\qquad
\qquad

Lecture 2
Last time:

- Class logistics
- Staite-space Models: $\frac{d x}{d t}=f(x, 4)$
- Examples: Pendulum; logistic equation To day:
- Equilitricem points
- Linearitation
- Flows of first order (scalen) system $x \mid(t) \in \mathbb{R}$

Musoradin noulinger syrtem (no inplet) t : time

$$
\left.\begin{array}{ll}
\left(n_{0} \text { inper } ;\right. & t: \text { time } \\
\frac{d x}{d t}=f(x) ; & \left.x(t) \in \mathbb{R}^{n} ; x \mid t\right)=\left[\begin{array}{c}
\left.x_{1}, t\right) \\
\vdots \\
x_{2}(t)
\end{array}\right] \\
x(\pi) \in \mathbb{R} \\
& x \cdot\left(n^{n}\right.
\end{array}\right]
$$

monlinear function

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

IF Hote: extends to matrices

$$
\begin{equation*}
\bar{x}=F(x) ; \quad x \in 12^{m \times n} \tag{11}
\end{equation*}
$$

Eq. f^{2} bints: coustart trajectories i.e. solutions to $\#$ that do NoT change witts time
$x(t)=\bar{x}=$ cost. for all t

$$
\text { Es. points } \quad(\text { for } x=f(x))
$$

$x\left(t_{0}\right)=\bar{x} \Rightarrow x(t)=\bar{x}$ for μt
In particular $\frac{d \bar{x}}{0, t} \equiv 0 \stackrel{F}{\square}$

$$
\frac{d \bar{x}}{d t}=0=f(\bar{x}) \Rightarrow
$$

We can determine Ez. Point by solving nontinew vEnation

$$
f(\bar{x}\rangle=0
$$

Ex: Logistic Equation

$$
\begin{aligned}
\dot{x}=\alpha\left(1-\frac{x}{k}\right) x ; & x \mid t) \in I R+ \\
f(x) \quad & \alpha, k>0 \text { (constant } \\
& \text { parameters) }
\end{aligned}
$$

Es. poi cuts: f(x)=0

Q: What happers it x to $) f \frac{x_{1}}{x_{2}}$ ov
If we had a linear model

$$
\begin{aligned}
& \dot{x}=\alpha x \Rightarrow \bar{x}=0 \\
&x \mid t)=e^{\alpha t} x\left(t_{0}\right) \stackrel{\alpha>0}{\Longrightarrow} x(t) \\
& \lim _{t \rightarrow \infty} x(t)=\infty \\
&
\end{aligned}
$$

in noulineur model, there is another ex. poiwt that isflueces dynamical properties of oyr syotem (depouduce of dole tinus or tice (5)

Usesurk trol (for scalber systems) plat of $f(x)$ U.S. x

$$
\begin{aligned}
& \left.\left.\hat{x}=f(x)=\alpha\left(1-\frac{x}{k}\right) x=\alpha \right\rvert\, x-\frac{x^{2}}{k}\right)
\end{aligned}
$$

Based on eris:
qualitatively we stroueld have:

Nate: We have derived these conclusions without solving differential $e \varepsilon$. Weill sovmalite this approach is the course

Quantitative rualydis ne cessavy to figure out vate of conupwigence; agpin, wellel do tris withoyt explicitly solviug ODEs.
CLiapunov-herded aualyois: tatev iu couvde
Linesrization: tool for local akalysis avound cevtain tragectory (does Not have to be an er. Point). ("lise in small") Given $\dot{x}=f(x)$ and salution 01 \bar{x} [car he tike depordent] decompose $x(t)$ as:

$$
\begin{align*}
& x(t)=\bar{x}(t)+\partial^{2}(t) \tag{}\\
& \text { ginpu trajerthry } \longrightarrow \text { Pevtarhation; } \\
& \text { ginpu trajectivy fluctuztiod } \\
& \text { (e.g. er point) deviation } \\
& \text { (avound } \overline{\partial c} \text {) }
\end{align*}
$$

Surestitute (1) to \oplus

$$
\begin{aligned}
& \dot{x}(t)=\dot{\tilde{x}}(t)+\dot{x}(t) \stackrel{\oplus}{=} f(\bar{x}+\tilde{x}) \Rightarrow \\
& \dot{\tilde{x}}(t)=f(\bar{x}+\tilde{x})-\dot{\bar{x}}(t) \\
& \quad f(\bar{x}) \Rightarrow
\end{aligned}
$$

Equation for $x^{2}(t)$ sives log (9)

Fl>ctration Dyuanics:

$$
\frac{d \tilde{x}}{d t}=f(\bar{x}+\tilde{x})-f(\bar{x})
$$

Ez. for \tilde{x} in which \bar{x} is ε copfficient
Note: and is \Leftrightarrow to *

- \# holds glohally ifi.e.tor $\tilde{x})(-) \in \| 2^{4}$ (Ito spovoximation made yet)
- If $\bar{x}=\bar{x}(t)$ (her * if is time-Varying euen if ovigiaz syobem was tine-izvaviant
- It \bar{x} is an eq. point tren F is time invariment if $\bar{x}=f(x)$ is time iqvaviaut
[Mecall:

$$
\begin{array}{ll}
\dot{x}=f(x): T 1 & \left.\dot{x}=\alpha(1)-\frac{x}{k}\right) x \\
\dot{x}=f(x, t): T Y & \dot{x}=\alpha(t)\left(1-\frac{x}{k}\right) x
\end{array}
$$

It We use Taylor sevies expansion of f aumand $\frac{x}{x}$, te bave O($\left.\left.(\sqrt{x})\right|^{2}\right)$

$$
\begin{aligned}
& f(\bar{x}+\tilde{x})=f(\bar{x})+\left.\frac{\partial f}{\partial x}\right|_{x=\bar{x}} \cdot \tilde{x}+H \cdot 0 \cdot T \\
& f(\bar{x}+\tilde{x})-\left.f(\bar{x}) \approx \frac{\partial f}{\partial x}\right|_{x=\bar{x}} \cdot \tilde{x}
\end{aligned}
$$

Thus, lineavization avorud \bar{x}

$$
\dot{\tilde{x}}=\left.\frac{\partial f}{\partial x}\right|_{x=\pi} \cdot \tilde{x}
$$

Olytined lo ueshecting H.O.T.
Holds for cuhittan $z^{i u}$ solytion $\bar{\partial}(t)$ of $\dot{u}=f(x)$: does Not rave to he an eq poitet
Ex: Loyistic Eq.

$$
\begin{aligned}
& \left.f(x)=\alpha \left\lvert\, 1-\frac{x}{k}\right.\right) x=\alpha\left(x-\frac{x^{2}}{k}\right) \\
& \frac{\partial f}{\partial x}=\left.\alpha\left(1-\frac{2 x}{k}\right) \Rightarrow \frac{\partial f}{\partial x}\right|_{x=\pi}=\alpha\left(1-\frac{2 \bar{x}}{\frac{x}{(2)}}\right.
\end{aligned}
$$

Clesuly, Dacokeinn deppends on \bar{x} lu particular for $\bar{x}_{1}=0$ \& $\bar{x}_{2}=k$ we have:

$$
\begin{align*}
& A_{1}=\left.\frac{\partial f}{\partial x}\right|_{x=5,=0}=\alpha \cdot\left(1-\frac{2 \cdot 0}{k}\right)=\alpha>0 \\
& A_{2}=\frac{\partial f}{\partial \sqrt{x}} \int_{x=k}=\alpha \cdot\left(1-\frac{2 \cdot k}{k}\right)=-\alpha<0 \\
& \dot{\tilde{x}}=\left\{\begin{array}{ccc}
\alpha \tilde{x} & \text { around } & \bar{x}_{1}=0 \\
-\alpha \tilde{x} & \text { arount } & \bar{x}_{2}=k
\end{array}\right. \\
& x(t)=\left\{\begin{array}{l}
e^{\alpha t} x_{2}(0) \text { around } \bar{x}_{1}=0 \\
\left.e^{-\alpha t} x^{2} \mid \theta\right) \text { aroued } \bar{x}_{2}=k
\end{array}\right. \tag{13}
\end{align*}
$$

Trins, sucall peutavhations avound $\bar{x}_{1}=0$ wue going to grow $\left[\overline{\alpha_{1}}=0\right.$ is suotalde $]$ Whereas suall Rertuvhotions around $\overline{\partial r}_{2}=k$ ave going to decay $\left[\overline{i_{x}}=x\right.$ is locally asympto tically stahele]
Later, weld pnove thert stahility of linpurization anound eq. point OC Juavantes local asymptot'c sta hility of \bar{x} for roulizese sybtem.

Ex: a) $\left.\dot{x}=-x^{3}\right\}$
\Rightarrow
$\bar{x}=0$ is the whizup eq.

$$
\begin{aligned}
& \left|\frac{\partial f}{\partial x}\right|_{\bar{x}=0}=\bar{j} \mp 3 \bar{x}^{2}=0 \\
& \text { point } \\
& \Rightarrow \quad \dot{\tilde{x}}=0 \cdot \tilde{x} \Rightarrow \\
& \tilde{x}) t \mid=x\left(t_{0}\right)=\operatorname{corst} \\
& \text { a) } \\
& \text { b) }
\end{aligned}
$$

glabelly a Jyu/toticaldy VHSTABCE stalle
Hote: Lineurization CAMNJT bee reed $t \rightarrow$ devive these couclurous [welM formalize tris]

Hote: For ot a zustems

$$
\begin{array}{cl}
x^{+}=f(x) ; & x^{+}=x(t+1)=f(x(t)) \\
& t=0,1,2, \ldots
\end{array}
$$

Eq. poixts
$\bar{x}=f(\bar{x})$$\left[\begin{array}{l}\text { E.g inplicit } N N: \\ \bar{x}=\Phi(A x+b)\end{array}\right]$
Fluctzoution D ynamics

$$
\begin{aligned}
& \bar{x}^{+}+\tilde{x}^{+}=f(\bar{x}+\tilde{x}) \\
& \tilde{x}^{+}=f(\bar{x}+\tilde{x})-f(\bar{x})
\end{aligned}
$$

$\left.\left.E_{x}: \quad \dot{x}=\sin (x) ; x \mid t\right) \in\right)^{2}$

$$
\sin (\bar{x})=0 \Rightarrow \bar{x}=k \bar{x} ; k=0, \pm 1, \pm 2,
$$

Exprcise: Plot $x \mid t)$ V.s. t (apt insight from visueliziny $\sin (x) \cup \gg x)$
Limurize अorsd $\bar{x}=\kappa \sqrt{x}$

