CS420 Assignment 3 Hints

Ray Tracing

Step 1: send rays

- Send out rays from camera position $(0,0,0)$ pointing to -z
- Image size 640×480
- For debugging, use smaller size
- Send out rays from camera position $(0,0,0)$ pointing to -z
- Image size 640×480
- For debugging, use smaller size

fov: 60 degrees

Step 2: Intersect with scene

- Sphere \& triangle
- Analytical solution

Sphere: Analytical Solution

- Sphere equation:
- $f(q)=\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}+\left(z-z_{c}\right)^{2}-r^{2}=0$
- Ray: $x=x_{0}+x_{d} t, \quad y=y_{0}+y_{d} t, \quad z=z_{0}+z_{d} t$
- Produce:

$$
\left(x_{0}+x_{d} t-x_{c}\right)^{2}+\left(y_{0}+y_{d} t-y_{c}\right)^{2}+\left(z_{0}+z_{d} t-z_{c}\right)^{2}=r^{2}
$$

- Simplify to: $a t^{2}+b t+c=0$
- $a=x_{d}{ }^{2}+y_{d}{ }^{2}+z_{d}{ }^{2}=1$
- $b=2\left[x_{d}\left(x_{0}-x_{c}\right)+y_{d}\left(y_{0}-y_{c}\right)+z_{d}\left(z_{0}-z_{c}\right)\right]$
- $c=\left(x_{0}-x_{c}\right)^{2}+\left(y_{0}-y_{c}\right)^{2}+\left(z_{0}-z_{c}\right)^{2}-r^{2}$

Possible Optimization: precompute c and a part of b for one start point

- Get t:

$$
t_{0,1}=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

- Calculate $b^{2}-4 c$, abort if negative
- Return minimum positive t

Triangle: Intersection

1. find intersection of the ray and the plane which the triangle lies on.
2. determine the ray-plane intersection point is in/out of the triangle in the 2D plane.

Triangle: Analytical Solution

- Plane equation:
- Implicit form: $a x+b y+c z+d=0$
- Unit normal: $\mathbf{n}=\left[\begin{array}{ll}a & b\end{array}\right]^{\top}$ with $a^{2}+b^{2}+c^{2}=1$
- For triangle ABC ,
- normal direction: $\mathrm{n}=$ normalize $(\mathrm{AB} \times \mathrm{AC})$
- A has coord: $\left(\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}, \mathrm{z}_{\mathrm{a}}\right)$
- Because A is on the plane:

$$
\text { - } d=-\left(a x_{a}-b y_{a}-c z_{a}\right)
$$

- Ray: $x=x_{0}+x_{d} t, \quad y=y_{0}+y_{d} t, \quad z=z_{0}+z_{d} t$
- So: $a\left(x_{0}+x_{d} t\right)+b\left(y_{0}+y_{d} t\right)+c\left(z_{0}+z_{d} t\right)+d=0$

$$
t=\frac{-\left(a x_{0}+b y_{0}+c z_{0}+d\right)}{a x_{d}+b y_{d}+c z_{d}}
$$

- abort if $a x_{d}+b y_{d}+c z_{d}==0$

In/Out Test for Triangle

- determine intersection point p in/out of triangle ABC
- project to 2D
- e.g. if $n=(a, b, c),|a|>|b| \& \&|a|>|c|(|a|$ is biggest)
- project to the plane $x=0$

Cross Product

Cross Product

DirEdge XY

P's BaryCen. on Z Q's BaryCe. on Z
AB
BC
CA

- Barycentric coord.
- $P=\alpha A+\beta B+\gamma C$
- $\alpha+\beta+\gamma=1$
- $\alpha: \beta: \gamma=S_{P B C}: S_{P C A}: S_{P A B}$

- $|a \times b|=|a||b| \sin (\theta)$
$\begin{aligned}\left|S_{\text {PAB }}\right| & =|\mathrm{PA}||\mathrm{PB}| \sin (\angle \mathrm{APB}) / 2 \\ & =|\mathrm{PA} \times \mathrm{PB}| / 2\end{aligned}$
- Compute $\mathrm{PA} \times \mathrm{PB}, \mathrm{PB} \times \mathrm{PC}, \mathrm{PC} \times \mathrm{PA}$
- They can be scaled to barycentric coord.
- if have same sign: P is in
- In 2D PA $=\left(x_{1}, y_{1}\right), \mathrm{PB}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
- $P A \times P B=\left(x_{1} y_{2}-y_{1} x_{2}\right)$
- $P A \times P B>0$: points outward, $Z \quad z$
- $\mathrm{PA} \times \mathrm{PB}<0$: points inward, $-Z$

$$
\begin{aligned}
& P=\alpha A+\beta B+\gamma C \\
& \alpha+\beta+\gamma=1
\end{aligned}
$$

- Alternative:
- Compute barycentric coord. in 3D using same method
- more computation, but no need to projection

Phong Model

- Clamp dot product to 0-1

$$
I=L\left(k_{d}(l \cdot n)+k_{s}(r \cdot v)^{\alpha}\right)
$$

- L: light coefficient
- I: dirToLight, n: normal
- r: reflectDir = 2(I • n) n - I
- v: dirToCamera

Compute Normal

- Sphere:

$$
n=\frac{1}{r}\left[\begin{array}{lll}
\left(x_{i}-x_{c}\right) & \left(y_{i}-y_{c}\right) & \left(z_{i}-z_{c}\right)
\end{array}\right]^{T}
$$

- Triangle:
- Interpolate vertex normals using barycentric coord.
- Interpolate diffuse,

$$
\begin{aligned}
& P=\alpha A+\beta B+\gamma C \\
& \alpha+\beta+\gamma=1 \\
& \alpha: \beta: \gamma=P B \times P C: P C \times P A: P A \times P B
\end{aligned}
$$ specular and shininess as well

Debugging

- Do step by step
- Intersect with sphere, test code
- Intersect with triangle, test code
- Compute sphere color, test code
- Compute triangle color, test code

Notice

- Ensure B != 0 when doing A / B
- Before call sqrt(...), make sure parameter >= 0
- Remember to normalize direction vector. Remember to check len(dir) != 0 before dir.normalize()

Notice(cont'd)

- Distinguish between normals:
- normal of a triangle
- vertex normal
- normal interpolated from vertex normals

Notice(cont'd)

- Floating-point operations not accurate:
- When computing shadow rays:
- distanceFromLightToFirstObject < distanceFromlightToTargetSurface smallValue
- Otherwise... (see next image)

Extra Credits

- Super sampling
- anti-aliazing
- can do adaptively: if some region is smooth, no need to super sampling
- Real ray tracing
- (1-ks) localPhongColor + ks colorOfReflectedRay
- You can also add refraction ray component

Extra Credit (Cont'd)

- Animation
- Soft shadow
- parallel computing to accelerate
- openmp: utilize multi-core
- cuda: use GPU to do parallel computing

Thanks!

Please email me any errors in the slides.

