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Sparsity-Promoting Dynamic Mode Decomposition for Systems with Inputs

Jennifer Annoni, Peter Seiler, and Mihailo R. Jovanovié¢

Abstract— The objective of this paper is to address the
selection of dominant modes of a system that can be used
to construct a reduced-order model. This work is motivated
by high-fidelity computational models that capture fluid and/or
structural dynamics, which are prohibitively complex for real-
time control. A variety of techniques for obtaining simplified
control-oriented models have been developed, e.g. proper or-
thogonal decomposition (POD) and dynamic mode decompo-
sition. In this paper, we address the challenge of selecting a
few dominant Koopman modes for systems with exogenous
inputs. We use a linear channel flow example to demonstrate
the utility of our approach and illustrate the advantages relative
to alternative techniques for control-oriented modeling.

I. INTRODUCTION

Many fluid systems can be represented by a set of low-
order dynamics that dominate the evolution of the flow
field. By extracting the dominant characteristics of the
system, low-dimensional models can be constructed that
capture these dominant characteristics while maintaining
computational efficiency. This work is motivated by the
control of these systems that involve fluid and/or struc-
tural dynamics. One example involves the control of wind
farms. The overall performance of a wind farm can be
improved through proper coordination of turbines [1]. High-
fidelity, computational models exist for this application [2],
[3], but are prohibitively complex for control design. A
second example involves the control of flexible aircraft.
More fuel efficient aircraft can be designed by reducing
structural weight thus leading to increased flexibility [4]. The
vibrational modes can significantly degrade the performance
and can even lead to aeroelastic instabilities (flutter) [4],
[5]. High-fidelity, computational fluid/structural models also
exist for this application [6], but these are also too complex
for control design. Simplified, control-oriented models are
needed in these examples.

A variety of reduced-order modeling techniques have been
developed by the fluid dynamics and controls communi-
ties. These methods range from analytical reduced-order
modeling, such as balanced truncation [7], to data-driven
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reduced-order modeling such as system identification [8]
where a low-dimensional system is identified to describe
the dynamics of a high-dimensional system. In the fluid
dynamics literature, proper orthogonal decomposition (POD)
is a standard method where the state is projected onto a low-
dimensional subspace of POD modes constructed using data
from high-order systems [9]-[11]. The POD modes provide
the dominant spatial modes of the flow field and contain
multi-frequency content. There have been variations of this
method including balanced POD [12], [13] where a control-
oriented model is obtained by taking the POD modes of a
linearized forward simulation model and its adjoint. The ad-
joint of the model is used to obtain balanced POD modes that
better represent the system by taking into consideration the
effect of forcing inputs and measuring outputs of the system.
The drawback to this approach is that the adjoint is necessary
to obtain the balanced POD modes. In many cases, obtaining
the adjoint is non-trivial and not available for experiments
such as particle image velocimetry [14]. Dynamic mode
decomposition (DMD) was developed to build upon POD
by extracting the single frequency information from spatial
modes. DMD fits time-domain data with linear dynamics on
a reduced-order subspace [15]-[17]. This approach has ties
to the Koopman operator [18]-[20].

Additional variations of DMD have been proposed in the
literature to better identify the dynamics of the system. For
example, DMD has been extended to streaming datasets
to handle large amounts of data [21]. Various corrections
for DMD have been proposed to account for noise or
nonlinearities in the system by using a statistical approach
[22] and using a Kalman filtering approach [23]. Sparsity-
promoting DMD was proposed in [24] to better capture the
dominant dynamics of the system by attempting to exclude
the structures identified by standard DMD that weakly con-
tribute to the flow. This approach is used for autonomous
(unforced) systems. Recent work has been done to extend
DMD, termed DMD with control (DMDc) [25], to construct
reduced-order models with control inputs.

This paper presents an extension of the sparsity-promoting
DMD technique to include inputs. This technique builds on a
variation of DMDc [25] and sparsity-promoting DMD [24],
described in Section II. In particular, it will be shown, in
Section II-B, that the selection of DMD modes is depen-
dent on the choice of exogenous input. Similar to sparsity-
promoting DMD, an optimization problem is formulated
using a regularization term and alternating direction method
of multipliers (presented in Section II-C). The main differ-
ence in this approach is the use of block sparsity in this
optimization [26]. Finally, this approach will be applied to
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the linear channel flow problem described in Section III.
The proposed approach will be compared to standard DMD
in Section III-A. In addition, the impact of using sparsity-
promoting DMD with exogenous inputs will be discussed.
Section IV will end with some conclusions and future work.

II. PROBLEM FORMULATION

In this section, we describe a variant of dynamic mode
decomposition that is applicable to systems with exogenous
inputs. We obtain the optimal amplitudes of DMD modes
as the solution of a least-squares problem and show how
dominant modes can be identified. This requires the solution
of a regularized least-squares problem, where a regularization
term serves as a proxy for inducing sparsity. In contrast to
standard sparsity-promoting DMD [24], it is necessary to
induce block sparsity in the amplitudes that account both for
the initial conditions and inputs.

A. Dynamic Mode Decomposition for Systems with Inputs

Consider a discrete-time nonlinear system

VYeyr = [, ur)

where ¢p € C" and u € CP are the state and input
vectors, respectively. A collection of snapshots are obtained
via simulations or experiments

Uo=[vo
Uy =[ 1 1o

U():[UO U1

wN—l ] c (Cnx(N—l) (1)
Yy el )
UN—1 ] S (Cpx(N_l) €))

where N is the number of snapshots. Our objective is to
identify a linear dynamical system

Yip1 = Ay + By €]

that optimally approximates available data.

The state matrices (A, B) have the dimensions compat-
ible to those of (¢, u). These matrices can be obtained to
optimally approximate the snapshot data. However, this is in-
tractable for large systems. For example, spatially-discretized
models resulting from the Navier-Stokes equations can have
millions of states. It is thus common to project the state
onto a low-dimensional subspace in order to make the least
squares problem tractable.

Let U € C™*", with r < n, have columns that form an
orthonormal basis for a projection subspace. A sub-optimal,
but useful, choice for the projection subspace is given by
the POD modes of the matrix Wy. Specifically, the POD
modes focus on capturing the most amount of energy in the
data. The POD modes can be obtained using the singular
value decomposition of ¥y = UXV*. The POD modes are
contained in the columns of U and the relative energy of each
mode is captured by the singular values (i.e., the matrix ).
The state of the linear system can be approximated on a
subspace defined by the first » POD modes of .

The reduced-order model is expressed in terms of the
projected state, 7, := U™, € C", and it is given by

Ne+1 = (U AU)n + (U B)ug := Fry + Gug.— (S)

The matrices in the reduced-order representation have di-
mensions F' € C™*" and G € C"*P and the matrices A and
B in the original state-space model are determined by

[A B|~[UFU* UG]=U[F G][U; IO]
(6)

The optimal (reduced-order) state matrices on a subspace
spanned by the columns of U are obtained as the solution to
the least-squares problem
2

L U 0 ][ ¥
— F
mlm’rglze H\Ill U[ G ] [ 0 I, } U } .

(N

and they are determined by
1t
« 3.V
[ Fopt Gopt ] = UT \Ill |: &OT (8)

where T denotes pseudo-inverse and U, denotes the first r
modes contained in U. We note that the dynamic matrix
Fopy 1s, in general, different from the matrix Fyp,q resulting
from the standard DMD algorithm [15]. This method varies
slightly from [25] in that the reduced-order state matrices
are formed after projecting the data matrices onto a subspace
spanned by the modes of W,. This is done to speed up the
computation of the state matrices, Fp,: and Gopy.

B. Optimal Amplitudes of DMD modes

The optimal amplitudes of the DMD modes resulting
from the setup with external inputs are computed next. This
results from the solution to the least-squares problem that is
presented for standard DMD outlined in [24].

First, an eigenvalue decomposition of F' can be used to
construct modes at a specific temporal frequency

H1 ¢
F=[& ... & ] - : 9)
Y o ¢
> —

where Y is a matrix that contains the left eigenvectors, Z is a
matrix that contains the right eigenvectors, and D,, contains
the associated eigenvalues. The solution to the reduced-order
system (5) is given by

t—1

me=Fno+ > F'""'Guy, (10)
m=0
t—1
=(YD.Zm+ Y (YD, "' Z2*)Guy, (1)
m=0

Equivalently, modal contribution of the initial condition and
the input to the state 7; is captured by

T

r t—1
N = ;&Mﬁ@‘i‘ > Zfiﬂ?im*lggum

m=0 i=1
Bi

12)

where «; and (3; determine the contribution of the ith mode
to the response.
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The DMD modes can be expressed as ¢; := U,.§; and the
state of the full-order system can be approximated by

'(/]t ~ Urt (13)

Thus, the approximate solution to the full-order state can be
written as

r t—1 r
e = Uy (Z &'Mf%’) + U, (Z Zfiﬂz_m_15;UM>

i=1 m=0 i=1
r

T t—1
= ipbai + > > Gipt ™ B
=1

m=0 i=1

By expressing the matrix of snapshots ¥ as

- -1 —m—1, x Q;
Yo = (I)Z[ T D D il T { B ] (14)
i=1

——

T4

q; (1)

we clearly see that spectral coefficients «; and (3; capture
contribution of individual DMD modes. Note that columns
of the matrix ® are determined by the DMD modes ¢;.
Equivalently, in the vector form we have

Yo Ur (3251 §i; (0):)

U1 Ur (3 iz Sig (1))
: - : {as)
UN-1 Ur (Xie1 & (N = 1))
U

or

¥ = diag(U,) Qx

where diag(U,) is a block-diagonal matrix containing the
matrix U, on the main diagonal and

€145 (0) £245(0) £rq:(0)
flfﬁ(l) 52(];(1) err(l)
Q = : :
§1g7(N — 1) &g3(N —1) &rgr(N — 1)
and
x
x2
r =
Ty

The vector of amplitudes of the DMD modes, x, can be
found as the solution to the least-squares problem

- 2
minimize J(z) := H‘l/ - diang(UT)QxH2 (16)
x
and it is determined by
Tama = (Q*Q)”" Q*diag(U;) . (17)

C. Sparsity-Promoting DMD for Systems with Inputs

We next address the challenge of identifying a subset of
DMD modes that strikes an optimal balance between fidelity
to available data and model complexity. In contrast to POD
modes, DMD modes are not orthogonal, and there is no
natural ordering. We identify dominant modes by solving the
regularized least-squares problem where the regularization
term is introduced as a proxy for inducing sparsity. Our
approach represents an extension of the sparsity-promoting
DMD algorithm [24] with a difference that it is desired to
promote block sparsity instead of elementwise sparsity.

Let us consider the regularized optimization problem

.
minimize J(z) —|—’y;||xb\|2 (18)
where the Euclidean norm of the DMD amplitudes g(x) :=
> llzill5 is introduced to promote block sparsity. A similar
approach is typically used in statistics literature to drive a
set of variables (in our case, coefficients «; and f3;) jointly
to zero.

Once this optimization problem is solved, a sparsity struc-
ture is fixed based on the non-zero coefficients that determine
the contribution of each DMD mode to a particular snapshot.
Specifically, the “polished” amplitudes are found by solving
a constrained quadratic program

minimize J(x)
‘ 19)
subject to ETz =0
where E provides information about the sparsity structure of
the coefficients contained in x.

D. Alternating Direction Method of Multipliers Algorithm

The algorithm used to solve (18) is based on Alternating
Direction Method of Multipliers (ADMM) [27]. We begin
by rewriting the smooth part of the objective function in
optimization problem (18) as

J(z) = (20)

2*Pr — *x — 27%q
where P := Q*Q and § = Q*diag(U?)W. This is a convex
optimization problem that can be solved using standard
algorithms (e.g., ADMM). To bring the problem into a form

amenable to ADMM, we introduce an auxiliary optimization
variable z,

minimize J(x) + vg(z)
X,z (21)
subject to x—2=0
and define the augmented Lagrangian
Ly(x,2,p) = J(x) +79(2)
1
+ 3 (N (z—2)+ (z—2)"A+pllz —23) .
(22)

Here, A is a vector of Lagrange multipliers and p is a positive
parameter. ADMM minimizes the augmented Lagrangian
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Fig. 1. Depiction of the channel flow problem.

separately with respect to x and z followed by a dual ascent
update of the Lagrange multiplier A,

Tpy1 = argmin £,(z, 25 \F)
Zpp1 = argmin L,(aFt 2 \F) (23)
P AR ZJr p(xhtl — ktly)

It can be shown that z and z can be explicitly updated

= (P4 /D7 (a4 8 (- 2N)
wn — () et >a
0, [v*]2 < a.

where a = y/p and v* = x*+1 4 (1/p)\*. These parameters
provide thresholding for the ADMM algorithm.

IIT. EXAMPLE: LINEARIZED CHANNEL FLOW

We use the 3D incompressible linearized Navier-Stokes
equations in a channel flow to illustrate our developments;
see Fig. 1 for geometry. The application of the Fourier
Transform in the streamwise (x) and the spanwise (z) di-
rections along with the use of a pseudospectral method in
the wall-normal direction yields the finite-dimensional state-
space representation

U(ka, k2o t) = Ak, k)(ke, k2, t) +

B(ky, k2 )d(ky, k., t)

where 1) is the state and d is a spatially distributed and tem-
porally varying body forcing. This system governs the dy-
namics of infinitesimal flow fluctuations around the parabolic
velocity profile U(y) = 1 — y2. In what follows, we fix the
Reynolds number to R = 2000 and confine our attention
to a pair of horizontal wavenumbers (k, = 1, k, = 1).
In the wall-normal direction, we use 200 collocation points,
resulting in 400 total states. This system is advanced in time
and snapshots are recorded with At = 1. A random initial
condition that satisfies proper boundary conditions in the
wall-normal direction is used and all numerical computations
are performed in MATLAB. For additional details about
the linearized Navier-Stokes equations, we refer the reader
to [28].

A. DMD vs. DMD with Exogenous Inputs

The reduced-order model of the channel flow problem was
constructed using standard DMD and DMD with inputs (de-
scribed in Section II-A) to demonstrate the benefit of adding
an exogenous input to the system. For DMD with inputs,

(24)

© Fullorder
08r o DMD I
0gk ®  DMD with Inputs |}
04t
0.2r
=
£ 0
L £
02 g q°
04t [
06+
08+
1 05 a 05 1
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Fig. 2. Eigenvalues obtained with standard DMD and DMD with inputs.
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Fig. 3. Eigenvalues in the presence of noise with variance 105,

the system is excited for 100 seconds using a streamwise
body forcing that enters as a temporal chirp excitation in the
middle of the channel. This results in 100 snapshots that we
use as a basis for system identification.

Figure 2 shows the eigenvalues of the full-order A oper-
ator, the A operator identified by DMD, and the A operator
identified by DMD with inputs. DMD with inputs can be
used to identify the eigenvalues of the system in the same
way as standard DMD. In addition, the input excitation
provides additional energy to the system to aid in identifying
the dynamics. In particular, DMD with inputs can handle
small amounts of process noise. Process noise may have
many interpretations. However, in this paper, process noise
refers to the uncertainties and/or nonlinearities that are
being neglected in the proposed dynamic equation. Figure 3
compares the eigenvalues resulting from standard DMD and
DMD with inputs for the system subject to process noise with
variance 10~°. We see that DMD with inputs is significantly
more robust than standard DMD. This is in concert with
the results in system identification literature [8], where it
has been shown that the choice of input plays an important
role in the ability to characterize system’s dynamics. Our
ongoing efforts are direct towards establishing an analytical
framework for our computational observations.
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B. Sparsity-Promoting DMD for Systems with Inputs

We next identify the dominant DMD modes using the
sparsity-promoting DMD algorithm for systems with inputs.
For this setup, the rank of the snapshots matrix, Wy, is
r = 50. The sparsity-promoting algorithm eliminates the
DMD modes that have weak contribution to the available
data.

Figure 4 shows the performance loss as the sparsity-
promoting algorithm eliminates DMD modes. The perfor-
mance loss is computed by:

J(@)

PL(%) := 100 70

(25)

We see that there is minimal loss in performance using only
35 DMD modes (< 1%). As the number of DMD modes
get smaller the performance loss increases. For example,
reducing the number of DMD modes to 25 introduces a 15%
performance loss.

Figure 5 shows the eigenvalues that are preserved with
31 DMD modes. This number offers a performance loss of
only 7%. The number of DMD modes retained is determined
by the number of non-zero x; vectors where each x; vector
contains the spectral coefficients associated with a particular
mode. A vector, x; is considered non-zero if at least one of
its entries is non-zero. In other words, all of the elements
of the vector x; have to be zero for a DMD mode to be
removed. These eigenvalues are associated with the DMD
modes that can capture the essential dynamics of the system.
It is an open challenge to identify the optimal form of the
exogenous input in order to retain the most important DMD
modes.

The tradeoff between model performance and the number
of DMD modes kept can be analyzed by changing the
regularization parameter . As vy increases, more emphasis
is placed on sparsity rather than model performance. This is
shown in Figs. 6 and 7. In particular, Fig. 6 demonstrates that
as +y increases, the number of non-zero vectors z; decreases.
The number of non-zero vectors is associated with the num-
ber of DMD modes retained. As the number of DMD modes

ST : ‘ |
. . + DMD with inputs
ELUR B SRR . * . DMDsp with inputs
-0.2t * * =
. -0.3} ¢
3 L
5 -04) . ®
E sl
-0.6}
-0.7¢
-0.8t ‘ \' g ‘
0.2 04 0.6 0.8
Re(u)

Fig. 5. Eigenvalues the are omitted when using the sparsity promoting
approach. This is shown for Nz = 31.

SOgepene R R R I
. O

40}
gl
N :
=

20}

105

Fig. 6. Non-zero (Nz) x; vectors as vy increases. The number of non-zero
vectors correspond to the number of DMD modes retained.

decreases, it is expected that the performance of the reduced-
order model also decreases. Fig. 7 shows the performance
loss as ~ increases. This indicates that increasing sparsity
reduces quality of approximation of available snapshots.

IV. CONCLUDING REMARKS

The sparsity-promoting DMD technique has been ex-
tended to include exogenous inputs to the system. This
approach was demonstrated on a the linear channel flow ex-
ample and was compared to the standard DMD approach. It
can be seen that the addition of an external input can improve
the performance of the reduced-order model. Introducing
sparsity to the DMD algorithm with inputs can decrease
the order of the reduced-order model with minimal loss in
model performance. The addition of an exogenous input to
the system may impact the selectrion of DMD modes. The
optimal choice of input will be investigated in future work.
In addition, future work will focus on applying this approach
to larger fluid dynamics problems.
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