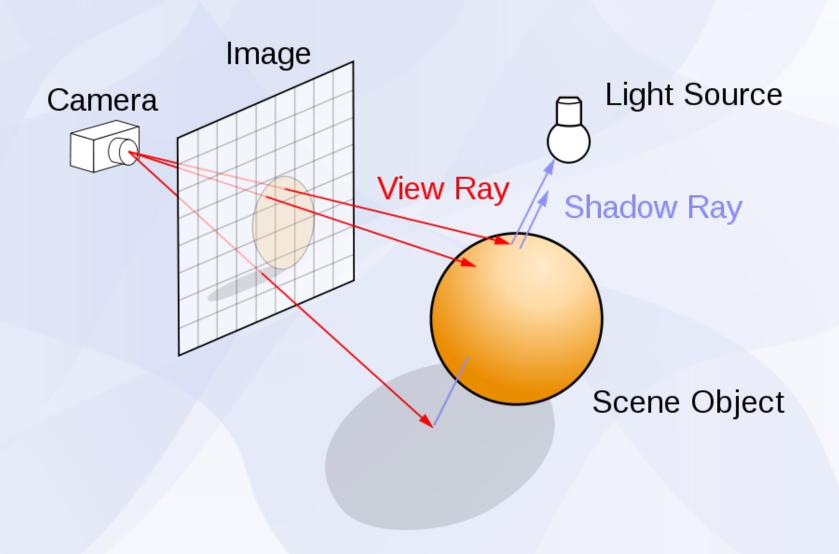
CS420 Assignment 3 Hints

Ray Tracing

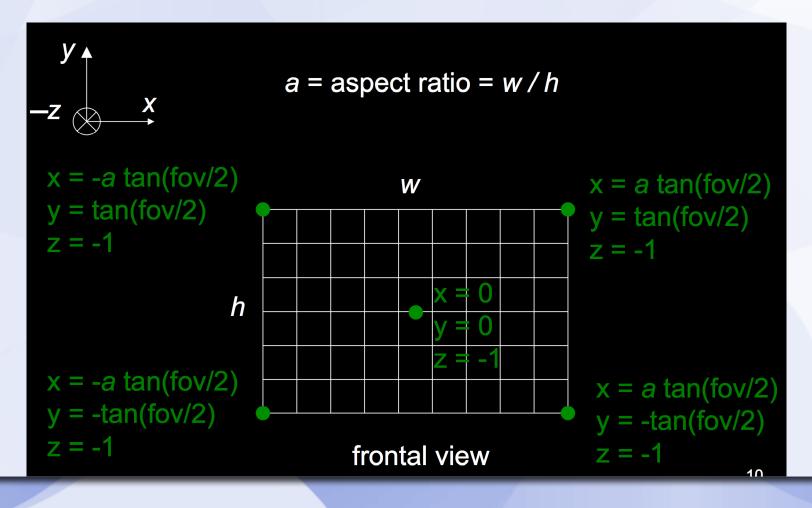
Step 1: send rays



- Send out rays from camera position (0,0,0) pointing to -z
- Image size 640x480
 - For debugging, use smaller size

- Send out rays from camera position (0,0,0) pointing to -z
- Image size 640x480
 - For debugging, use smaller size

fov: 60 degrees



Step 2: Intersect with scene

- Sphere & triangle
- Analytical solution

Sphere: Analytical Solution

Sphere equation:

•
$$f(\mathbf{q}) = (x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2 - r^2 = 0$$

- Ray: $x = x_0 + x_d t$, $y = y_0 + y_d t$, $z = z_0 + z_d t$
- Produce:

$$(x_0 + x_d t - x_c)^2 + (y_0 + y_d t - y_c)^2 + (z_0 + z_d t - z_c)^2 = r^2$$

- Simplify to: $at^2 + bt + c = 0$
- $a = x_d^2 + y_d^2 + z_d^2 = 1$
- b = $2[x_d(x_0-x_c)+y_d(y_0-y_c)+z_d(z_0-z_c)]$
- $c = (x_0-x_c)^2+(y_0-y_c)^2+(z_0-z_c)^2-r^2$

Possible Optimization: precompute *c* and a part of *b* for one start point

• Get t:
$$t_{0,1} = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

- Calculate b² 4c, abort if negative
- Return minimum positive t

Triangle: Intersection

- 1. find intersection of the ray and the plane which the triangle lies on.
- 2. determine the ray-plane intersection point is in/out of the triangle in the 2D plane.

Triangle: Analytical Solution

- Plane equation:
 - Implicit form: ax + by + cz + d = 0
 - Unit normal: $\mathbf{n} = [a \ b \ c]^T$ with $a^2 + b^2 + c^2 = 1$
- For triangle ABC,
 - normal direction: n = normalize(AB × AC)
 - A has coord: (x_a, y_a, z_a)
 - Because A is on the plane:
 - $d = -(ax_a by_a cz_a)$

• Ray:
$$x = x_0 + x_d t$$
, $y = y_0 + y_d t$, $z = z_0 + z_d t$

• So:
$$a(x_0 + x_d t) + b(y_0 + y_d t) + c(z_0 + z_d t) + d = 0$$

$$t = \frac{-(ax_0 + by_0 + cz_0 + d)}{ax_d + by_d + cz_d}$$

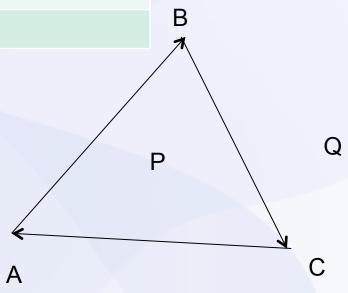
Possible Optimization: precompute *normal* and *d* and *numerator* for one start point

• abort if $ax_d + by_d + cz_d == 0$

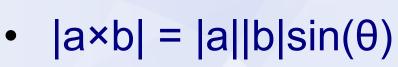
In/Out Test for Triangle

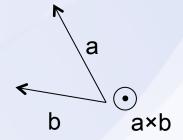
- determine intersection point p in/out of triangle ABC
- project to 2D
 - e.g. if n = (a,b,c), |a| > |b| && |a| > |c| (|a| is biggest)
 - project to the plane x = 0

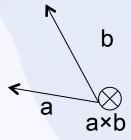
Directed Edge	Side which P lies	Side which Q lies
AB	right	right
ВС	right	left
CA	right	right

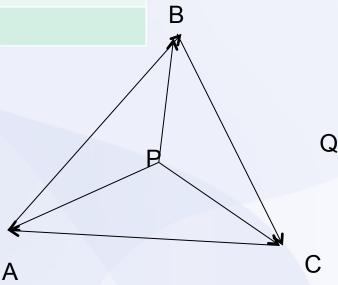


DirEdge XY	PX×PY	QX×QY
AB	in	in
ВС	in	out
CA	in	in





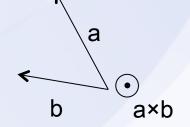


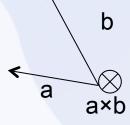


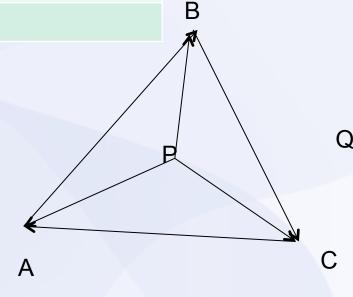
Cross Product

DirEdge XY	SignedArea(PXY)	SingedArea(QXY)
AB	-	-
ВС	-	+
CA	-	-

- Area sign:
 - clockwise (-)
 - anti-clockwise (+)
- $|a \times b| = |a||b|\sin(\theta)$







$$|S_{PAB}| = |PA||PB|\sin(\underline{/}APB) / 2$$

= $|PA \times PB| / 2$

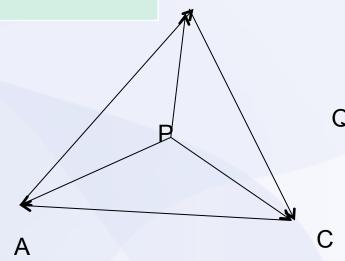
Cross Product

DirEdge XY	P's BaryCen. on Z	Q's BaryCe. on Z
AB	-	-
BC	-	+
CA	-	-

Barycentric coord.

•
$$P = \alpha A + \beta B + \gamma C$$

- $\alpha + \beta + \gamma = 1$
- $\alpha:\beta:\gamma = S_{PBC}:S_{PCA}:S_{PAB}$
- $|a \times b| = |a||b|\sin(\theta)$



$$|S_{PAB}| = |PA||PB|\sin(\underline{/}APB) / 2$$

= $|PA \times PB| / 2$

- Compute PA×PB, PB×PC, PC×PA
 - They can be scaled to barycentric coord.
 - if have same sign: P is in
- In 2D PA = (x_1,y_1) , PB = (x_2,y_2)
 - $PA \times PB = (x_1y_2 y_1x_2)$
 - PA×PB > 0: points outward, Z z
 - PA×PB < 0: points inward, -Z

P =
$$\alpha$$
A + β B + γ C
α+ β + γ = 1

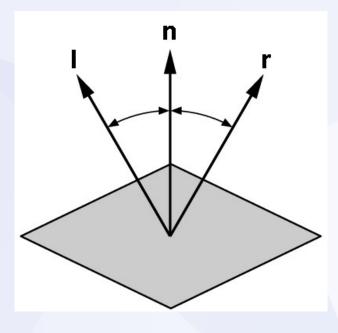
- Alternative:
- Compute barycentric coord. in 3D using same method
- more computation, but no need to projection

Phong Model

Clamp dot product to 0-1

$$I = L\left(k_d(l \cdot n) + k_s(r \cdot v)^{\alpha}\right)$$

- L: light coefficient
- I: dirToLight, n: normal
- r: reflectDir = $2(\mathbf{I} \cdot \mathbf{n}) \mathbf{n} \mathbf{I}$
- v: dirToCamera



Compute Normal

Sphere:

$$n = \frac{1}{r}[(x_i - x_c) \quad (y_i - y_c) \quad (z_i - z_c)]^T$$

- Triangle:
 - Interpolate vertex normals using barycentric coord.
 - Interpolate diffuse, $\alpha+\beta+\gamma=1$ $\alpha:\beta:\gamma=PB\times PC: PC\times PA: PA\times PB$

specular and shininess as well

Debugging

- Do step by step
 - Intersect with sphere, test code
 - Intersect with triangle, test code
 - Compute sphere color, test code
 - Compute triangle color, test code

Notice

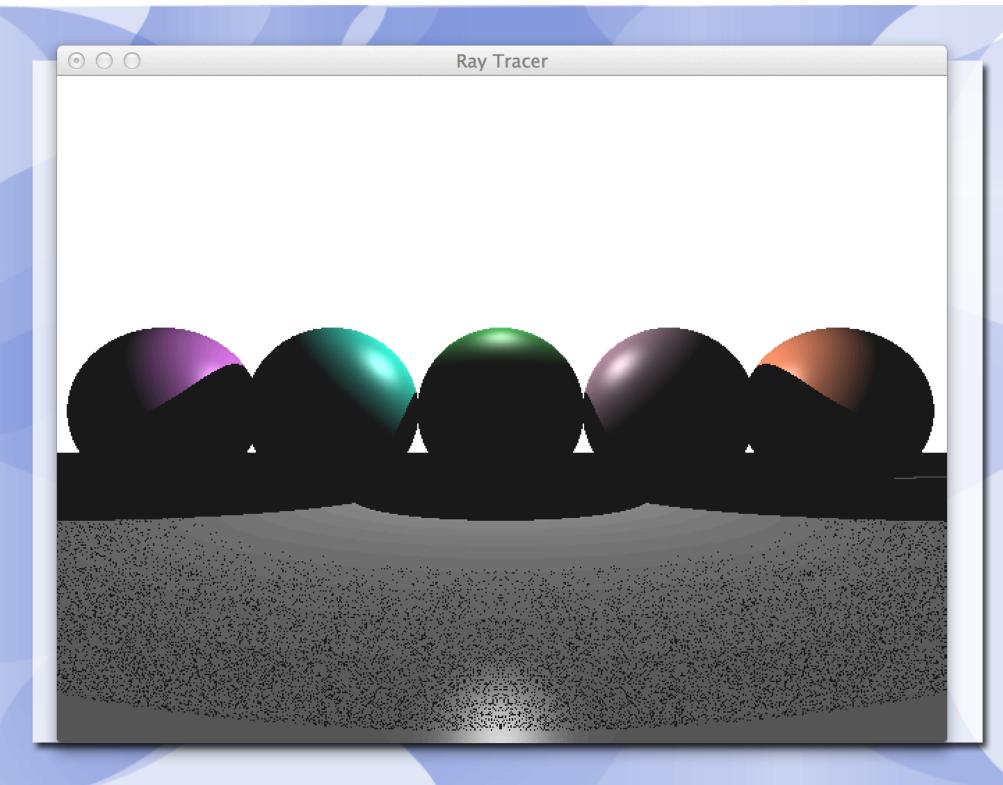
- Ensure B != 0 when doing A / B
- Before call sqrt(...), make sure
 parameter >= 0
- Remember to normalize direction vector.
 Remember to check len(dir) != 0 before dir.normalize()

Notice(cont'd)

- Distinguish between normals:
 - normal of a triangle
 - vertex normal
 - normal interpolated from vertex normals

Notice(cont'd)

- Floating-point operations not accurate:
 - When computing shadow rays:
 - distanceFromLightToFirstObject
 distanceFromlightToTargetSurface –
 smallValue
 - Otherwise... (see next image)



Extra Credits

- Super sampling
 - anti-aliazing
 - can do adaptively: if some region is smooth, no need to super sampling
- Real ray tracing
 - (1-ks) localPhongColor + ks colorOfReflectedRay
 - You can also add refraction ray component

Extra Credit (Cont'd)

- Animation
- Soft shadow
- parallel computing to accelerate
 - openmp: utilize multi-core
 - cuda: use GPU to do parallel computing

Thanks! Please email me any errors in the slides.