CSCI 420 Computer Graphics
Lecture 1

Course Overview

Administrative Issues
Modeling
Animation
Rendering
OpenGL Programming
[Angel Ch. 1]

Jernej Barbic
University of Southern California
Course Information On-Line

http://viterbi-web.usc.edu/~jbarbic/cs420-s23/

- Schedule (slides, readings)
- Assignments (details, due dates)
- Software (libraries, hints)
- Resources (books, tutorials, links)

Submit assignments on Blackboard:
https://blackboard.usc.edu

Forum for questions is on Piazza:
https://piazza.com/usc/spring2023/csci420/home
About me

Full professor in CS

Post-doc at MIT

PhD, Carnegie Mellon University

jnb@usc.edu

Mon 4:00-5:00, in person
Course slides

http://viterbi-web.usc.edu/~jbarbic/cs420-s23/

• Full-color version

• 6-slides-per-page B&W version
 -- good for printing

• Posted in advance of lectures
 -- bring to class & annotate

• Color viewing in Acrobat Reader:
 Disable “Replace Document Colors” in Preferences. Accessibility (if enabled)
Background:
BSc Mathematics
PhD Computer Science

Research interests:
graphics, animation, real-time physics, control, sound, haptics

Practice:
Tech transfer, startup companies (Ziva Dynamics)
Teaching Assistant

Mianlun Zheng

Office hours:

Tuesday and Friday 4pm-5pm
Teaching Assistant

Jiahao Wen

Office hours:

Tuesday and Friday
4pm-5pm
Course Producer

TBA

Same office hours as TA
Prerequisites

- CSCI 104 (Data Structures and Object-Oriented Design)
- MATH 225 (Linear Algebra and Differential Equations)
- Familiarity with calculus and linear algebra
- C programming skills
- Junior, senior, MS or PhD student, or explicit permission of instructor
- See me if you are missing any and we haven’t discussed it
Grading

- 51% Programming Assignments (3x 17%)
- 19% Midterm Exam
- 30% Final Exam
Textbooks

• **Interactive Computer Graphics**
 A top-down approach with OpenGL, *Sixth* Edition
 Edward Angel, Addison-Wesley

• **OpenGL Programming Guide (“Red Book”)**
 Basic version also available on-line (see Resources)
Academic integrity

• No collaboration!

• Do not copy any parts of any of the assignments from anyone

• Do not look at other students' code, papers, assignments or exams

• USC Office of Student Judicial Affairs and Community Standards will be notified
Assignment Policies

- Programming assignments
 - Hand in via Blackboard by end of due date
 - Functionality and features
 - Style and documentation
 - Artistic impression

- 3 late days, usable any time during semester

- All assignments must be completed to pass the course

- Academic integrity policy applied rigorously
Computer Graphics

One of the “core” computer science disciplines:

Algorithms and Theory
Artificial Intelligence
Computer Architecture
Computer Graphics and Visualization
Computer Vision
Computer Security
Computer Systems
Databases
Networks
Programming Languages
Software Engineering
Course Overview

Theory: Computer graphics disciplines:
- **Modeling:** how to represent objects
- **Animation:** how to control and represent motion
- **Rendering:** how to create images of objects
- **Image Processing:** how to edit images

Practice: OpenGL graphics library

Not in this course:
- Human-computer interaction
- Graphic design
- User interface libraries
OpenGL Graphics Library

• Main focus: **Core OpenGL Profile** ("Modern OpenGL")

• OpenGL 3.2 and higher

• Shaders

• Homeworks use the Core Profile

• We will also study: **Compatibility Profile** ("Classic OpenGL")
Computer Graphics Disciplines

Rendering

Source: Baraff and Witkin

Geometry (Modeling)

Source: Jensen

Animation

Source: Baraff and Witkin

Image Processing

Source: Botsch et al.

Source: Durand
Computer Graphics Goals I

• Synthetic images indistinguishable from reality
• Practical, scientifically sound, in real time
Example: Ray Tracing

Barbic, James,
SIGGRAPH 2010

Thurey, Wojtan,
Gross, Turk,
SIGGRAPH 2010
Example: Physics + Computational Geometry + Animation + Ray Tracing
Example: Radiosity

Computer Graphics Goals II

- Creating a new reality (not necessarily scientific)
- Practical, aesthetically pleasing, in real time
Example: Illustrating Smooth Surfaces

A. Hertzmann, D. Zorin,
SIGGRAPH 2000

Non-photorealistic rendering (NPR)
Example: Scene Completion

Original

Input

Scene Matches

Output

J. Hays, A. Efros,
SIGGRAPH 2007
SIGGRAPH

- Main computer graphics event in the world
- Once per year
- 30,000 attendees
- Academia, industry
1. Course Overview

- Administrative Issues
- Topics Outline (next)
2. OpenGL Basics

- Graphics pipeline
- Primitives and attributes
- Color
- OpenGL core and compatibility profiles
- [Angel, Ch. 1, 2]
3. Input and Interaction

- Clients and servers
- Event driven programming
- Hidden-surface removal
- [Angel, Ch. 2]

![Diagram showing client-server architecture: CPU to GPU to display (CRT)]
4. GPU Shaders

- Vertex program
- Fragment program
- Pipeline program
- Shading languages
- GLSL shading language
- Interaction with OpenGL
5. Objects & Transformations

• Linear algebra review
• Coordinate systems and frames
• Rotation, translation, scaling
• Homogeneous coordinates
• OpenGL transformation matrices
• [Angel, Ch. 3]
6. Viewing and Projection

• Orthographic projection
• Perspective projection
• Camera positioning
• Projections in OpenGL
• [Angel, Ch. 4]
7. Hierarchical Models

- Re-using objects
- Animations
- OpenGL routines
- Parameters and transformations
- [Angel, Ch. 8]
8. Light and Shading

• Light sources
• Ambient, diffuse, and specular reflection
• Normal vectors
• Material properties in OpenGL
• Radiosity
• [Angel, Ch. 5]

Tobias R. Metoc
9. Curves and Surfaces

- Review of 3D-calculus
- Explicit representations
- Implicit representations
- Parametric curves and surfaces
- Hermite curves and surfaces
- Bezier curves and surfaces
- Splines
- Curves and surfaces in OpenGL
 - [Angel, Ch. 10]
10. Rendering

- Clipping
- Bounding boxes
- Hidden-surface removal
- Line drawing
- Scan conversion
- Antialiasing
- [Angel, Ch. 6]
11. Textures and Pixels

- Texture mapping
- OpenGL texture primitives
- Bump maps
- Environment maps

- Opacity and blending
- Image filtering
- [Angel, Ch. 7]
12. Ray Tracing

- Basic ray tracing [Angel, Ch. 11]
- Spatial data structures [Angel, Ch. 8]
- Motion Blur
- Soft Shadows
13. Radiosity

- Local vs global illumination model
- Interreflection between surfaces
- Radiosity equation
- Solution methods
- [Angel Ch. 11]
14. Physically Based Models

- Particle systems
- Spring forces
- Cloth
- Collisions
- Constraints
- Fractals
- [Angel, Ch. 9]
15. Scientific Visualization

- Height fields and contours
- Isosurfaces
- Volume rendering
- Texture mapping of volumes
- [Angel Ch. 11]
Guest Lecture:
TBA

“Wildcard” Lectures:

• Graphics hardware
• More on animation
• Motion capture
• Virtual reality and interaction
• Special effects in movies
• Video game programming
• Non-photo-realistic rendering
Hot Application Areas

- Film visual effects
- Feature animation
- Virtual reality
- PC graphics boards
- Video games
- Visualization (science, architecture, space)
Hot Research Topics

• Modeling
 – getting models from the real world
 – multi-resolution

• Animation
 – physically based simulation
 – motion capture

• Rendering:
 – more realistic: image-based modeling
 – less realistic: impressionist, pen & ink
Acknowledgments

• Jessica Hodgins (CMU)
• Frank Pfenning (CMU)
• Paul Heckbert (Nvidia)