Due Tuesday 11/22/22 (9am; on DEN Webpage)

1. Consider the system parameterized by the scalars k and R

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x_{2}}
\end{array}\right] } & =\left[\begin{array}{cc}
-\left(1+k^{2}\right) / R & 0 \\
k & -\left(2+k^{2}\right) / R
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u \\
y & =x_{2} .
\end{aligned}
$$

(a) For what values of k and R is this system stable?
(b) Derive the formula for the H_{2} norm of this system as a function of k and R. Using this formula, plot the H_{2} norm as a function of k for $R=1$ and $R=1000$, and as a function of R for $k=2$.
(c) Find the solution of the unforced system (i.e. determine operator $G(t)$ that maps initial conditions to the output $\left.y(t), y(t)=G(t) x_{0}\right)$.
(d) Plot the maximal singular value of $G(t)$ as a function of time (on time interval $t \in(0,1000)$) for two different cases: a) $R=1000, k=0 ; \mathrm{b}) R=1000, k=2$. How do these two cases compare to each other. Explain the obtained results.
2. Write a Matlab program to compute the H_{∞} norm of a SISO transfer function using the grid (in frequency) method. Test your program on the function

$$
H(s)=\frac{1}{s^{2}+10^{-6} s+1}
$$

and compare your answer to the exact solution (computed by hand using the definition of the H_{∞} norm).
3. Consider the following pair of matrices

$$
A=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right], \quad B=\left[\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3}
\end{array}\right]
$$

(a) Suppose λ_{1}, λ_{2}, and λ_{3} are distinct, what are the conditions on γ_{1}, γ_{2}, and γ_{3} for the pair (A, B) to be controllable?
(b) For a discrete-time system with the above given matrices A and $B,\left\{\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3\right\}$, and $\gamma_{1}=\gamma_{2}=\gamma_{3}=1$, plot the energy (as a function of time for $k \geq 3$) of the minimum energy control necessary to reach the final state $x_{f}=\left[\begin{array}{ccc}1 & 2 & 3\end{array}\right]^{T}$. Comment your results.
(c) Suppose λ_{1}, λ_{2}, and λ_{3} are not necessarily distinct, how does the above condition change?
(d) Generalize the results that you obtained for the above two cases to the pair (A, B) where

$$
A=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right], \quad B=\left[\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\vdots \\
\gamma_{n}
\end{array}\right]
$$

4. Consider the following matrices

$$
\begin{array}{ll}
A_{1} & =\left[\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 1 \\
0 & 0 & \lambda_{1}
\end{array}\right], \quad B_{1}=\left[\begin{array}{l}
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3}
\end{array}\right], \\
A_{2}=\left[\begin{array}{ccc}
\lambda_{2} & 1 & 0 \\
0 & \lambda_{2} & 1 \\
0 & 0 & \lambda_{2}
\end{array}\right], \quad B_{2}=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right] .
\end{array}
$$

(a) What are the conditions on γ_{1}, γ_{2} and γ_{3} for the pair $\left(A_{1}, B_{1}\right)$ to be reachable?
(b) Using the matrices A_{1}, A_{2}, B_{1} and B_{2} we can construct the following pair of matrices

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right], \quad B=\left[\begin{array}{c}
B_{1} \\
B_{2}
\end{array}\right] .
$$

i. Suppose λ_{1} and λ_{2} are distinct, what are the conditions on $\gamma_{1}, \gamma_{2}, \gamma_{3}, \beta_{1}, \beta_{2}$, and β_{3} for the pair (A, B) to be reachable?
ii. Suppose $\lambda_{1}=\lambda_{2}$, what are the conditions on $\gamma_{1}, \gamma_{2}, \gamma_{3}, \beta_{1}, \beta_{2}$, and β_{3} for the pair (A, B) to be reachable?

