\qquad
\qquad

Lectuve 13

- Existence \& Unizreness of solutions to $\dot{x}=f \mid x, t$) (Well-posedness)
IF Linear aljelera (static case)
$A x=l e . .(L A) ; x \in \mathbb{R}^{n} ; A \in \mathbb{R}^{m \times n}$
a) Existence: theve is (s) solution to (LA)

If $l \in \underset{\text { Range }(A)}{ } \rightarrow$ column span of $A \Rightarrow$
\Rightarrow there is an x trat satissios (L_{A})
e) Unisnoupss: $\operatorname{Nu}_{\mu} \mu|A\rangle=\{D\rangle \in \mathbb{R}^{n}$

If $W_{u l l}\{A\rangle \neq\{0\} \Rightarrow$ any $\tilde{x} \in \mathbb{N} u \mu|A|$ can he used ta obtain another dotation i.e. if $A \bar{x}=l \Rightarrow A(\bar{x}+\tilde{x})=l e$
\bar{x} is asoretion to $(\mathbb{L} A) \Rightarrow$ so is $\bar{x}+\tilde{x} \quad 11$ Fact $(E E 585): x=A(t) x ; f(x, t)=A(t) x$ it each element r of the matrix $A|t|$ is a $a_{i j \mid t)}$
piecewise cts function of time \Rightarrow $x^{c}=A(t) x$ has a unizue solution $\left[\begin{array}{c}x=A(t) x \\ \left.\left.\text { starting } Q^{2} \partial\left(1 t_{0}\right)=x_{0} \text { for any } t \geqslant t_{0}\right)\right]\end{array}\right.$ $x(t)=\Phi\left(t, t_{0}\right) x\left(t_{0}\right) ; \frac{\partial \Phi\left(t_{1}, t_{0}\right)}{\partial t}=A(t) \Phi\left(t, t_{0}\right)$ $\stackrel{ }{a_{i j}|t|} 几 t$ $\Phi \mid t_{0}\left(\epsilon_{0}\right)=I$

Goal: Identity the class of tunctions fla,t) for which there is a colution to

$$
\dot{x}=f(x, t)
$$

and this solution is uniane on somp tine istevval $\left[t_{0}, t_{f}\right)$
(*): Ist ovalpu (in time) nonlineav OBE
t : time $\left(t \geqslant t_{0}\right)$

$$
\begin{aligned}
& \left.x: \text { state }[x \mid t) \in \mathbb{R}^{4}\right] \\
& f(x, t) \text { noulinarv sunction of or } d t \\
& f: \mathbb{R}^{3} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}
\end{aligned}
$$

Weill assume that f is a piecewise cts function of time [as in the liner case] Q: Is it enough to consider class of functions of that are cts w.r.t. x ?
Fact 1: A: Yes, for existerie
No, for ruizupuess

$$
x(0)=0 \Rightarrow \frac{x(t)=0}{i s ~ s s o l u t i o n}
$$

BUT, the ne is another volution that starts
$e^{x}(0)=0$!!!

$$
\begin{aligned}
& x(t)=\left(\frac{2 t}{3}\right)^{\frac{3}{2}} \Rightarrow x(0)=0 \\
& x=\frac{3}{2}\left[\frac{2 t}{3}\right)^{\frac{3}{2}-1} \cdot \frac{2}{3}=\left(\frac{2 t}{3}\right)^{\frac{1}{2}}=x^{\frac{1}{3}} \Rightarrow
\end{aligned}
$$

$x \mid t)=\left(\frac{2 t}{3}\right)^{\frac{3}{2}}$ satisfies $\dot{x}=x^{\frac{1}{3}} \quad$ wits
So does $x(t)=0$!!!
Note: $f(x)=x^{\frac{1}{3}}$ is NOT cts diftluke

$$
\frac{d f}{d x^{\prime}}=\frac{1}{3} \cdot x^{-\frac{2}{3}}=\frac{1}{3 \cdot \sqrt[3]{x^{2}}} \xrightarrow{x \rightarrow Q}+\infty
$$

$c^{0} c^{0}$: a class of $c t s$ friction
c^{\prime} : a class of difflele functions with cts first devivative (cts distrle)
Lipschitz continuity $(L-c t s)$
A function f is L-cts if $x, y \in \mathbb{R}^{4}$

$$
\begin{equation*}
\|f(x)-f|y|\| \leq \frac{L \cdot\|x-y\|}{c_{i p s c h} \text { it }} \tag{kc}
\end{equation*}
$$

$f \in \mathbb{R}^{4}$

Glohal L-cts: If there is $L>0$ st (LC) holds for all or, $y \in \mathbb{R}^{r}$
[too stang]

$$
\begin{aligned}
& E_{x}: f(x)=x^{2} \\
& \left.\int x^{2}-y^{2}\right)=|p(-y)(x+y)| \leqslant \underbrace{\mid x+y)}_{\cup x, y)}|x-y|
\end{aligned}
$$

Theve is Ho unitovon leqet ol L lor, y) (i.e. Here is $N o L>0$ S.t. ($L \subset$) Eolds for all $x, y \in \|_{2}$)

$$
\begin{aligned}
& E x: f(x)=x^{3} \\
& \left|x^{3}-y^{3}\right| \leq\left|x^{2}+x y+y^{2}\right| \cdot|x-y|
\end{aligned}
$$

MoT glopally $L-c+5$ Good nows: BoTH functions ane
CocALCY L-CtS (All we need)

Local L-cts: If theve is $L>0$ s.t. (LC) holdy for aM $x, y \in\left(B_{\delta}(\bar{z})\right.$
$\mid B_{\delta}(\bar{z}):=\left\{z \in \mathbb{R}^{n}\right.$ s.t. $\left.\|z-\bar{z}\| \leq \delta\right\rangle$
Hote: Roth $f(x)=x^{2}$ \& $f(x)=x^{3}$ ave Locally L-cts!!!
Fact 2: If f(rx, t) is Locally L-cts w.v.t x then we have existance \& Yuinseress of solutions or a firite time isterval $\left[t_{0}, t_{f}\right.$,
Fact 3 : \qquad
\qquad Gloßally L-cts W.L.t. x $04[t 0,+\infty)$

Farts 283: Theovems trat puovode surficient corditions fov existence d uniqueress of sotrtions to $\dot{x}=f(x, t)$
IF Along with piecewise corkinuoty of f w.v.t time t,
Fact 4: Any cts difflle fanction fior) is Locally $(-c t s$.
Ex: $f(x)=x^{p} ; p \geqslant 1$ d) $\frac{p}{d \lambda}=p \cdot x^{p-1}$ Locally
$E_{x}: f(x)=\sin \left(p_{1}\right) \Rightarrow \frac{d f}{d x}=\cos (x)$
glokaly $L-c t s \quad$ NOT cts dofflle

$$
E_{x}: f(x)=x^{p} ; p \in(0,1) \Leftrightarrow x=0 \text { (s) }
$$

For 4 funtion to s_{p} gloleally $L-t_{y}$ 1 surficuent condition is guiform boondeduess of $\left.\int \left\lvert\, \frac{\partial f}{\partial x}\right. \|\right)$.
If there is $L>0$ s.t. $\int \frac{\partial f}{\partial x} \|<L$ dor all $x \in \mathbb{R}^{4} \Rightarrow f$ is GLomACLy L-cts

Glo3ally L-cts gut not difflde

$$
x= \pm 1
$$

$$
z
$$

Coutiunous deppudence on l.C.'s \& pancometirs
Assume existerce \& ruirseress of sotations to $\dot{x}=f(x) ; x(0)=x_{0}$ ou $\left[0, t_{f}\right)$ for some $t f$.
Q: Cau we gusvautee coutimuity W.v.t to lic, on somes time interval?

$$
\begin{aligned}
& c^{0} \quad 2-L-c t s \text { tunctions } \\
& c^{\prime} \subset y \subset c^{0} \\
& \text { cts dijalle }
\end{aligned}
$$

Even is linesu case, to much to exoect coztimuity w.r.t).C. for $[0, \infty)$

Given $\zeta>0, \exists \delta \gg$ s.t.

$$
\begin{aligned}
& \forall x \cdot \in\left\{\begin{array}{lll}
x \in \mathbb{R}^{n} & \text { s.t. } \left.\left.\left\|x-y_{0}\right\|\right)<\delta\right)=\| \xi_{\delta}\left(y_{1}\right)
\end{array}\right. \\
& \left.i_{0}^{0} \phi\left(x_{0}\right) t\right) \text { is aunizue solativy } \\
& L^{0} \| \phi\left(x_{0}, t\right)-\phi\left(\partial_{0}, t\right)| |<\sum \\
& \begin{array}{l}
\text { alt) } \operatorname{star} \text { al } \\
\text { starting } Q x(10)=x_{0}
\end{array}
\end{aligned}
$$

Good news: contiruity w.u.t Iss or some finite time ittevualucomes ($0, t_{f}$) sor free from exjjterce \& cuiknengs of sotutioys?

