (X / W, Y / W, Z / W)
(last coordinate will be d)

Perspective Division

- Normalize $\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]^{\top}$ to $[(x / w)(y / w)(z / w) 1]^{\top}$
- Perform perspective division after projection

- Projection in OpenGL is more complex (includes clipping)

