Lecture is

$$
03 / 22 / 23
$$

The: Let D he an open connected surat of $1 R^{n}$ that contains the er. point $\frac{x}{x}=0$ of $\left.\dot{c}=f(x)[f / 0)=0\right]$. it f there is a couticuously disfencastialere function

$$
V: D \rightarrow \mathbb{R}
$$

such then V llocallapositive definite
a) $V(10)=0$
be) $V(x)>0$ for all $x \in D)$? and $\left.(1) \frac{d V}{d t}=[\nabla 1) /\right]^{\top} \cdot f(x) \leq 0$ foul ait $]$

then $\bar{x}=0$ is stable in the sestese
(this happeus for ppnduhnset Lyapunov.
2° If in addition to a) sud b), we have
$\left.\tau^{2}\right) \frac{d V}{d t}=[\nabla v]^{\top} \cdot f(x) \leqslant 0, \forall x \in D \backslash\{0\rangle$
then $\bar{x}=0$ is Locally Asyzptatically stahle
$[$ local positine desizitiness of $Y[a)$ \& bs) $]$
lical negation dxesisiteress, of $\dot{\vee}\left[C_{2}\right]$
alony the solntios of $x^{x}=f(x)^{n}$
3^{0} if there is a cts ditstele $V: 11^{n} \rightarrow \vec{n}^{112}$ with
a) $\vee(0)=0 ; 4,3) V(x)>0, \forall x \in \mathbb{R ^ { 4 }} \backslash\{0\rangle$
(3) $\dot{v}=[\nabla \vee]^{\top} \cdot f(x)<0, \forall x \in \mathbb{R ^ { 4 } \backslash \} 0 \rangle}$

1) $\left.\lim _{\| x(1) \rightarrow \infty} \backslash / \mid x\right)=+\infty[$ radial usboondetuess]
then $\| \bar{x}=0$ is gholanlly as ymitotically stalle. (2)

Significance of d)
$V\left(\mid x_{1}, x_{2}\right)=\frac{x_{1}{ }^{2}}{1+x_{1}{ }^{2}}+x_{2}{ }^{2}$
e.g. $x=\left[\begin{array}{c}x_{1} \\ 5\end{array}\right]^{1+} ; x_{1}$ Even if $|x,| \xrightarrow{\rightarrow}+\infty$

$\|x\| \rightarrow \infty$

Proof of 1° \& 2° (shotch)
1 Let $/$ satisfy $a)$, b), (1),
let $\left.\Omega_{c}:=\{x \in D ; \| x)=c\right\rangle$,
and let $\Omega_{c} \subset D$
corustant

From C) \Rightarrow
$V \leq 0, \forall x \in D \backslash 20$
\Rightarrow each houl sot
\vec{x} is positively in-
usuiant
i.e, if ve stant il
de set, wel1 upur
leave it $\Rightarrow{ }^{2}=\frac{1}{x}=$ talle. (4)
$\left.2^{\circ} \forall<0, \forall x \in D\right)\{0\rangle \Rightarrow$
$\Rightarrow V$ is a decreasing function of time on D, which is learuded fuon helow hy $V(0)=0 \Rightarrow$

$$
\left.\left.\lim _{t \rightarrow \infty} V \mid(x) t\right)\right) \text { exists }\left[\begin{array}{l}
i . e . V \mid x(t) \\
\text { conveiges to } \\
\text { e.g. } c_{2} \geqslant 0
\end{array}\right]
$$

Q: Can $C_{2} \neq 0$?

Well puove trat tris is rot possitale!!).

Assume that $\lim _{t \rightarrow \infty} \mid(|x| t \mid)=c_{2}>0$
Let $D_{1}:=\left\{x \in \mathbb{D} ; c_{2} \leq / /(x) \leq 0,\right\}$ s.t.

$$
\max _{x \in \infty,} \dot{V}=-\gamma
$$

Then $\frac{d x}{d t} \leq-\gamma$ or $D_{1} \Rightarrow$
$V(|x| t \mid) \leq V(\mid x(0))-\gamma \cdot t$ or $D) \Rightarrow$
There is $\bar{t}>0$ s.t. $\backslash /|x| \bar{t}))<0$

Key challinge: How to coustruct lyapyuol functions???
No universal Recipe!!!
lustead, we have gniding principles that ahow us to eaploit stractune of noulinear tern
$E_{\alpha} 1: \quad \dot{x}=-g(x) ; \dot{x}|t| \in \mathbb{R}$: scalar puolbe
in $L T \mid$ case, $g(x)=g, x$ with $a>0$ ídentifies ál stalle linere syotems

$$
a_{2}>a_{1}>0
$$

$x \cdot g(x)>0$ for all $\left.x \in\left(-9_{1}, a_{2}\right)\right)\{0\rangle$

$$
g(0)=0
$$

Lyapanor furction caydodate $\quad(\rho x)=\frac{1}{2} x^{2}$

$$
\begin{align*}
& \left.\dot{V}=x \cdot \dot{x}=x \cdot \int-g(x)\right)=-x(\cdot g(x)<0 \\
& \forall \quad x \in\left(-a_{1}, a_{2}\right) \backslash\{0\rangle \Rightarrow \frac{A}{x^{2}}=0 \tag{8}
\end{align*}
$$

