\qquad
\qquad

Lecture 15

$$
03 / 08 / 23
$$

Toolay:

- Use of stakility definitions (examples)
- Lyapunou-leased method for stalulity qualysis
$E_{x}: \dot{x}=x(x-1) \Rightarrow 2$ es, poicts

We can use stahility defiwition to dinectly bech stakeility
t properties of es. points is siturationg wheer we can deternice solution to $a^{c}=f(x)$.
In (ris exumble, $\bar{x}=1$ is unstable $\bar{x}=0: \operatorname{LAS} \int \frac{\text { locclly asyndp to tically }}{\text { stall }}$ stalle
Ex: Harmoric oscillator

$$
\left[\begin{array}{l}
\dot{x}, \tag{5}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ll}
x_{1} \\
x_{2}
\end{array}\right] ; \quad \begin{aligned}
& \dot{y}+y=0 \\
& x_{2}=y ; x_{2}=\bar{y}
\end{aligned}
$$

$\bar{x}=0$; stakle hef uot asyartotically stable.

$$
(x, t) \xrightarrow{t \rightarrow \infty}
$$

For limear sjutems,
$\left.\lim _{t \rightarrow \infty}| | x|t|\right) \mid=0 \Rightarrow \bar{x}=0$ is stakel es. poist.
In noulimear case, attractiveness of $\bar{x}=0$ (i.e., $\left.\lim _{t \rightarrow \infty}\|x(t)\|=0\right)$ DOES HOT imply starillty of $\bar{x}=0$.

Ex: Homochicis ovhit

$\bar{x}=0$ is not stahle hut $\left.\left.\lim \int\right)(1+)\right) \mid=0$ $t \rightarrow \infty$

See k halrl fou de twils
Hote on novens: J-ll in stakility detimitarn us any p-novm; $\beta \geqslant 1$

Lyapunov-hased method tor stahility of ea. Roirts of $\dot{x}=f j x)$
Motivating exanyle (rendelnan)

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-a \sin x-l x_{2}
\end{array}\right] \begin{array}{l}
\dot{y} \\
x_{1}=\theta \\
x_{2}=\dot{\theta}
\end{array}} \\
& \ddot{\theta}+b \cdot \dot{\theta}+a \cdot \sin \theta=0
\end{aligned}
$$

Er. points: $\bar{x}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]_{0,1 "}$ on $\left[\begin{array}{c}\pi \\ 0\end{array}\right]$
Heither eq. point CAN he GAS (hepramde of the ekistezco of) arother er. Pojut !!!

Energy:

$$
\begin{aligned}
& E\left(x_{1}, x_{2}\right)=\underbrace{c_{1} \cdot \int_{0}^{x_{1}} \sin \xi d \xi}_{\text {potential }}+\underbrace{c_{2} \cdot \frac{1}{2} x_{2}^{2}}_{\text {kinetic }} \\
& \left.c_{1}(1)-\cos x_{1}\right) \\
& \left.E \mid x_{1}, x_{2}\right)>0 \text { or dinmaik } D \text { avoreed } \\
& \overbrace{}^{\sin x_{1}}, x, \text { the oricis } x,>0, x, \in(-\pi, \pi)
\end{aligned}
$$

Olejactive: Stredy $\frac{0) E}{d t}$ alouy solutinus to $\dot{x}=f(x)$.

$$
\begin{aligned}
& \left.E(t)=E\left(x_{1}(t), x_{2} \mid t\right)\right) \\
& \frac{\partial E}{\partial t}=[\nabla E]^{\top} \cdot \frac{\partial x}{\partial) f}=\underbrace{\left[\begin{array}{ll}
\frac{\partial E}{\partial x_{1}} & \frac{\partial E}{\partial x_{2}}
\end{array}\right]}_{[\nabla E]^{\top}} \cdot\left[\begin{array}{c}
\bar{x}_{1} \\
\dot{x}_{2}
\end{array}\right] \\
& =\left[\frac{\partial E}{\partial x_{1}} \frac{\partial E}{\partial x_{2}}\right] \cdot\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]=f_{1} \frac{\partial E}{\partial x_{1}}+f_{2} \frac{\partial E}{\partial x_{2}} \\
& \left.=\sum_{i=1}^{2} f_{i} \mid x_{1}, x_{2}\right) \cdot \frac{\partial E\left(x_{1}, x_{2}\right)}{\partial x_{i}} \text { Holds for } \begin{array}{l}
\text { Hor } \\
\text { ord } 2 \text { did }
\end{array} \\
& \overline{\partial E}=C_{1} \cdot \sin x_{1} ; \frac{\partial E}{\partial x_{2}}=C_{2} \cdot x_{2} \\
& f_{1}=x_{2} \quad ; f_{2}=-\sin x_{1}-l_{2} x_{2} 7
\end{aligned}
$$

$$
\begin{align*}
\frac{0) E}{0) t} & =c_{1} \cdot x_{2} \cdot \sin x_{1}-c_{2} x_{2}\left[a_{1-14} x_{1}+b_{2} x_{2}\right] \\
& =\left[c_{1}-c_{2} \cdot a\right] \cdot x_{2} \sin x_{1}-c_{2} \cdot b_{1} \cdot x_{2}^{2}
\end{align*}
$$

sign-indefinite
(i.e. can he hoth kositive negative) and negative avound
The hest we can do: choose c_{1}, aud c_{2} to caucel it.
E.g. $\tau_{2}=1 ; c_{1}=9$ wovks!!!
with thi craice $\Rightarrow \frac{d E}{d t}=-l_{l}-x_{2}^{2} \leqslant O_{(8)}$

Hote: $\frac{d E}{d t}=0 \cdot x_{1}^{2}-l \cdot x_{2}^{2} \leqslant 0$ on D $x_{1} \neq 0$ and $x_{2}=0 \Rightarrow \frac{d E}{d t}=0$
$\Rightarrow E(t)$ is a non-incuesing furction of time.
Allows us to concheol stakility (in the seruse of Lyspinot) of $\bar{x}=0$. (rut not local ssynptatic stahoility): furfler aralyis or ditfterent iroice if eneugy like function veacived.

If $l_{0}=0 \Rightarrow$ us vijeoss damping

$$
\left.\left.\left.\frac{0) E}{d t} \equiv 0 \Rightarrow E \right\rvert\, t\right)=E \mid t_{0}\right)=\operatorname{coses} t
$$

couservative system [Energy doeskot increase or decupase alorg the dola fions] (Same as harnonic oscilator).

$$
\begin{aligned}
& \text { lineqvi tatron of perdialum } \\
& \text { with le =0 Gvorsd } \bar{x}=0 .
\end{aligned}
$$

Lyainnysu-hased metrod Lov stakilts qualysior of es.paists geueralizes the a hove argumest to a lanoder class of energy-lide fuuctions tor $x^{x}=f(x)$.
$E x: \dot{x}=f(x)$ with $x \mid t) \in \mathbb{R}$

- represents au initial conditions Want to figure out if I incuesses;
decreases or stags cosecant along the sole tines of $x=f(x)$

$$
\begin{aligned}
& E_{x}: \quad \dot{x}=x(x-1) \\
& V(\mid x)=\frac{1}{2} x^{2}(V / 10)=0 ; /(x)>0 \\
& \text { fou all } x \neq 0 \text {) } \\
& V=\frac{\partial r}{\partial x} \cdot \dot{x}=x \cdot x(x-1)= \\
& =-(1-x) x^{2} \\
& f, x) \text { want it } 3 \\
& \text { to ke>0 for } x \neq 0
\end{aligned}
$$

For $a<1 \Rightarrow \frac{0) V}{b) t}<0$ for $\frac{d V}{d t}=0$ For $x=0[$ is $\quad x \neq 0$

MMatration is $R^{2} \quad V /\left(x_{1}, x_{2}\right)$

The: Let D he an open connected surat of $1 R^{n}$ that contains the er. point $\frac{f}{x}=0$ of $\left.\dot{x}=f(x)[f / 0)=0\right]$. io f there is a coutivnously disfenestialere function

$$
V: D \rightarrow \mathbb{R}
$$

such tent V :locallapositive definite
a) $V(0)=0$
be) $V(x)>0$ for all $x \in D)$ io
and $\left.\frac{d V}{d t}=[\nabla l) /\right]^{\top} \cdot f(x) \leqslant 0$ foul .it $]$

then $\bar{x}=0$ is δ tahle ir tep desuse of Lyapunor.

