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Abstract

There has been a growing interest in exploiting con- &
textual information in addition to local features to detect
and localize multiple object categories in an image. Con-
text models can ef ciently rule out some unlikely combina-
tions or locations of objects and guide detectors to produce
a semantically coherent interpretation of a scene. How-
ever, the performance bene t from using context models has
been limited because most of these methods were tested of
datasets with only a few object categories, in which most
images contain only one or two object categories. In this \
paper, we introduce a new dataset with images that contain e person200] |
many instances of different object categories and propose
an ef cient model that captures the contextual information |EEEEEES:
among more than a hundred of object categories. We show ¢) Context model output
that our context model can be applied to scene understand-Figure 1. Detecting objects in and out of context. a) Input image,

d) Most unexpected object

ing tasks that local detectors alone cannot solve. b) Output of 107 class detectors. With so many classes many false
alarms appear on the image providing a useless scene interpreta-
1. Introduction tion. c¢) Output of our context model. d) Most unexpected object

in the image. This output can not be produced by object detectors

Standard single-object detectofs ] focus on locally alone, even if they are perfect. Detecting out of context objects
identifying a particular object category. In order to détec requires modeling what the expected scene con gurations are.
multiple object categories in an image, we need to run a
separate detector for each object category at every sjmatial each image segment, and adjusts these labels using a condi-
cation and scale. Since each detector works independentlyional random eld. [/] and [8] extend this approach to en-
from others, the outcome of these detectors may be semaneode spatial relationships between a pair of objects/]n [
tically incorrect. spatial relationships are quantized to four prototypietd+

Even if we have perfect local detectors that correctly tionships - above, below, inside and around, whereas]in [
identify all object instances in an image, some tasks inescen a non-parametric map of spatial priors are learned for each
understanding require an explicit context model, and canno pair of objects. Torralba et al.2{] combine boosting and
be solved with local detectors alone. An example of this is CRF's to rst detect easy objects (e.g., a monitor) and pass
detecting unexpected objects that are out of their normalthe contextual information to detect other more dif cult-ob
context. Figurel shows one example of images in which jects (e.g., a keyboard)2§] uses both image patches and
an object is out of context. These scenes attract a human'gheir probability maps estimated from classi ers to learn a
attention since they don't occur often in daily settings-Un contextual model, and iteratively re nes the classi catio
derstanding how objects relate to each other is important toresults by propagating the contextual informaticf].dom-
answer queries such asd some funny picturesr where bines individual classi ers by using spatial interactidres
can | leave the keys so that | can nd them later? tween object detections in a discriminative manner.

A simple form of contextual information is a co- Contextual information may be obtained from coarser,
occurrence frequency of a pair of objects. Rabinovich et global features as well. Torralb@j demonstrates that a
al. [19) use local detectors to rst assign an object label to global image feature called a “gist” can predict the presenc



or absence of objects and their locations without running an — — _PASCAL 07 (test) N /

object detector. 6] extend this approach to combine patch- | SUN 09 (test) 107 2N NG

based local features and the gist feature. Heitz and KoIIer§0-4“ 8 \f-\

[11] combine a sliding window method and unsupervised £ 03l %102 o

image region clustering to leverage “stuff” such as the sea,s || = .

the sky, or a road to improve object detection(][intro- go.z | gml — — -PASCAL 07 (test) \;.

duces a cascaded classi cation model, which links scenez ¢, = ) ‘gﬁico’;L(t%;()t'a'"'” /

categorization, multi-class image segmentation, objeet d /{\\\ 5| e SUN 09 (training)

tection, and 3D reconstruction. % s 10 15 20 25 10100 10" 102
Hierarchical models can incorporate both local and  ~ NUmPercategeresperimage ) Category rank

global images features9]uses multiscale conditional ran-
dom elds to combine local classi ers with regional and
global features. Sudderth et abZ] model the hierarchy of
scenes, objects and parts using hierarchical Dirichlet pro
cesses, which encourage scenes to share objects, objects to
share parts, and parts to share features. Parikh and Chen
[17] learn a hierarchy of objects in an unsupervised man-
ner, under the assumption that each object appears exactl

—

once in all images. Hierarchical models are also common

within grammar models for scenesd 14] and they have g6 5 comparison PASCAL 07 and our dataset (SUN09). a)
been shown to be very exible to represent complex re- yisiogram of number of object categories present in each image.
lationships. Bayesian hierarchical models also provide ap) pistribution of training and test samples per each object cate-
powerful mechanism to build generative scene modefg [ gory. c) 4 examples from the set of typical PASCAL images. A

In this work, we model object co-occurrences and spa- typical pascal image contains two instances of a single object cat-
tial relationships using a tree graphical model. We combine egory, and objects occuid% of the image. d) 4 examples from
this prior model of object relationships with local detecto the set of typical SUN images. A typical SUN image has 7 object
outputs and global image features to detect and localize allcategories (with around 14 total annotated objects) and occupy a
instances of multiple object categories in an image. Enforc Wide range of sizes (averag).

ing tree-structured dependencies among objects allows ugjtape to test context-based object recognition algorit
to I_earn our mod(_al fo_r more than_ a hundred of object cate- t, pASCAL dataset contains 20 object classes, but more
gories and apply itto images ef ciently. Even though we do y, 5 5@4 of the images contain only a single object class.
not epr|C|tIy|mposeah|erarch|c§1| strupture in ourle_lagw MSRC [26] procides more co-ocurring objects but it only
procedure, the tree organizes objects in a natural higgarch ., hains 23 object classes. Contextual information is most
In order to exploit contextual information, itis important  sefy] when many object categories are present simultane-
to have many different object categories present simuitane 51y in an image, with some object instances that are easy
ously in an image, with a large range of dif culties (from {4 getect (i.e. large objects) and some instances that ede ha
large to small objects). Here we introduce a new datasety, getect (i.e. small objects). The average PASCAL bound-
(SUNO09), with more than 200 object categories in a wide ing box occupie0% of the image. On the other hand, in
range of scene categories, which is suitable for contextualy, gataset. the average object sizB%of the image size
information. and a typical image contains 7 different object categories.

2. A new dataset for context based recognition Figure2 (c-d) show typical images from each dataset.

We introduce a new dataset (SUNO09) suitable for lever- 3. Tree-structured contextual model

aging the contextual information. The dataset contains We use a tree graphical model to learn dependencies
12.000 annotated images covering a large number of scen@among object categories!1 ] uses a fully-connected CRF
categories (indoor and outdoors) with more than 200 objectto model object dependencies, which is computationally ex-
categories and 152.000 annotated object instances. SUNO®ensive for modeling relationships among many object cat-
has been annotated using LabelMé][by a single annota-  egories. [6] models dependencies among objects using
tor and veri ed for consistency. scene-object relationships, and assumes that objects-are i
Figure 2 shows statistics of out dataset and compares dependent conditioned on the scene type, which may ignore
them with PASCALO7. The Pascal dataset provides andirect dependencies among objects. Our tree provides a
excellent framework for evaluating object detection algo- richer representation of object dependencies and endbles e
rithms. However, this dataset, as shown in Figrés not cientinference and learning algorithms. In this sectiom,




describe a prior model that captures co-occurrence $tatist
and spatial relationships among objects, and explain how
global image features and local detector outputs can be in-

tegrated into the framework as measurements.

3.1. Prior model

3.1.1 Co-occurrences prior

A simple yet effective contextual information is the co-

W ®

occurence of object pairs. We encode the co-occurrenceFigure 3. (Left) Prior model relating object presence variablas

statistics using a binary tree model. Each nbdm a tree
represents whether the corresponding ohijestpresent or
not in an image. The joint probability of all binary variable
are factored according to the tree structure:

Y
p(b): p(broot) ' p(hjbpa(i))

@)

wherepa(i) is the parent of node Note that the parent-
child pairs may have either positive (efipor andwall
co-occur often) or negative (e.§lgor  never appears with
sky ) relationships.

3.1.2 Spatial prior

Spatial location representation Objects often appear at
speci c relative positions to one another. For example, a

and location variablek;. (Right) Measurement model for object
i. The gist descriptog represents global image features, and local
detector provides candidate window locatidékig and scoresi .

cik indicates whether the window is a correct detection or not.

considerLy andL , to capture vertical location and scale re-
lationships. We assume thaj's andL ;'s are independent,
i.e., the vertical location of an object is independent from
its distances from the image plane. While we mddglas
jointly Gaussian, we modél, as a log-normal distribution
since it is always positive and is more heavily distributed
around small values. We can rede ne a location variable
for object category asL; = (Ly;logL;) and modeL;'s

as jointly Gaussian. If there are multiple instances of cbje
categoryi in animagel; represents the median location of
all instances.

computer screen, a keyboard, and a mouse generally appear \ye assume that when conditioned on the presence vari-

in a xed arrangement. We capture such spatial relation-
ships by adding location variables to the tree model.
“x, 'y be the x,y coordinate of the center of the bounding
box, and’y, "1 be the width and height of the box. We as-

Let

ableb, the dependency structure of the's has the same
tree structure as our binary tree:

Y
p(l—jb): p(l—rootjbroot) . p(l—ijl-pa(i);h;bpa(i)); (3)

sume that the image height is normalized to one, and that [

x=0;"y =0 isthe centerof_the image. The expect.ed dis- \yhere each edge potentipfLjL paiy; b ; bhaci)) €ncodes
tance between centers of objects depends on the size of thge gistribution of a child location conditioned on its patre
objects - if a keyboard and a mouse are small, the distanccation and the presence/absence of both child and parent
between the centers should be small as well. Constellatlonobjects_ We use three different Gaussian distributiongto d

model [p] achieves scale invariance by transforming the po-
sition information to a scale invariant space. Hoiem et al.
[13] relate scale changes to an explicit 3D information. We
take Hoeim et.al 's approach and apply the following coor-
dinate transformations to represent object locations én th
3D-world coordinate:

f
\*Hi
h

Ly = <Hi; Ly= ZH;; L, = @)

h h
wheref is the distance from observer to the image plane,
which we set tal, andL; is the distance between the ob-

server and the objecH; is the physical height of an object

ne p(LijL paiys b5 Bha(iy) for each parent-child pair. When
both child and parent objects are presdnt< 1; b,y =
1), the expected location of the child objeds determined
by the location of its parentt ,,(;y. When the object is
present but its parent object is ndf (= 1;b,ai) = 0),
thenL; is independent fronh ,,(;y. When an object is not
presentlf = 0), we assume that its location is indepen-
dent from all other object locations and lst represent the
average location of the objecacross all images.

Figure3 shows the graphical model of the presence vari-
ableb and the location variable. Combining () and @),

i, which is assumed to be constant. These constants couldhe joint distribution of all binary and Gaussian variables
be inferred from the annotated data using the algorithm in can be represented as follows:

[17). Instead, we model the object sizes by manually en-

coding real object sizes (e.g., person = 1.7m, car = 1.5m).

We assume that all objects have xed aspect ratios.

Prior on spatial locations The x-coordinates of objects

varies considerably from one image to another, and is un-

informative in general43]. Thus, we ignord.y and only

p(b;L) = p(by)(LJ'b) = P(broot JP(L root ) 4)

P jBpaciy ) P(LijL pagiys B 5 Bpagiy):

If we combinely andL; as a single variabl®;, we observe
that p(O) also has a tree structure. Even though the full



graphical model with respect toandL is not a tree, the

dependency between objects forms a tree structure. In the
rest of the paper, we refer to this model as a prior tree model

assuming that each node in the tree correspon@s.to
3.2. Measurement model
3.2.1 Incorporating global image features

In addition to incorporating relationships among objects,

we introduce gist43] as a measurement for each presence

variableb, to incorporate global image features into our

'f Wik g and their scores

4. Alternating inference on trees

Given the gistg, candidate window locationgV

f sik g, we infer the presence
of objectsb f bg, the correct detections f ck g, and
expected locations of all objects f Ljg, by solving the
following optimization problem:

b6l = argmax p(b; c; Ljg; W; 9) (6)
b;c;L

Although our overall model is a tree if we considerand

model. Since the gist is a high-dimensional vector, we useL; as a single node, the exact inference is complicated since

logistic regression to tp(hjg) [1€], from which we es-
timate the likelihoodgp(gjh) indirectly usingp(gjb) =
p(bjg)p(g)=p(b) to avoid over tting.

3.2.2 Integrating local detector outputs

there are both binary and Gaussian variables in the model.
For ef cient inference, we leverage the tree structures em-
bedded in the prior model. Speci cally, conditioned bn
andc, the location variables forms a Gaussian tree. On
the other hand, conditioned dn the presence variablés
and the correct detection variabletogether form a binary

In order to detect and localize object instances in an image.iree. For each of these trees. there exists ef cient infegen

we rst apply off-the-shelf single-object detectors and ob

algorithms [L]. Therefore, we infeb; candL in an alternat-

tain a set of candidate windows for each object category. Leting manner.

i denote an object category and keindex candidate win-

In our rst iteration, we ignore the location information

dows generated by baseline detectors. Each detector outpyy ang sample b and ¢ conditioned only on the gisy

provides a scorsy and a bounding box, to which we ap-
ply the coordinate transformation i&)(to get the location
variableWy, = (Ly;logL;). We assign a binary variable

Cik to each window to represent whether it is a correct de-

tection €k = 1) or a false positivedx = 0). Figure3
shows the measurement model for objetd integrate gist

and the candidate windows scores b;é p(b;ds; Q).
Conditioned on these samples, we infer the expected lo-
cations of objectd® = argmax, p(Ljb;e; W) using be-

lief propagation on the resulting Gaussian tree. Then con-
ditioned on the estimate of locatiofs we re-sampleb

and ¢ conditioned also on the window location§;¢ =

and outputs from local detectors into our prior model, where argmax p(b: gs; g:(; W), which is equivalent to sam-

we used plate notations to represintdifferent candidate
windows.

pling from a binary tree with node and edge potentials mod-
i ed by the likelihoodsp((; W jb; d. In this step, we en-

We sort the baseline score for each object category anteoyrage pairs of objects or windows in likely spatial ar-

assign candidate window ind&so thats is the k-th high-
est score for categoiy The probability of correct detection
p(ck = 1jb = 1) istrained from the training set. If object

rangements to be present in the image.
We iterate between sampling on the binary tree and in-
ference on the Gaussian tree, and select the safpledt

I is not present, then all the candidate windows are false,yith the highest likelihood. We use 4 different starting sam

positives:p(ck =1jb =0)=0.

ples each with 3 iterations in our experiments. Our infer-

The distribution of scores depends on whether the win- ence procedure is ef cient even for models with hundreds

dow is a correct detection or a false positive. We could
t a truncated Gaussian distribution fgi(si jck = 0)

and forp(sikjck = 1). Estimating parameters can be
unreliable if there are only few samples with the correct

of objects categories and thousands of candidate windows.
For the SUN dataset, it takes about 0.5 second in MATLAB
to produce estimates from one image.

detection. To address this issue, we use logistic regres2- Learning

sion to trainp(ci jsik ) and compute the likelihood using
p(sik jcik ) = P(Cik JSik )P(Sik )=P(Cik ).

If a candidate window is a correct detection of object
(ck = 1), then its locatiorWj, is a Gaussian vector with
meanL , the expected location of objeict

p(Wikjck =1;Li)= N (Wi ;Li; ) (5)
where ; is the covariance around the predicted location
[1€6]. If the window is a false positivecy = 0), Wi is
independent front; and has a uniform distribution.

We learn the dependency structure among objects from
a set of fully labeled images. The Chow-Liu algorith&j [
is a simple and ef cient way to learn a tree structure that
maximizes the likelihood of the data: the algorithm rst
computes empirical mutual information of all pairs of vari-
ables using their sample values. Then, it nds the maxi-

1We can also compute the MAP estimates of these binary variables
ef ciently, but starting from the MAP estimates and iteratibetween the
binary and Gaussian trees typically leads to a local maximatistclose
from the initial MAP estimates.



car

mum weight spanning tree with edge weights equal to the
mutual information. We learn the Chow-Liu tree using the
statistics oty 's computed from a set of labeled images. We

pick a root node arbitrarily once a tree structure is learned person
Even with more tharl00 objects and thousands of train-
ing images, a tree model can be learned in a few seconds ina) horse motorbike bicycle  sheep  train  aeroplane  cat  bottle
MATLAB.

Figure7 shows a tree structure learned from the SUN09
dataset. We selecteslty to be the root of the tree. Itis in-
teresting to note that even though the Chow-Liu algorithm >~
is simply selecting strong pairwise dependencies, our tree
organizes objects in a natural hierarchy. For example, a
subtree rooted diuilding  has many objects that appear
in street scenes, and the subtree rootedirdt contains
objects that would commonly appear in a kitchen. Thus, Figure 4. a) Model learned from PASCAL 07. Red edges corre-
many non-leaf nodes act as if they are representing coarsefPond to negative correlations between clgsses. The thickness of
scale meta-objects or scene categories. In other words, th§2Ch €dge represents the strength of the link. b) 3D samples gen-

learned tree captures the inherent hierarchy among objectserated from the context model.

and scenes, resulting in signi cant improvements in object to that of the baseline detector for the localization task (i
recognition and scene understanding as demonstrated in  detecting the correct bounding box). We look at N most
6. R | con dent detections in each image and check whether they
- Results are all correct. For the baseline detector, we use a logis-
6.1. Recognition performance on PASCALO7 tic regression to compute the probability of correct detec-
tion based on the detector score. For the context model, we

Context learned from training images We train the con- . . . .
text model on 4367 images from the training set. Fighee compute the probability of correct detection given gist and
’ detector outputs (i.g(ck =1js;g; W)) using the ef cient

shows the tree learned for this dataset. The model correctly. . . ; .
: . . .~ “inference algorithm described in SectibnThe numbers on
captures important contextual relationships among abject o . .
; . : ; top of the bars indicate the number of images that contain
(co-ocurrences and relative spatial locations). Figute

. . at least N ground-truth object instances.
shows a few samples from the joint model of 3D locations, . .
. X . . . . . Figurebb. compares the baseline and the context model
illustrating the relative spatial relationship among alge

Our model correctly learns that most training images con- for the presence predication task (i.e., is the object ptese

: - - ;
tain 1 or few objects, and that the spatial information em- n :he scebng.). we cotn_wptjrt]e '_[he probat()jllltz ofkeaﬁhtﬁbjetzt
bedded in PASCALO7 data is limited. category being present in the Image, and check whether the

top N object categories are all correct. The most con dent
detection for each object category is used for the baseline
detector. For the context model, we compute the proba-
bility of each object class being present in the image (i.e.
P(b = 1js;g; W)). The numbers on top of the bars indi-

cate the number of images that contain at least N different
ground-truth object categories. Note that the number of im-

detector in f], which is based on the mixture of multiscale ages drops signi f:antly as N gets Iarggr since mo§t images
deformable part model. There is a slight advantage in incor-" PASCAL contain only one or two object categories. The

porating context, but not a huge improvement. As discussegcontext model _ou_tperforms the baseline signi cantly fog th
in Section2, this dataset contains very little contextual in- Présence prediction task.
formation among objects and the performance bene t from
incorporating the contextual information is small. We show
in the next section that the contextual information does im-  We divide the SUN09 dataset into two sets of equal sizes,
prove the performance signi cantly when we use the new one for training and the other for testing. Each set has the
dataset SUNO9. One thing to note is that the best achievablesame number of images per scene category. In order to have
performance is limited by the recall of the detector since enough training samples for the baseline detectdsie
context models are only used to enhance the scores of th@nnotated an additional set of 26.000 objects using Amazon
bounding boxes (or segments) proposed by a detector. Mechanical Turk. This set consists of images with a single
Figure5a. compares performance of our context model annotated object. This set was used only for training the

bus chair

sofa_tymionitor pottedplant  boat cow

b) e

Object recognition performance Table 1 provides the
average precision-recall (APR) for the object localizatio
task, obtained for the objects in the pascal dataset using di
ferent models and compares the results with one of the stat
of the art models at this task that also incorporates contex-
tual information [}]. For the baseline detector, we use the

6.2. Recognition performance on SUNQ9 dataset
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) 0 4314
Category Paseline Gist Context B?:Tz‘;e [4] |Bound R PASCAL 07 P SUN 09
aeroplane | 28.12 31.30 32.05| 27.80 28.80| 50.88 P WBascline | o4 : W Bascline
bicycle | 51.52 50.79 50.56 | 55.90 56.20 | 58.76 s§ o H Context Il Context
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boat 13.85 1506 14.90 | 14.60 14.20 | 28.14 =L
bottle 2344 2558 2528 | 2570 29.40| 40.51 gsg"”
bus 38.87 35.83 36.98| 3810 38.70| 47.89 —-a
car 4701 4674 46.74| 47.00 48.70| 6595 o
cat 1473 1672 18.93 | 1510 12.40| 48.60 .
chair 1601 17.91 1812 | 16.30 16.00 | 49.08 12 3 4 s
cow 1824 1807 1822 | 1670 17.70 | 36.89 c)o7 PASCAL 07 s SUN 09
diningtable| 21.01 2318 2293 | 22.80 24.00| 30.58 o os i o o1
dog 1073 11.26 1243 | 11.10 11.70 | 46.22 % 205 MBaseline | M Baseline
horse 4322 4532 4729| 4380 4500 | 69.54 g 5 1760 McContext | I Context
motorbike | 40.27  40.99  41.87 | 37.30 39.40 | 59.69 £ioa 0%
person | 3546 3477 3546 | 3520 3550 | 58.92 8% 04 o
pottedplant| 14.90 16.55 15.67 | 14.00 15.20 | 43.75 S5 03
sheep 19.37 2177 21.81| 1690 16.10| 35.13 g 8oz 02
sofa 2056 19.43 2040 | 19.30 20.10 | 42.67 . N
train 37.74 3743 38.80| 31.90 34.20| 61.35
tvmonitor | 37.00 3427 35.75| 37.30 35.40 | 54.87 1 2 3 4 s T2 s 4 s
AVERAGE| 2670 2719 27.75| 2641 27.10| 47.84 N N

Figure 5. Summary of results for PASCAL 07 and SUN 09. a-b)
Percentage of images in which the top N most con dent detections
are all correct. The numbers on top of the bars indicate the number
of images that contain at least N ground-truth object instances. c-
d) Percentage of images in which the top N most con dent object
presence predictions are all correct. The numbers on top of the
bars indicate the number of images that contain at least N different
ground-truth object categories.

Table 1. Average precision-recall. Baseline) baseline deteglor [
Gist) baseline and gis2[)]; Context) our context model; [4]) re-
sults from ] (the baseline in [4] is the same as our baseline, but
performances slightly differ); Bound) Maximal APR that can be
achieved given current max recall.

baseline detector and not for learning the tree model.
In this experiment we use 107 object detectors. These

detectors span from regions (e.g., road, sky, buildings) to féiz |
well de ned objects (e.g., car, sofa, refrigerator, sinéyh %g
bed) and highly deformable objects (e.qg., river, towel; cur §§ ° |
tain). The database contains 4317 testimages. Objects have ~% ° "1I|m
a large range of dif culties due to variations in shape, but b)< ®0 10 20 30 40 50 60 70 8 9 100
also in sizes and frequencies. The distribution of objetts i £5%
the test set follows a power law (the number of instances for g §20
object k is roughlyl=k) as shown in Figuré. Egm
Context learned from training images Figure 7 shows §§ 0

0 10 20 30 40 50 60 70 80 90 100

the learned tree relating the 107 objects. A notable differ- Object Categories

ence from the tree learned for PASCALO7 (Figdjes that Figure 6. Improvement of context model over the baseline. Object
the proportion of positive correlations is larger. In theetr  categories are sorted by the improvement in the localization task.
learned from PASCALO710 out of 19 edges, and} out

of the top 10 strongest edges have negative relationships.sion because most images contain only few categories. In
In contrast,25 out of 106 edges and out of 53 (  13%) SUNQ9, there is a lot more opportunities to learn positive
strongest edges in the SUN tree model have negative relacorrelations between objects. From the learned tree, we can
tionships. In PASCALQ7, most objects are related by repul- see that some objects take the role of dividing the tree ac-
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- from local detector outputs.

In this section, we present preliminary results in de-
tecting objects out-of-context. For this task, we created a
9 Q database a26images with one or more objects that are out
of their normal context. In each test, we assume that we
have ground-truth object labels for all objects in the scene
except for the one under the test. Among all objects present
in the image, we picked an object label with the lowest prob-
Figure 9. Four examples of objects out of context (wrong pose, ability conditioned on all other (ground-truth) object édb
wrong scale, wrong scene wrong co-occurrence). The segmentsn the scene using our context model. Fig@rshows some
show the objects selected by thg contextual model (the input of theexamples where the context model correctly identi es ob-
gystem are th(_e true _segmentatlons and labels, and the model tasfécts that are the most unexpected object in the scene.
Is to select which objects are out of context). Figure 10 shows the number of images that at least one
out-of-context object was included in the thpunexpected
objects estimated by the context model. It is interesting to
note that using gist may hurt the performance of detecting
Object recognition performance Despite the high vari-  images out of context. This is due to the fact that those
ance in object appearances, the baseline detectors have @bjects may change global features of an image, biasing gist
reasonable performance. Figuséh,d) show localization  to favor that object.
and presence prediction results on SUN09. Note that the )
context model improve the image annotation results signif- 7- Conclusion
icantly: as shown in Figuré(d), among the 3757 images
that contain at least three different object categories, th
three most con dent objects are all correct #8% of im-
ages (and onl\t5%without context).

Figure 6 show the improvement in average precision-
recall (APR) for each object category. Due to the large num-
ber of objects in our database, there are many objects tha
bene t in different degrees from context. Six objects with
the largest improvement with context for the localization
task are oor (+11.88), refrigerator (+11.58), bed (+8.46)
seats(+7.34), monitor (+6.57), and road (+6.55). The over-
all localization APR averaged over all object categories is
7.06 for the baseline and 8.37 for the context model. Fig-
ure8 shows some image annotation results. For each image
only the six most con dent detections are shown.

£

cording to the scene category as described in Sebtidior
instancefloor separates indoor and outdoor objects.

We present a new dataset and an ef cient methodology
to model contextual information among over 100 object cat-
egories. The new dataset SUNQ9 contains richer contextual
information compared to Pascal07, which was originally
designed for training object detectors. We demonstrate
Ehat the contextual information learned from SUNQ9 signif-
icantly improves the accuracy of object recognition tasks,
and can even be used to identify out-of-context scenes. The
tree-based context model enables an ef cient and coher-
ent modeling of regularities among object categories, and
can easily scale to capture dependencies of over 100 object
categories. Our experiments provide compelling evidence
that rich datasets and modeling frameworks that incorporat
tontextual information can be more effective at a variety of
computer vision tasks such as object classi cation, object
6.3. Detecting images out of context detection, and scene understanding.

Figure9 shows some images with one or more objects in Acknowledgment
an unusual setting such as scale, position, or scene. Gbject
that are out-of-context generally have different appeagan This research was partially funded by Shell International
or viewpoints from typical training examples, making local Exploration and Production Inc., by NSF Career Award (ISl
detectors perform poorly. Even if we have perfect local de- 0747120), and by the Air Force Of ce of Scienti c Re-
tectors, or ground-truth labels, we need contextual inferm  search under Award No.FA9550-06-1-0324. Any opinions,
tion to identify out-of-context scenes, which is not aviaiiéa ndings, and conclusions or recommendations expressed in
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