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Abstract Resolved by visual similarity
Stir oil and salt ,‘ Use thenixture
~ s /6

We propose an unsupervised method for reference res-
olution in instructional videos, where the goal is to tem-
porally link an entity (e.g., “dressing”) to the action (e.g.,
“mix yogurt”) that produced it. The key challenge is
the inevitable visual-linguistic ambiguities arising from the (@) Linguistic Ambiguity
changes in both visual appearance and referring expression Resolved by linguistic similarif
of an entity in the video. This challenge is amplied by ~ L_Cuttheonion f—— Put tRénioninto
the fact that we aim to resolve references with no supervi- ‘ :
sion. We address these challenges by learning a joint visual-
linguistic model, where linguistic cues can help resolve vi-
sual ambiguities and vice versa. We verify our approach

by learning our model unsupervisedly using more than two (b) Visual Ambiguity
thousand unstructured cooking videos from YouTube, and Resolved by our joint modelin
show that our visual-linguistic model can substantially im- . Add thedressing

prove upon state-of-the-art linguistic only model on refer-
ence resolution in instructional videos.

1. Introduction (c) Visual-Linguistic Ambiguity
) ) . Figure 1. Our goal is to resolve references in videos — temporally

The number of videos uploaded to the web is growing jinking an entity to the action that produced it. (a), (b), and (c) il-
exponentially. In this work, we are particularly interested in ustrate challenges resulting from different types of ambiguities in
the narrated instructional videos. We as humans often ac-nstructional videos and how they are resolved. Our model utilizes
quire various types of knowledge by watching them — from linguistic and visual cues to resolve them. An arrow pointing to an
how to hold a knife to cut a tomato, to the recipe of cooking action outcome indicates the origin of the entity.

a tomato soup. In order to build a machine with the same
capability, it is necessary to understand entitieg (knife)
and actionsq_g Cut) in these Videos_ — both |inguiStiC and visual ambiguities.

From a learning point of view, data from instructional ~In this paper, we address how to resolve such ambigui-
videos pose a very interesting challenge. They are noisy,ties. This task is known as reference resolution: the linking
containing unstructured and misaligned caption uploadedof expressions to contextually given entities]} In other
by users or generated automatically by speech recognitionwords, our goal is to extract all actions and entities from a
Even worse, the key challenge arises from inevitable am-given video, and resolve references between them. This is
biguities presented in videos. For example, in Figl@a@,  equivalent to temporally link each entitg.¢ “ice”) to the
“oil” mixed with “salt” is later referred as a “mixture” —a  action g.g “freeze water”) that produced it. For example,
linguistic ambiguity due to a referring expression. An onion “mixture” in Figure 1(a) refers to the outcome of the ac-
in Figure1(b) looks very different from its original appear- tion “stir oil and salt”, and “dressing” in Figur&(c) is the
ance before being cut — a visual ambiguity due to a stateoutcome of the action “mix yogurt with black pepper”.
change. Lastly, “yogurt” is later referred to “dressing” and There have been various attempts to address reference
its appearance changes completely as shown in Fifele  and coreference resolution in both language understand-



ing [6, 3], and joint vision and language domains/] 32, theless, our task is more challenging in both the linguistic

, 47]. However, most of the previous works either assume and visual domains due to the drastic change in both visual
that there is enough supervision available at training time appearances and linguistic expression introduced by state
or focus on the image-sentence reference resolution, wherehanges of the entities.

annotations are easier to obtain. Unfortunately, obtaining nstructional Videos. Instructional videos have been used
high-quality reference resolution annotations in videos is jn several contexts in computer vision. The rst is semi-
prohibitively expensive and time-consuming. supervised and weakly supervised learning, where the tran-
Thus, in order to avoid requiring explicitly annotated scription is treated as action label without accurate tempo-
data, we introduce an unsupervised method for referenceg| |ocalization B5, 67). As signi cant progress has been
resolution in instructional videos. Our model jointly learns 3de on classifying temporally trimmed video clips, recent
visual and linguistic models for reference resolution — S0 \ygrks aim to obtain the procedural knowledge from the in-
that it is more robust to different types of ambiguities. In- gtryctional videos?, 3, ]. Our goal of reference resolu-
spired by recent progress in NLPF, 39, we formulate our tjon in instructional videos is a step further as it requires the

goal of reference resolution as a graph optimization task. Inexpjicit expression of what action to act on which entities.
this case, our task of reference resolution is reformulated

as nding the best set of edges (i.e. references) between
nodes (i.e. actions and entities) given observation from both
videos and transcriptions.

We verify our approach using unstructured instructional
videos readily available on YouTub&]. By jointly opti-
mizing on over two thousand YouTube instructional videos
with no reference annotation, our joint visual-linguistic
model improves 9% on both the precision and recall of
reference resolution over the state-of-the-art linguistic-only
model [23]. We further show that resolving reference is
important to aligning unstructured speech transcriptions to ) o _
videos, which are usually not perfectly aligned. For a phrase -€arning from Textual Supervision. Our learned visual
like “Cook it,” our visual-linguistic reference model is able Model needs to observe ne-grained details in a frame based
to infer the correct meaning of the pronoun “it” and improve ©ON textual supervision to improve reference resolution. This
the temporal localization of this sentence. is related to recent progress on aligning and matching tex-

In summary, the main contributions of our work are: (1) tual description with imagel[, 54] or video [3, 9, 42, 56,
introduce the challenging problem of reference resolution ©3]- Another line of work aim to learn visual classi ers
in instructional videos. (2) propose an unsupervised graphPased on only textual supervisio, [/, 11, 4]. Our visual
optimization model using both visual and linguistic cues to Model is trained only with the transcription and is able to
resolve the visual and linguistic reference ambiguities. (3) help reference resolution in instructional videos.
provide a benchmark for the evaluation of reference resolu-Extracting Graph from Image/Video. Our formulation of

Procedural Text Understanding. Our goal of resolving
reference in transcription of instructional videos is related
to the procedure text understanding in the NLP commu-
nity [4, 18, 23, 29, 33, 34, 36]. While most approaches re-
quire supervised data (ground truth graph annotation) dur-
ing training [L8, 29, 34], Kiddon et al. proposed the rst
unsupervised approach for recipes interpretatici. [The
linguistic part of our approach is inspired by their model.
However, as we would show in the experiments, the joint
modeling of language and vision plays an important role to
interpret the noisier transcription in online videos.

tion in instructional videos. reference resolution as graph optimization is related to the
long-standing effort of extracting graphs from image/video.
2. Related Work This includes recent progress in scene graphs 10, 51,
], storylines [, 14, 17, 31, 53], and action understand-

Coreference/Reference Resolution in Vision In addi-

tional to the core task of coreference/reference resolution in
NLP [6, 12, 30], there has been recent attempts to address
these tasks in conjunction with vision. One task related to structions for the robots to executed] 32, 56, 5. It is

our goal of reference resolution in instructional videos is the important to note that our approach is unsupervised while a

recent progress on words to image regions reference resolup, o nart of the graph extraction approaches require graph
tion, where the goal is to spatially localize an object given annotation at the training stage.

a referring expressionlp, 22, 28, 38, 41, 45, 49, 60, 61].
On the other hand, coreference resolution in texts aligned

. ) ) _ 3. Model
with the image/video has been shown to be bene cial to
the task of human naming [], image understanding. ], Our main goal in this paper is resolving references given
and 3D scene understanding/[. The most related to our  an instruction video. Given a video, can we identify all ref-
work is the joint optimization of name assignments to tracks erences from entities to actions? For example, “dressing” is
and mentions in movies of Ramanathetral. [47]. Never- referring to the outcome of the action “mix the yogurt and

ing [10, 44, 55]. Our approach of extracting graph associ-
ating the entities with action outputs is related to works in
robotics where the goal is to transform natural language in-



(c) Transcription (L) time) helps to resolve a complex ambiguity. Under this for-

00:00:05 00:00:16 00:01:12 00:01:20 00:03:30 00:03:40 H - . .
First, mix theyogurt | Next. putthe Finally, addthe mulation, our approach can simply be about learning a like-

andblack pepper | vegetableo the plate| dressingon the top lihood function of araction graphgiven both observations.

Formally, we optimize the following likelihood function:
pred; e €z
. i argmaxP(L;VijG; v; L); 1
as |Add|—| Dre‘ssmdy—| Oon t’he tod gG ( J VL) (1)
\_ -/ whereG, V, andL are the sets of temporally grounded
a, VegetépleH To the platd action graph, videos, and corresponding speech transcrip-
\ tions, respectively.y and | are parameters of visual and
n linguistic models. Under the assumption that observations
1| | Mix|—| Yogurt— Black peppef are conditionally independent given the action graph, it can
i ] be further broken down into
a) Video (V) Z (b) Action Graph (G)
Figure 2. An action graphQ@) is a latent representation of refer- arggwaxP(LJG; LPVIG: v): @

ences in an instructional video. Both visusll)(and linguistic ) ) . o
cues of an instructional video are dependent on an action graphVVe can thus formulate the visual and linguistic models sep-

and they are conditionally independent given an action graph.  arately, while they are still connected via an action graph.

3.2. Temporally Grounded Action Graph (G)
black pepper” (shown in Figur®. Despite its many poten-

tial applications, this task comes with two major challenges. _ i . " .
First of all, videos contain different types of ambiguities. all relevant information related to actions, entities, and their

For example, some entities change their shapes, some ar@ferences: ,(1) aption descriptio;ng addf, dressing,fon th?
referred by different names, or both. Second, obtaining at©P): (2) action time-stamp, and (3) references of entities.

large-scale annotation for references in videos is not trivial. As an example, lets take a ook at Figuith), thg case of
Hence, we propose an unsupervised model for refer_maklng a salad. Each row represents an action, and each

ence resolution. Our model is unique in a way that it (1) edge _fr(_)m an entity to an ac'gion represent_s a r_eference to
learns unsupervisedly, (2) uses both linguistic and visual the origin of the entity. Essentially, our goal is to infer these

cues from instructional videos, and (3) utilizes the history edges ie. rgference resolutlon).. Thlsllateattm.m graph

of actions to resolve more challenging ambiguities. We for- representation connects both Imgwsﬂc a.”d V|sua_l models
mulate our goal of reference resolution as a graph optimiza—as in Eq. ). Also, allits r_efe_re_znce |nf_ormat|on later is used
tion task 9. More speci cally, we use thaction graph to_ resolve cqmplex amb!gumes, which are hard to resolve
(see SectiorB.2) as our latent representation because ourW'thOUt Fhe history of acUons_ and references. _

goal of reference resolution is connecting entities to action 10 this end, we de neaction graphby borrowing the
outputs. An overview of our unsupervised graph optimiza- € nition in [25] with a minor modi cation of fidfj'”g tem-
tion is shown in Figureh. We will rst describe our model ~ Poral information. - An action grapl = (E;A;R) has

and discuss the details of our optimization in Section E = fe g, asetofentity nodese; , A = fa;ga set ofac-
tion nodesa encompassing and grouping the entity nodes

3.1. Model Overview into actions, andR = frj g, a set of edges corresponding
to thereferencesr;; for each entityg; . The details are

Our goal is to design an unsupervised model that canye ned as following (See Figurg(b) for an example):
jointly learn with visual and linguistic cues of instructional

videos. To this end, our model consists ofisual model
handling video, dinguistic model handling transcription,
and anaction graph representation encoding all reference-
related information. Our model is illustrated in Figure

In summary, our task is formulated as a graph optimiza-
tion task — nding the best set of edgase( references) be-
tween nodes (. actions and entities). Essentially,action
graphis a latent representation of actions and their refer-
ences in each video, and observations are made through a
video with its visual {;e. frames) and linguistid.g. instruc- An auxiliary action nodey is introduced for entity node
tions) cues; as illustrated in FiguPe The fact that amction not referring to the outcome of another action. For exam-
graph contains all history information.e. references over  ple, if the raw food entity node; “chicken” is not coming

An action graphis an internal representation containing

a = (pred;[e; ];zi): action node
— pred;: predicate or verb of the action (e.g. put)
-g = (tﬁyn ;153%™ Sjj ): entity nodes of
t;" : its syntactic type (i.eDOBJ or PP)
tj°™ . its semantic type (i.e. food, location, or other)
Sj : its string representation (e.g. [in the bowl])
— z; = (fst;fend): starting and ending times af
rij = o: directional edge or reference from entéy to
its origin action node,.
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Figure 3. (a) We use RNN as the building blocks of our action graph embeddiayis the embedding of actioa (c) shows the action
graph embedding of (b). In (c), the embedding of the word “dressing” is averaged with that of its bfii, to represent the meaning
based on its reference; . This is then used recursively to compiites), the embedding of the nal step.

from another action, thery will connecte; toap. In addi- induce a very different meaning and thus visual appearance

tion, we allow entity node with empty string representation of this action (i.e. adding vegetable on top of yogurt, instead

Sj = [ ]. This can happen when the entityiisplicit in of adding yogurt on top of vegetable). Our usetbf, in-

the transcription. For example, the sentence “Add sugar” stead ofa,, in the visual model catches these ne-grained

implies an implicit entity that we can add the sugar to. differences and helps reference resolution; setting our ap-
In summary, our action graph is a latent structure proach apart from previous joint image-sentence models.

that constraints visual and linguistic outputs through  To computeP (x(jH;,; v), we learn a joint embedding

P(LjG; L) and videoP (VjG; v), and also contains all  space for video frames and action (sub)graphs, inspired by

reference information to resolve ambiguities. The de ni- visual-semantic embedding works/} 54]. In other words,

tion of action graphand its relationships to other models we learn y that can minimize the cosine distances between

are illustrated in Figur@. Our goal of reference resolu- action graph features and visual frame features.

tion is reformulated as optimizing the action graph with the

) U ) Action Graph Embedding. In order to capture the differ-
highest likelihood given by Eq2j.

ent meanings of the action conditioned on its references, we

. propose a recursive de nition of our action graph embed-

3.3. Visual Model ding based on RNN-based sentence embeddif] [Let
Visual modelP (V|G; v) is a model that links an ac- 9() be the function of RNN embedding that takes in a list

tion graph to visual cues.¢. video frames). The motivation  of vectors and output the nal hidden state Our action

of our visual model is that it can help resolving linguistic- graph embeddin§( ) is recursively de ned as:

based ambiguities, and an action graph constrains visual N . _ )

outputs. In other words, our visual model computes a like- fa)=g Wi(pred); W(e)+f(a,) - (4

lihood of an action graph given a set of video frames, where whereW is the standard word embedding functign,[43],

v is the parameters of the model. andrj is the origin ofe; . In other words, compared to the
For a videoV = [x1;:::;X7], wherex; is the image  standard sentence embedding, where the embeddiag of
frame at timet, and its corresponding action gragh we is simplyW (g; ), we enhance it by combining wifh(ay; ),
decompos® (VjG; v) frame by frame as: the embedding of the action it is referring to. This allows
N our action graph embedding to capture the structure of the
P(V|G; v) = P (x¢jH2,) 3) graph and represent different meaning of the entity based

on its reference. An example is shown in Fig@re

Frame Embedding We use a frame embedding function
from the image captioning modelg1, 57]. By transform-

ing the responses of convolutional layers into a vector, it has
been shown to capture the ne-grained detail of the image.

t=1

whereH; = (as.j;rz:i) is the subgraph before actiopand

z: is the action label of frame That meang; = i if frame

t belongs to action. z; = 0 corresponds to the background.
The key novelty of our visual model is the joint formula-

tion of framex; and the corresponding subgralgh, . This

formulation is vital to our success of improving reference

resolution using visual information. Consider the nal ac- Similar to the visual model, our linguistic model

tion “add dressing on the top” in FiguiZb). If we swap P(LjG; L) links an action graph to linguistic observation.

the references of “dressing” and “on the top”, then it will In our case, we use transcrigtsof spoken instructions in

3.4. Linguistic Model
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Figure 4. An overview of our optimization. (a) We rst initialize the graph by just the transcription. We alternate between (b) updating the
graph with visual-linguistic reference resolution, and (c¢) updating the model using visual cues and linguistic statistics in the current graph

videos as our linguistic observation. Then, we know thatan  The rst challenge of optimizing Eq.2 is that both the
action graph will constrain what kind of instructions will be action graphG, and the model parameters, \ are un-
given in the video. Essentially, the linguistic model com- known because we aim to learn reference resolution in an
putes the likelihood of an action graph given transcriptions unsupervised manner without any action graph annotation.

of the instructional video.
We decompose the linguistic model as follow:

P(LJG; 0)= P(L;ZL]AR Z; )
I P(LjA; O)P(AJR; L)P(ZLjZ; L); (5)

whereZ_ is the time-stamps of , andA, R, Z are the
actions, references, and time-stamps of the action g&ph

respectively. We assume the conditional independence o

the time-stamps and thRtis independent of givenA.

Here, P(LjA) parses the action nodes from transcrip-

tions using the Stanford CoreNLP package]|

We thus take a hard EM based approach. Given the cur-
rent model parameters, and |, we estimate the tempo-
rally grounded graph& (Section4.2). Fixing the current
graphsG, we update both the visual and linguistic models
(Section4.3). An overview of our optimization is shown in
Figure4. In the following, we will describe our initializa-

tion, inference, and learning procedures in more details.

f4.1. Graph Initialization

Initially, we have neither an action graggh nor model
parametersy and . Hence, we initialize an action graph

P (AjR) measures the likelihood of the references given G based on a text transcription as the following.

the actions. We adapt the model of Kiddenal. [23] and

A list of actionsA is extracted using Stanford CoreNLP

refer the readers to their paper for details. Briey, the key and the string classi cation modePf]. To simplify our

models we use are:

- Verb Signature Moddb capture the property of the verb.
For example, “add” tend to combine two food entities.

- Part-Composite Modeio represent the probable ingredi-

task, we do not updatd from the initial iteration. This
means all actions we consider are grounded in the transcrip-
tion. A reference of each action is initialized to one of
the entities in its next action. This is proved to be a strong

ents of an entity. For example, the dressing is more likely baseline because of the sequential nature of instructional

to be made up of oil compared to beef.
- Raw Food Modeto determine if an entity is an action
outcome. For example, “ our” is less likely to be an action
outcome compared to “dough.”

We measurd®(Z jZ) independently for each actian
whereP (z,; jz) is de ned as:

if st st i end end ;
LI e R L |

P(zijz)! e (6)

4. Learning & Inference

videos P3]. A temporal locationz of each action is ini-
tialized as the time-stamp of the action in the transcription.

4.2. Action Graph Optimization (E-step)

In this section, we describe our approach to nd the best
set of action graph& given model parameters; and .
This is equivalent to nd the best set of referendesand
temporal groundingZ for actions in eaclt, because the
set of actionsA is xed from initialization. Jointly opti-
mizing these variables is hard, and hence we relax this to

We have discussed how we formulate references in in- nding the bestR andZ alternatively.

structional videos by the latent structure of an action graph.

Our reference optimization is based on a local search

Using this model, our goal of reference resolution is essen-strategy P3]. We exhaustively update the graph with all

tially the optimization for the most likely action graph given
the videos and transcriptions based on B3} (

possible swapping of two references in the current action
graph, and update the graph if a reference swapped graph



of [23]. All models use learning rat6:001. For models
involving both visual and linguistic parts, we always use
equal weights foP (LjG) andP (VjG).

has a higher probability based on E®&).( This process is
repeated until there is no possible update.

To optimize our temporal alignmeit, we compute the
probabilities of actions for each time based on a language
model Eqg. ¢) and a visual model Eq3}. Then, we can use
dynamic programming to nd the optimal assignmenof
to each time based on EQ)(

4.3. Model Update (M-step)

5.1. Evaluating Reference Resolution

Experimental Setup. For evaluation, we rst run our
model unsupervisedly on all the instructional videos in the
dataset. The action and entity nodes here are generated au-
. ] tomatically by the Stanford CoreNLP parsér]. The se-

~ Given the action graphs, we are now ready to update ourmantic types of the entities are obtained using unsupervised
linguistic and visual models. string classi cation P3]. After the optimization is nished,
Linguistic Model Update. We use the statistics of semantic we apply one E-step of the nal model to the evaluation set.
and syntactic types of entities for the verb signature model. In this case, we use the action and entity nodes provided
For part-composite model, we use Sparse Determinant Met-by the annotations to isolate the errors introduced by the
ric Learning (SDML)E6] to learn a metric space where automatic parser and focus on evaluating the reference res-
the average word embedding of origin's food ingredients olution in the evaluation set. We use the standard precision,
is close to that of the current entig; . We use logistic  recall, and F1 score as evaluation metig][

regression to classify if the argument is a raw food.

Visual Model Update Given the temporally grounded ac-
tion graph, for each frame;, we are able to get the corre-
sponding subgraphi,, . With it as the positive example,

we collect the following negative example for our triplet
loss: (1)H;, , which is the perturbed version &f,, . We

Baselines.We compare to the following models:

- Sequential InitializationThis baseline seeks for the near-
est preceding action that is compatible for reference resolu-
tion, which is a standard heuristic in coreference resolution.
This is used as the initial graph for all the other methods.

- Visual/Linguistic Model OnlyWe evaluate in separation
randomly swap the connections iy, to generatd?, as  the contribution of our visual and linguistic model. Our lin-
negative example. (2)i;, wherei 6 z, subgraph corre-  gyistic model is adapted fron?{]. We additionally incor-
sponding to other frames are also negative examples. USi”Eborate word embedding and metric learning to improve its
the positive and negative examples, we are able to Updatﬁberformance in instructional videos.

all our embeddings using backpropagation of tripletloss. . Raw Frame Embedding Similarity (RFES)e want to
know if direct application of frame visual similarity can
help reference resolution. In this baseline, the visual model

Given an entity such as “dressing”, our goal is to infer its P (V]G) is reformulated as:

origin — one of the previous actions. We formulate this as . Y
e X P(VjG)/

a graph optimization problem, where the goal is to recover
the most likely references from entities to actions given the
observations from transcriptions and videos. We perform wheres( ; ) is the cosine similarity between the frame em-
the optimizatiorunsupervisedlyvith no reference supervi-  beddings given byZ1] and A is the set of all the action
sion. In addition to our main task of reference resolution, pairs that are connected by reference&irin other words,
we show that referencing is bene cial to the alignment be- RFES model evaluates the likelihood of a graph by the total
tween videos and transcriptions. visual similarities of frames connected by the references.

Dataset. We use the subset 0f2000 videos with user up- - Frame Embedding Similarity (FES)Ve extend RFES to
loaded caption from the WhatsCookin datas&f for our FES by optimizings( ; ) during the M-step to maximize
unsupervised learning. Because there is no previous datasdhe probability of the current graphs. In this case, FES is
with reference resolution, we annotate reference resolutiontrained to help reference resolution based on frame-to-frame

5. Experiments

Y
S(X¢;X );
(i )2A zi=iz =j

@)

labels on this subset for evaluation. We #smeans clus-
tering on the captions to sele¢d videos, and annotate ac-
tion nodesA, their temporal locationg , and referenceR.
This results inl135actions, more than two thousand enti-
ties and their references. Note that this annotation is just for
evaluation, and we doot use this annotation for training.

Implementation Details. Our visual embedding is initial-
ized by the image captioning model ¢fl]. Our linguis-
tic model is initialized by the recipe interpretation model

similarity. We compare to this baseline to understand if our
model really captures ne-grained details of the image be-
yond frame to frame visual similarity.

- Visual+Linguistic w/o AlignmentOur unsupervised ap-
proach faces the challenge of misaligned transcriptions and
videos. We evaluate the effect of our updateZoto the
reference resolution task.

Results. The results are shown in Table By sequential
initialization, we already have a reasonable performance be-
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For both videos, it fails to resolve long range references. Now, adding the visual information (the 2nd row), our model can resolve longer
range references. For example, in the left video, our model can correctly infer the third step is cutting peach (output two steps ahead) using
the visual cue. Finally, we show the effect of having alignment in the process of visual-linguistic reference resolution (the 3rd row). For
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| Methods | P ] R [ F1L |
Sequential InitializaFion 0.483 | 0.478 | 0.480 act]] | actq |
Random Perturbation 0.399 0.386 0.397 Sequential Initialization With Linguistic Model

Our Visual Model Only 0.294 | 0.292 | 0.293 Figure 6. Qualitative results of the linguistic modgl] stands for
Our Linguistic Model Only p3] | 0.621 | 0.615 | 0.618 the implicit entity. On the left, the sequential baseline reference
RFES + Linguistic w/o Align 0.424 | 0.422 | 0.423 “cream” as the previous action outcome without understanding
FES + Linguistic w/o Align 0.547 | 0.543 | 0.545 that it is a raw ingredient. On the other hand, our linguistic model
Our Visual + Linguistic w/o Align| 0.691| 0.686| 0.688 understands (1) cream is raw ingredient, and further (2) “add” is
Our Visual + Linguistic (Our Full)| 0.710 | 0.704 | 0.707 usually used to combine food entities, and thus is able to infer the

reference of the implicit entity correctly.
Table 1. Reference resolution results. Our nal model signi cantly
outperforms the linguistic only model. Note that using vision to
help reference resolution is non-trivial. Directly adding frame sim- solving references including common pronoun such as “it”,
ilarity based visual models is not improving the performance. or guring out some of the words like “ our” is more likely

to be raw ingredients and is not referring back to previous

action outcomes. Qualitative comparison of the linguistic
cause of the sequential nature of instruction. This is ver- model is shown in Figuré.
i ed by the fact that if we perform random perturbation Importance of our action graph embedding. Direct ap-
to this graph (maximum 10 edge swaps in this case), theplication of initial frame-level model RFES to the linguistic
reference resolution performance actually goes down sig-model, however, cannot improve the reference resolution.
ni cantly. Optimizing using just the visual model for this  This is due to the visual appearance changes caused by the
problem, however, is not effective. Without proper regu- state changes of the entities. The extension of FES improves
larization provided by the transcription, the visual model is the performance by 10% compared to RFES since FES op-
unable to be trained to make reasonable reference resolutimizes the frame similarity function to help reference reso-
tion. On the other hand, by using only our linguistic model, lution. Nevertheless, it is still unable to improve the perfor-
the performance improves over sequential baseline by re-mance of the linguistic model because whole-frame simi-
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