
CS420 Assignment 3 Hints

Ray Tracing

Step 1: send rays

•  Send out rays from camera position (0,0,0)
pointing to -z

•  Image size 640x480
•  For debugging, use smaller size

•  Send out rays from camera position (0,0,0)
pointing to -z

•  Image size 640x480
•  For debugging, use smaller size

fov: 60 degrees

Step 2: Intersect with scene

•  Sphere & triangle
•  Analytical solution

Sphere: Analytical Solution
•  Sphere equation:

•  f(q) = (x – xc)2 + (y – yc)2+ (z – zc)2 – r2 = 0

•  Ray:
•  Produce:

•  Simplify to:
•  a = xd

2+yd
2+zd

2=1

•  b = 2[xd(x0-xc)+yd(y0-yc)+zd(z0-zc)]
•  c = (x0-xc)2+(y0-yc)2+(z0-zc)2-r2

Possible Optimization:
precompute c and a
part of b for one start
point

•  Get t:

•  Calculate b2 – 4c, abort if negative
•  Return minimum positive t

Triangle: Intersection

1.  find intersection of the ray and the plane
which the triangle lies on.

2.  determine the ray-plane intersection point
is in/out of the triangle in the 2D plane.

Triangle: Analytical Solution

•  Plane equation:
•  Implicit form: ax + by + cz + d = 0
•  Unit normal: n = [a b c]T with a2 + b2 + c2 = 1

•  For triangle ABC,
•  normal direction: n = normalize(AB × AC)
•  A has coord: (xa, ya, za)
•  Because A is on the plane:

•  d = -(axa – bya – cza)

•  Ray:
•  So:

•  abort if axd + byd + czd == 0

Possible Optimization:
precompute normal
and d
and numerator for one
start point

In/Out Test for Triangle

•  determine intersection point p in/out of
triangle ABC

•  project to 2D
•  e.g. if n = (a,b,c), |a| > |b| && |a| > |c| (|a| is

biggest)
•  project to the plane x = 0

Directed Edge Side which P lies Side which Q lies
AB right right
BC right left
CA right right

A

B

C

P Q

•  |a×b| = |a||b|sin(θ)

a a×b a×b

b a

b

A

B

C

P Q

DirEdge XY PX×PY QX×QY
AB in in
BC in out
CA in in

Cross Product

•  Area sign:
•  clockwise (-)
•  anti-clockwise (+)

•  |a×b| = |a||b|sin(θ)

a a×b a×b

b a

b

A

B

C

P Q

DirEdge XY SignedArea(PXY) SingedArea(QXY)
AB - -
BC - +
CA - -

|SPAB| = |PA||PB|sin(APB) / 2
 = |PA x PB| / 2

Cross Product

•  Barycentric coord.
•  P = αA + βB + γC
•  α+β+γ = 1
•  α:β:γ = SPBC:SPCA:SPAB

•  |a×b| = |a||b|sin(θ)
A

B

C

P Q

DirEdge XY P’s BaryCen. on Z Q’s BaryCe. on Z
AB - -
BC - +
CA - -

|SPAB| = |PA||PB|sin(APB) / 2
 = |PA x PB| / 2

•  Compute PA×PB, PB×PC, PC×PA
•  They can be scaled to barycentric coord.
•  if have same sign: P is in

•  In 2D PA = (x1,y1), PB = (x2,y2)
•  PA×PB = (x1y2 – y1x2)
•  PA×PB > 0: points outward, Z
•  PA×PB < 0: points inward, -Z

X

Y

Z

P = αA + βB + γC
α+β+γ = 1

•  Alternative:
•  Compute barycentric coord. in 3D using

same method
•  more computation, but no need to

projection

Phong Model

•  Clamp dot product to 0-1

•  L: light coefficient
•  l: dirToLight, n: normal
•  r: reflectDir = 2(l • n) n – l
•  v: dirToCamera

Compute Normal

•  Sphere:

•  Triangle:
•  Interpolate vertex normals using barycentric

coord.
•  Interpolate diffuse,

 specular and shininess as well

P = αA + βB + γC
α+β+γ = 1
α:β:γ = PB×PC : PC×PA : PA×PB

Debugging

•  Do step by step
•  Intersect with sphere, test code
•  Intersect with triangle, test code
•  Compute sphere color, test code
•  Compute triangle color, test code

Notice

  Ensure B != 0 when doing A / B
•  Before call sqrt(…), make sure

parameter >= 0

•  Remember to normalize direction vector.
Remember to check len(dir) != 0 before
dir.normalize()

Notice(cont’d)

•  Distinguish between normals:
•  normal of a triangle
•  vertex normal
•  normal interpolated from vertex normals

Notice(cont’d)

  Floating-point operations not accurate:
  When computing shadow rays:
  distanceFromLightToFirstObject <

distanceFromlightToTargetSurface –
smallValue

  Otherwise… (see next image)

Extra Credits

•  Super sampling
•  anti-aliazing
•  can do adaptively: if some region is smooth, no

need to super sampling
•  Real ray tracing

•  (1-ks) localPhongColor + ks
colorOfReflectedRay

•  You can also add refraction ray component

Extra Credit (Cont’d)

•  Animation
•  Soft shadow
•  parallel computing to accelerate

•  openmp: utilize multi-core
•  cuda: use GPU to do parallel computing

Thanks!
Please email me any errors in

the slides.

