Due Tuesday 10/25/22 (9am; on DEN Webpage)

1. Compute A^{t} and $\mathrm{e}^{A t}$ for the matrices

$$
A_{1}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right], \quad A_{3}=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

2. For the system

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{rrr}
-2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right] u \\
y & =\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+u
\end{aligned}
$$

a) Determine stability properties.
b) Determine the transfer function.
3. For the nonlinear system

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}^{2}+x_{1} x_{2} \\
& \dot{x}_{2}=-2 x_{2}^{2}+x_{2}-x_{1} x_{2}+2
\end{aligned}
$$

(a) Show that $\bar{x}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ is an equilibrium point.
(b) Is \bar{x} the only equilibrium point?
(c) Linearize this system around $\bar{x}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and find the resolvent and the state-transition matrix of the resulting linearized system.
(d) What can you say about the stability properties of $\bar{x}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ for the original nonlinear system based on linearization?
4. Consider the following nonlinear system

$$
\begin{aligned}
\dot{x}_{1} & =-\frac{x_{2}}{1+x_{1}^{2}}-2 x_{1} \\
\dot{x}_{2} & =\frac{x_{1}}{1+x_{1}^{2}}
\end{aligned}
$$

(a) Show that the origin is an equilibrium point.
(b) Linearize the nonlinear system around the equilibrium point.
(c) Obtain a suitable Lyapunov function for the linearized system by solving the Lyapunov equation

$$
A^{T} P+P A=-Q
$$

where

$$
Q=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

