
1

Jernej Barbic
University of Southern California

CSCI 420 Computer Graphics
Lecture 11

Texture Mapping

 Texture Mapping + Shading
 Filtering and Mipmaps
 Non-color Texture Maps
 [Angel Ch. 8.7-8.8]

2

Texture Mapping
•  A way of adding surface details

•  Two ways can achieve the goal:
– Model the surface with more polygons

» Slows down rendering speed
» Hard to model fine features

– Map a texture to the surface
» This lecture
»  Image complexity does not affect

complexity of processing

•  Efficiently supported in hardware

3

Trompe L’Oeil (“Deceive the Eye”)

Jesuit Church, Vienna, Austria

• Windows and
columns in the dome
are painted,
not a real 3D object

• Similar idea with
texture mapping:

Rather than modeling
the intricate 3D
geometry, replace it
with an image !

4

Map textures to surfaces

The polygon can have
arbitrary size, shape and
3D position

an image
image mapped
to a 3D polygon

texture map

5

The texture
•  Texture is a bitmap image

–  Can use an image library to load image into memory
–  Or can create images yourself within the program

•  2D array:
unsigned char texture[height][width][4]

•  Or unrolled into 1D array:
unsigned char texture[4*height*width]

•  Pixels of the texture are called texels

•  Texel coordinates (s,t) scaled to [0,1] range

6

Texture map

(0,0)

(1,0)

(0,1)

(1,1)

(0,1)

(0,0) (1,0)

(1,1)

texture image

3D polygon

7

Texture map

(0,0)

(1,0)

(0,1)

(1,1)

(0,1)

(0,0) (1,0)

(1,1)

texture image

3D polygon

8

Inverse texture map

(s,t)

(s,t)

For each pixel,
lookup into the

texture image to
obtain color.

texture image

screen image

9

The “st” coordinate system

s

t

0
1

1

0

Note: also
called “uv”
space

(s,t)

10

Texture mapping: key slide

s

t

0
1

1

0

(0.7,0.55)

(0.1,0.7)

(0.35,0.05)

s = 0.7
t = 0.55

s = 0.35
t = 0.05

s = 0.1
t = 0.7

(2,-1,0)

(-2,1,0)

(0,1,0)

triangle
in 3D

11

•  Use glTexCoord2f(s,t)
•  State machine: Texture coordinates remain valid until

you change them
•  Example (from previous slide) :

Specifying texture coordinates
in OpenGL

 glEnable(GL_TEXTURE_2D); // turn texture mapping on
 glBegin(GL_TRIANGLES);
 glTexCoord2f(0.35,0.05); glVertex3f(2.0,-1.0,0.0);
 glTexCoord2f(0.7,0.55); glVertex3f(-2.0,1.0,0.0);
 glTexCoord2f(0.1,0.7); glVertex3f(0.0,1.0,0.0);
 glEnd();
 glDisable(GL_TEXTURE_2D); // turn texture mapping off

s = 0.35
t = 0.05

s = 0.7
t = 0.55

s = 0.1
t = 0.7

12

What if texture coordinates
 are outside of [0,1] ?

(s,t)

s 0 1

1

0

t

13

Solution 1: Repeat texture

(s,t)

s 0 1

1

0

t

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT)

14

Solution 2: Clamp to [0,1]

(s,t)

s 0 1

1

0

t

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP)

use this color

15

Combining texture mapping and shading

16

Combining texture mapping and shading
•  Final pixel color = a combination of texture color and

color under standard OpenGL Phong lighting

•  GL_MODULATE:
multiply texture and Phong lighting color

•  GL_BLEND:
linear combination of texture and Phong lighting color

•  GL_REPLACE:
use texture color only (ignore Phong lighting)

•  Example:
glTexEnvf(GL_TEXTURE_ENV,

GL_TEXTURE_ENV_MODE, GL_REPLACE);

17

Outline

•  Introduction
•  Texture mapping in OpenGL
•  Filtering and Mipmaps
•  Example
•  Non-color texture maps

18

Texture mapping in OpenGL
•  During your initialization:

1. Read texture image from file into an array in memory,
or generate the image using your program

2. Specify texture mapping parameters
»  Wrapping, filtering, etc.

3.  Initialize and activate the texture

•  In display():
1. Enable OpenGL texture mapping
2. Draw objects: Assign texture coordinates to vertices
3. Disable OpenGL texture mapping

19

Initializing the texture

•  Do once during initialization, for each texture image in
the scene, by calling glTexImage2D

•  The dimensions of texture images must be powers of 2
– if not, rescale image or pad with zero
– or can use OpenGL extensions

•  Can load textures dynamically if GPU memory is scarce

20

•  glTexImage2D(GL_TEXTURE_2D, level, internalFormat, width, height,
 border, format, type, data)

•  GL_TEXTURE_2D: specifies that it is a 2D texture
•  Level: used for specifying levels of detail for mipmapping (default: 0)
•  InternalFormat

–  Often: GL_RGB or GL_RGBA
–  Determines how the texture is stored internally

•  Width, Height
–  The size of the texture must be powers of 2

•  Border (often set to 0)
•  Format, Type

–  Specifies what the input data is (GL_RGB, GL_RGBA, …)
–  Specifies the input data type (GL_UNSIGNED_BYTE, GL_BYTE, …)
–  Regardless of Format and Type, OpenGL convertes the data

to internalFormat
•  Data: pointer to the image buffer

glTexImage2D

21

Enable/disable texture mode

•  Must be done before rendering any primitives that
are to be texture-mapped

•  glEnable(GL_TEXTURE_2D)
•  glDisable(GL_TEXTURE_2D)

•  Successively enable/disable texture mode to switch
between drawing textured/non-textured polygons

•  Changing textures:
–  Only one texture is active at any given time

(with OpenGL extensions, more than one can be used
simultaneously; this is called multitexturing)

–  Use glBindTexture to select the active texture

22

Outline

•  Introduction
•  Texture mapping in OpenGL
•  Filtering and Mipmaps
•  Example
•  Non-color texture maps

23

Texture interpolation

(s,t) coordinates
typically not
directly at pixel
in the texture,
but in between

 (1,1)

 (0.25,0) (0.5,0) (0.75,0) (1,0) (0,0)

 5 x 5 texture T(s,t)

24

Texture interpolation
•  (s,t) coordinates typically not directly at pixel in the texture,

but in between
•  Solutions:

– Use the nearest neighbor to determine color
»  Faster, but worse quality
»  glTexParameteri(GL_TEXTURE_2D,

 GL_TEXTURE_MIN_FILTER, GL_NEAREST);

–  Linear interpolation
»  Incorporate colors of several neighbors to determine color
»  Slower, better quality
»  glTexParameteri(GL_TEXTURE_2D,

 GL_TEXTURE_MIN_FILTER, GL_LINEAR)

25

Filtering
•  Texture image is

shrunk in distant parts
of the image

•  This leads to aliasing

•  Can be fixed with
filtering
–  bilinear in space
–  trilinear in space and

level of detail (mipmapping)

aliasing

26

•  Pre-calculate how the texture should look at various
 distances, then use the appropriate texture at each distance
•  Reduces / fixes the aliasing problem

Mipmapping

27

•  Each mipmap (each image below) represents
a level of depth (LOD).

•  Powers of 2 make things much easier.

Mipmapping

28

•  gluBuild2DMipmaps(GL_TEXTURE_2D,
components, width, height, format, type, data)
–  This will generate all the mipmaps automatically

•  glTexParameterf(GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER,

 GL_NEAREST_MIPMAP_NEAREST)
–  This will tell GL to use the mipmaps for the texture

Mipmapping in OpenGL

29

Outline

•  Introduction
•  Texture mapping in OpenGL
•  Filtering and Mipmaps
•  Example
•  Non-color texture maps

30

Complete example
void initTexture()
{
 load image into memory; // can use libjpeg, libtiff, or other image library
 // image should be stored as a sequence of bytes, usually 3 bytes per

pixel (RGB), or 4 bytes (RGBA); image size is 4 * 256 * 256 bytes in
this example

 // we assume that the image data location is stored in pointer
“pointerToImage”

 // create placeholder for texture
 glGenTextures(1, &texName); // must declare a global variable in

program header: GLUint texName
 glBindTexture(GL_TEXTURE_2D, texName); // make texture
“texName” the currently active texture

 (continues on next page)

31

Complete example (part 2)
 // specify texture parameters (they affect whatever texture is active)
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,

GL_REPEAT); // repeat pattern in s
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,

GL_REPEAT); // repeat pattern in t

 // use linear filter both for magnification and minification
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_LINEAR);
 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR);

 // load image data stored at pointer “pointerToImage” into the currently
active texture (“texName”)

 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 256, 256, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, pointerToImage);

} // end init()

32

Complete example (part 3)

void display()
{
 …
 // no modulation of texture color with lighting; use texture color directly
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,

GL_REPLACE);

 // turn on texture mapping (this disables standard OpenGL lighting,
unless in GL_MODULATE mode)

 glEnable(GL_TEXTURE_2D);

 (continues on next page)

33

Complete example (part 4)
 glBegin(GL_QUADS); // draw a textured quad
 glTexCoord2f(0.0,0.0); glVertex3f(-2.0,-1.0,0.0);
 glTexCoord2f(0.0,1.0); glVertex3f(-2.0,1.0,0.0);
 glTexCoord2f(1.0,0.0); glVertex3f(0.0,1.0,0.0);
 glTexCoord2f(1.0,1.0); glVertex3f(0.0,-1.0,0.0);
 glEnd();

 // turn off texture mapping
 glDisable(GL_TEXTURE_2D);

 // draw some non-texture mapped objects
(standard OpenGL lighting will be used if it is enabled)

 …
 // switch back to texture mode, etc.
 …
} // end display()

34

Outline

•  Introduction
•  Texture mapping in OpenGL
•  Filtering and Mipmaps
•  Example
•  Non-color texture maps

35

•  Specularity (patches of shininess)

•  Transparency (patches of clearness)

•  Normal vector changes (bump maps)

•  Reflected light (environment maps)

•  Shadows

•  Changes in surface height (displacement maps)

Textures do not have
to represent color

36

•  How do you make a surface look rough?
–  Option 1: model the surface with many small polygons
–  Option 2: perturb the normal vectors before the shading

calculation
»  Fakes small displacements above or below the true surface
»  The surface doesn’t actually change,

but shading makes it look like there are irregularities!
»  A texture stores information about the “fake” height of the

surface

Bump mapping

37

•  We can perturb the normal vector without having to make any
actual change to the shape.

•  This illusion can be seen through—how?

Bump mapping

Original model
(5M)

Simplified
(500)

Simple model with
bump map

38

•  Quake uses light maps in addition to texture maps. Texture maps
are used to add detail to surfaces, and light maps are used to store
pre-computed illumination. The two are multiplied together at run-
time, and cached for efficiency.

Texture Map Only Texture + Light Map

Light Map

Light Mapping

39

Summary

•  Introduction
•  Texture mapping in OpenGL
•  Filtering and Mipmaps
•  Example
•  Non-color texture maps

