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Can Decentralized Control Outperform
Centralized?

The Role of Communication Latency
Luca Ballotta , Mihailo R. Jovanović , Fellow, IEEE, and Luca Schenato , Fellow, IEEE

Abstract—In this article, we examine the influence of
communication latency on performance of networked con-
trol systems. Even though distributed control architectures
offer advantages in terms of communication, maintenance
costs, and scalability, it is an open question how com-
munication latency that varies with network topology in-
fluences closed-loop performance. For networks in which
delays increase with the number of links, we establish the
existence of a fundamental performance tradeoff that arises
from control architecture. In particular, we utilize consen-
sus dynamics with single- and double-integrator agents to
show that, if delays increase fast enough, a sparse con-
troller with nearest neighbor interactions can outperform
the centralized one with all-to-all communication topology.

Index Terms—Communication latency, control architec-
ture, distributed control, network optimization.

I. INTRODUCTION

I T IS widely accepted that modern multiagent systems cannot
rely on centralized control architectures. This conclusion

stems from issues related to gathering all decision making to
a central node, ranging from lack of robustness to failures
proneness, to maintenance costs, to communication overhead.
Indeed, large-scale networks have experienced a net shift toward
decentralized and distributed architectures [1], [2]. Moreover,
the recent deployment of powerful communication protocols
for massive networks, e.g., 5G [3], [4], advances in embedded
electronics [5], as well as in algorithms for low-power devices
(e.g., TinyML [6]), which allow to spread computational tasks
across network nodes according to edge- and fog-computing
paradigms [7], [8], [9], are making such networked systems
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grow at an unprecedented scale, further stressing the importance
of distributed controller architectures.

A challenging issue in large-scale wireless network systems
is the latency arising from channel constraints, such as limited
bandwidth or packet retransmissions. To address this problem,
research efforts have been moving toward two main directions.
Related work in control theory deals with control design for
distributed architectures, where classical methods, such as LQG
or H2/H∞ control, require an all-to-all information exchange
that is infeasible for large-scale systems.

A large body of work focuses on stability, e.g., [10] and
[11] are concerned with finite-time delay-dependent stability
of discrete-time systems, [12] finds sufficient conditions for
uniform stability of linear delay systems, [13] characterizes
stability and consensus conditions with homogeneous and het-
erogeneous feedback delays, and [14] and [15] analyze con-
sensus and error compensation for vehicular platoons. Another
line of work deals with maximizing performance for structured
controllers, e.g., [16], [17], and [18] study H2-norm minimiza-
tion for time-delay network systems, [19] proposes a cyber-
physical architecture with LQR for wide-area power systems,
[20] develops a procedure for time-varying dead-time compen-
sation by adapting the filtered Smith predictor, [21] investigates
sensor-and-processing selection for optimal estimation in star
networks.

A more recent trend is optimizing the controller architecture.
For large-scale systems, this means sparsifying the structure to
enhance communication and scalability. This is achieved by
introducing penalty terms to trade performance for controller
complexity [22], [23], [24], [25], [26], [27], [28], [29]. In par-
ticular, [28] proposes the Regularization for Design, addressing
optimization of communication links, while [29] investigates
communication locality and its relation to control design within
the System Level Synthesis.

Related work in optimization theory is concerned with
minimization of distributed cost functions, which are only
partially accessible at each agent. A large body of literature
has been devoted to study suitable algorithms, a short list of
which is represented in [30], [31], [32], [33], [34], and [35].
In particular, a line of work has been concerned specifically
with the design of algorithms in the presence of communication
delays, the main issues being related to convergence conditions.
For example, [36], [37], [38], [39], and [40] study consensus of
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multiagent systems with additive or multiplicative time-delays
under various network topologies and agent dynamics. This
approach usually assumes the communication network to be
given and focuses on the information exchange and processing
by the agents from an optimization standpoint.

Addressed Problem: Even though both control design for
delay-dependent dynamics and design of controller architec-
tures are well-studied topics, it remains unclear how network
connectivity affects the closed-loop performance in the pres-
ence of architecture-dependent communication latency. When
the total available bandwidth does not increase with the size
of the network [40] or when multihop communication is used
among low-power devices [41], the number of active commu-
nication links may affect such latency in nonnegligible way.
In this case, it is important that the control design takes into
account increase in delays when new communication links are
introduced.

Such an approach is conceptually different from the ap-
proaches used in literature. On the one hand, delay-aware control
designs, such as [13] and [18], assume a fixed controller architec-
ture and either target optimization of the feedback gains or eval-
uate stability with respect to gains and/or delays. On the other
hand, architecture designs, such as [28] and [26], do not quantify
the impact of architecture-dependent delays on performance,
but explicitly force sparsity by adding a regularization term
that penalizes controller complexity to delay-free performance
metrics. In fact, while the fully connected architecture is avoided
because of practical limitations, it is usually regarded as an upper
bound for performance [1]. To the best of our knowledge, the
only works where architecture-dependent delays are used to
compute the performance metric are [41] and [42], where the
authors study how transmission power affects convergence rate
of consensus.

We study class of static feedback policies in which control
action is formed by utilizing delayed measurements from a
limited number of nodes within a network. Impact of similar
type of controller architectures on mean-square performance
of delay-free stochastically forced consensus, synchronization,
and vehicular formation networks has been studied in the lit-
erature [35], [43], and our objective is to understand the influ-
ence of delays on the performance tradeoffs induced by such
localized controller architectures relative to centralized ones.
Identifying similar tradeoffs within other classes of localized
control policies (including system level synthesis) is a rele-
vant open question that is outside the scope of the current
study.

Original Contribution: We aim to bridge the two domains
of delay-aware control and architecture design by quantifying
how the latter affects performance under architecture-dependent
communication delays. We address two key challenges. First,
we focus on optimal performance, whereby stability is a pre-
requisite to control design needed to provide a bounded cost
function. Hence, we derive stability conditions that are in-
strumental to an optimal control design problem. Second, we
aim to identify the optimal controller architecture under de-
lays and quantify fundamental performance tradeoffs. Towards
this goal, to circumvent the discrete nature of graphs, we
work our way through two stages: first, we parameterize each

Fig. 1. Steady-state variance Jtot(n) versus number of neighbors. The
variance is the sum of two costs: Jnetwork(n) represents impact of control
architecture, whereas Jlatency(n) is due to delays affecting the dynamics.

architecture with a parameter n that characterizes both number
of links and delay associated with that architecture, and show
how to compute the optimal controller for a given n. We then
compare the optimal performance obtained for different values
of n, which allows us to fairly establish which architectures
provide the best closed-loop performance. In contrast to [41]
and [42], we examine mean-square performance of stochasti-
cally forced networks, study generic delay functions, and ad-
dress optimal design of feedback gains for different controller
architectures.

Preview of Key Results: We utilize undirected graphs with
single- and double-integrator agent dynamics to examine fun-
damental performance limitations in networked systems with
architecture-dependent communication delays. By exploiting
convexity of a minimum-variance control design problem with
respect to the feedback gains, we demonstrate that the choice
of controller architecture has a profound impact on network
performance in the presence of delays. In particular, when the
delays increase fast enough with the number of links, sparse
topologies can outperform highly connected ones.

We show that the steady-state variance of a stochastically
forced network, Jtot(n), can be represented by a sum of two
monotone functions of the number of neighbors n (see Fig. 1)

Jtot(n) = Jnetwork(n) + Jlatency(n). (1)

Here, Jnetwork(n) quantifies impact of control architecture and
Jlatency(n) determines influence of communication latency on
network performance. While Jnetwork(n) decreases with n and
is minimized by a fully connected centralized architecture,
Jlatency(n) increases with n. This demonstrates the presence of
a fundamental tradeoff: on the one hand, feedback control takes
the advantage of dense topologies that enhance information shar-
ing but, on the other hand, many communication links induce
long delays that have a negative effect on performance.

While (1) can be derived analytically for ring topology
with continuous-time, single-integrator dynamics, our computa-
tional experiments show that a similar centralized–decentralized
tradeoff can be observed for general undirected topologies
and with double-integrator and discrete-time agent dynam-
ics. Furthermore, in some cases, decentralized architecture
with nearest neighbor information exchange provides optimal
performance.
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TABLE I
THEORETICAL TOOLS (ITALIC) AND TECHNICAL RESULTS (ROMAN)

Paper Outline: In Section II, we describe models for commu-
nication and controller architecture and formulate the minimum-
variance control design problem. While we first utilize ring
topology to provide analytical insight, we also demonstrate that
our framework can be extended to general undirected topologies
(see Section IV-A). In Sections III and IV, we lay the ground
for our main result. In Section III, we derive conditions for
mean-square stability and compute the steady-state variance of
continuous-time stochastically forced systems using Stochastic
Delay Differential Equations (SDDEs). In Section IV, we prove
that the control design problem is convex. In Section V, we
present our main result: by numerically computing the optimal
controller gains, we show that the closed-loop performance
is optimized by sparse architectures. Furthermore, we derive
analytical expression (1) for continuous-time single-integrator
dynamics, which demonstrates that the minimizer is in gen-
eral nontrivial. To address realistic wireless communication,
we study discrete-time systems in Section VI and show that
the fundamental behavior of the system does not change. Ta-
ble I summarizes our technical results and the theoretical tools
exploited throughout this article. Apart from classical control
techniques, such as the Jury stability criterion, we also leverage
more unconventional tools from mathematical literature, such as
exponential polynomials [45]. Concluding remarks are provided
in Section VII.

II. PROBLEM SETUP

We consider an undirected network with N agents in which
the state of the ith agent at time t is given by x̄i(t) ∈ R with
the control input ui(t) ∈ R. For notational convenience, we in-
troduce the aggregate state of the system x̄(t) and the aggregate
control input u(t) by stacking states and control inputs of each
subsystem x̄i(t) and ui(t), respectively.

Problem Statement: The agents aim to reach consensus
toward a common state trajectory. The ith component of the
vector x(t)

.
= Ωx̄(t) represents the mismatch between the state

of agent i and the average network state at time t [43], where

Ω
.
= IN − 1N1�N

N
(2)

and 1N ∈ RN is the vector of all ones, such that Ω1N = 0.
Ring Topology: We focus on ring topology to obtain ana-

lytical insights about optimal control design and fundamental

performance tradeoffs in the presence of communication delays.
While some of our notation is tailored to such topology [e.g.,
see (3) and (6)], in Section IV-A we discuss extension of the
optimal control design to generic undirected networks and com-
plement these developments with computational experiments in
Section V.

Assumption 1 (Communication model): Data are exchan-
ged through a shared wireless channel in a symmetric fashion.
Agent i receives state measurements from all agents within n
communication hops. All measurements are received with delay
τn

.
= f(n), where f(·) is a positive increasing sequence. In

particular, in ring topology, agent i receives state measurements
from the 2n closest agents, that is, from the n pairs of agents at
distance � = 1, . . . , n, with 1 ≤ n < N/2.1

Remark 1 (Architecture parameterization): Parameter n
will play a crucial role throughout our discussion. In particular,
we will use it: 1) to evaluate the optimal performance for a
given budget of links (see Problem 1) and 2) to compare optimal
performance of different control architectures. In the first part of
this article, we examine circular formations andn represents how
many neighbor pairs communicate with each agent. For general
undirected networks, n determines the number of communica-
tion hops for each agent. In general, n characterizes sparsity of
a controller architecture: sparse controllers correspond to small
n while highly connected ones to large n.

Feedback Control: Agent i uses the received information to
compute the state mismatches yi,�±(t) relative to its neighbors

yi,�±(t) =

{
x̄i(t)− x̄i±�(t), 0 < i± � ≤ N

x̄i(t)− x̄i±�∓N (t), otherwise
(3)

and the proportional control input is given by

uP,i(t) = −
n∑

�=1

k�
(
yi,�+(t− τn) + yi,�−(t− τn)

)
(4)

where measurements are delayed according to Assumption 1.
For networks with double-integrator agents, the control input

ui(t) may also include a derivative term

ui(t) = ηuP,i(t)− η
dx̄i(t)

dt
= ηuP,i(t)− η

dxi(t)

dt
. (5)

The derivative term in (5) is delay free because it only requires
measurements coming from the agent itself, which we assume
to be available instantaneously. The proportional input can be
compactly written as uP (t) = −Kx̄(t− τn) = −Kx(t− τn).
With ring topology, the feedback gain matrix is

K = circ

(
n∑

�=1

k�,−k1, . . . ,−kn, 0, . . . , 0,−kn, . . . ,−k1
)
(6)

where circ(a1, . . . , an) denotes the circulant matrix in Rn×n

with elements a1, . . . , an in the first row.
For agents with additive stochastic disturbances (see Sections

III and VI), we consider the following problem for each n.

1For example, n = 1 corresponds to nearest-neighbor interaction in ring

topology and n =
⌊
(N−1)

2

⌋
to all-to-all communication topology.
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Problem 1: Design the feedback gains in order to minimize
the steady-state variance of the consensus error

P control: argmin
K

σ2(K) (7a)

PD control: argmin
η,K

σ2(η,K) (7b)

where

σ2 .
= lim

t→+∞E
[‖x(t)‖2] (8)

and w.l.o.g. we assume E[x(·)] ≡ E[x(0)] = 0.

III. CONTINUOUS-TIME AGENT DYNAMICS

We now examine continuous-time networks with single- (Sec-
tion III-A) and double-integrator (Section III-B) agent dynam-
ics, derive conditions for mean-square stability, and compute the
steady-state variance of a stochastically forced system. These
developments are instrumental for the formulation of the con-
trol design problem that is used to compare different control
architectures. In the optimal control problem, the steady-state
variance determines the objective function and stability condi-
tions represent constraints. While we first formulate and solve
the problem for continuous-time dynamics, our results also hold
for discrete-time systems; see Section VI. Also, all results in this
section hold for generic undirected topologies.

A. Single-Integrator Model

The dynamics of the ith agent are described by the first-order
differential equation driven by standard Brownian noise w̄i(·)

dx̄i(t) = uP,i(t)dt+ dw̄i(t). (9)

The network error dynamics are

dx(t) = −Kx(t− τn)dt+ dw(t) (10)

where the process noise is given by dw(t) ∼ N (0,ΩΩ�dt).
Exploiting symmetry of the matrix K, we employ the change of
variables x(t) = T x̃(t), with K = TΛT�, to obtain N decou-
pled scalar subsystems with state x̃j(t), j = 1, . . . , N

dx̃j(t) = −λj x̃j(t− τn)dt+ dw̃j(t) (11)

where λj is the jth eigenvalue of K. The subsystem with
λ1 = 0 has trivial dynamics, i.e., dx̃1(t) ≡ 0, with initial condi-
tion x̃1(0) = 0 by construction. For j �= 1, subsystem (11) is a
single integrator driven by standard Brownian noise.

Stability Analysis: Mean-square stability of scalar stochastic
differential equations of the form (11) has been addressed in the
literature. We build on the classical result in [44] to characterize
consensus stability for the multiagent formation.

Proposition 1 (Stability of CT single integrators): The
network error x(t) is mean-square stable if and only if

λj ∈
(
0,

π

2τn

)
, j = 2, . . . , N. (12)

In this case, x(t) is a Gaussian process and its steady-state
variance is determined by

σ2(K) =

N∑
j=2

σ2
I (λj) , σ2

I (λj) =
1 + sin(λjτn)

2λj cos(λjτn)
(13)

where σ2
I (λj) is the variance of the trivial solution of (11).

Sketch of Proof: In view of the decoupling, stability of (10)
amounts to stability of all subsystems (11), j = 1, . . . , N , with
the variances of x(t) and x̃(t) being equal. Condition (12) and
expression (13) were derived in [44]. �

While the variance of delay-free systems is bounded for
any positive eigenvalues λ2, . . . , λN , the presence of de-
lay constrains a stabilizing control according to (12). In
fact, longer delays τn induce smaller upper bounds on the
eigenvalues.

The following result will turn useful in the control design.
Corollary 1: Let λ satisfy (12). Then, the function σ2

I (λ) is
strictly convex and the minimizer λ∗ is determined by

λ∗ =
β∗

τn
, β∗ = cosβ∗. (14)

Proof: The proof follows standard computations over the
derivatives of σ2

I (·). See technical report [52]. �

B. Double-Integrator Model

We now examine networks in which each agent obeys second-
order dynamics with the PD control input (5)

d2x̄i(t)

dt2
= ui(t) +

dw̄i(t)

dt
. (15)

For simplicity, we normalize the delay by rescaling (15)

x̄i(·)← x̄i(τn ·), η ← τnη, k� ← τnk�, w̄i(·)← τnw̄i(·).
(16)

Stacking the agent errors and their derivatives in the formation
vector, the error dynamics can be decoupled as before, yielding

d2x̃j(t)

dt2
= −η dx̃j(t)

dt
− ηλj x̃j(t− 1) +

dw̃j(t)

dt
. (17)

Stability Analysis: We have the following result.
Proposition 2 (Stability of CT double integrators): The

network error x(t) is mean-square stable if

λj ∈
(
0,

β

sinβ

)
, η = β tanβ, β ∈

(
0,

π

2

)
, j = 2, . . . , N.

(18)
Condition (18) can be equivalently written as

(η, λj) ∈ S .
=
{
(η, λj) ∈ R2

+ : λj < φ(η)
}
, j = 2, . . . , N

(19)
where the implicit function φ(·) is concave increasing and

φ(0) = 1, lim
η→+∞φ(η) =

π

2
. (20)

If ∃j �= 1 : (η, λj) /∈ S , the system is mean-square unstable.
Proof: The proof is based on [45]. See Appendix A. �
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Fig. 2. Level curves of the steady-state variance for the continuous-
time double integrator (17) and points of minimum with fixed derivative
gain.

Remark 2 (Nonnormalized delay): Under the original delay
τn in (15), for j = 2, . . . , N condition (18) becomes

λj ∈
(
0,

β

τn sinβ

)
, η =

β tanβ

τn
, β ∈

(
0,

π

2

)
. (21)

Similar to the single-integrator case, Proposition 2 states
that the presence of delay requires more restrictive conditions
than positive gains. In other words, the system is stable if the
instantaneous component of the control input in (5) is sufficiently
“strong” compared with the delayed one. The steady-state vari-
ance of x̃j(t) for j �= 1 can be computed using [48, Sec. 4]

σ2
II (η, λj) =

1

2π

∫ +∞

−∞

dω

| − ω2 + jηω + ηλje−jw|2 (22)

and σ2 = σ2(η,K) =
∑N

j=2 σ
2
II (η, λj). A graphical illustra-

tion of the level curves of σ2
II (η, λj) is provided in Fig. 2.

Model Approximation: Because embedding integral (22)
into an optimization problem is computationally challenging,
we provide an alternative tractable formulation that can be used
to achieve insight into fundamental performance tradeoffs. As
shown in Appendix B when the feedback gain η is sufficiently
high, separation of time scales [48] allows us to approximate (17)
with first-order dynamics

dx̃j(t) = −λj x̃j(t− 1)dt+ dn(t) (23)

where the variance of Brownian motionn(t) is inversely propor-
tional to η. In other words, when the damping is high enough,
the derivative of x̃j(t) converges to zero much faster than x̃j(t),
which represents the dominant component of the dynamics.
Utility of this approximation is illustrated in Fig. 2: with fixed
η̄, the point of minimum of the corresponding 1-D variance
curve, i.e., argminλj

σ2
II (η̄, λj) (solid black line), approaches

the minimizer λ∗ of the single integrator model (dashed black,
see Corollary 1) with increase of η̄. We also note that the variance
decreases with η.

IV. CONTROL DESIGN

Single-Integrator Model: For system (10), Problem 1
amounts to

k∗1, . . . , k
∗
n = argmin

{k�}n�=1

σ2(K) (24)

Fig. 3. Exact variance function (13) and its quadratic approximation.

and parameterization (11) allows us to rewrite it as

k∗1, . . . , k
∗
n = argmin

{k�}n�=1

N∑
j=2

σ2
I (λj) (25)

with stability condition given by (12). Linear dependence of the
eigenvalues of K on the feedback gains [53] and Corollary 1
gurantee convexity of optimization problem (25). Thus, the
optimal feedback gains can be computed efficiently.

To make analytical progress and gain intuition, we also con-
sider the following approximation of (25):

k̃∗1, . . . , k̃
∗
n = argmin

{k�}n�=1

N∑
j=2

(λj − λ∗)2 (26)

which squeezes the spectrum of K about the “optimal” eigen-
value λ∗. The variance σ2

I (·) can be approximated with a
quadratic function around its minimum because it is strictly
convex, differentiable in the stability region, and it blows up
at the boundaries {0, π

2 }, see Fig. 3.
Proposition 3 (Near-optimal proportional control): The

solution of problem (26) is determined by

k̃∗� ≡ k̃∗ .
=

λ∗

2n+ 1
.

Proof: The result follows by applying properties of the
Discrete Fourier Transform to (26). See technical report [52].
�

Proposition 3 shows that spatially constant feedback gains
provide good performance even when spatially varying feedback
gains are allowed. According to Corollary 1, the suboptimal gain
k̃∗ decreases with the delay τn and with the number of agents
involved in the feedback loops, thereby reflecting benefits of
communication.

Double-Integrator Model: Approximation (23) and Fig. 2
show that, for sufficiently large η, the variance of the double-
integrator subsystem (17) has structure similar to the single
integrator, i.e., σ2

II (η, λj) ≈ cσ2
I (λj) for some “small” c > 0.

Thus, we approximate the control design (7b) as

η̃∗, argmin
{k�}n�=1

N∑
j=2

σ2
I (λj) (27)
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Fig. 4. Optimal and suboptimal steady-state scalar variances with linear delay increase for different agent dynamics. a) Continuous-time single
integrator. (b) Continuous-time double integrator. (c) Discrete-time single integrator. (d) Discrete-time double integrator.

where η̃∗ is chosen beforehand so that the time-scale separa-
tion argument provides a reasonable approximation (23). In
particular, the optimization problem for proportional feedback
gains in (27) coincides with the control design for single integra-
tors (25), with the exception that the stability condition is now
given by λj < φ(η̃∗), j = 2, . . . , N ; see (19).

Remark 3 (Convexity of the optimal control design): Con-
vexity of the optimal control design problems (25)–(27) enables
both efficient numerical computations of the optimal feedback
gains for given n and fair comparison of the best achievable
performance for different values of n.

Remark 4 (Gain scaling): The optimal feedback gains
{k∗�}n�=1 and η̃∗ are to be scaled by 1/τn according to (16).

Remark 5 (Optimal design for double integrators): Local
minimizer of the original problem approximated by (27) can
be solved using the gradient-based method proposed in [16].
However, this approach has no guarantees of global optimality
and its computational complexity is impractical for large-scale
systems. In contrast, convex approximation (27) draws a par-
allel to the optimal design for the single-integrator model and
provides insight into a centralized–decentralized trade-off.

A. General Symmetric Network Topology

Even though we utilized ring topology to derive analytical
results (see Section V-A), the control design can be extended
to general undirected networks with symmetric feedback gain
matrices K. For the single-integrator model, this reads

K∗ = argmin
K

σ2(K). (28)

The steady-state network error variance σ2(K) is a convex
function if and only if σ2

I (λj) is convex [54], which is proved
in Corollary 1 for continuous-time and in Appendix E for
discrete-time systems. The optimal gains can then be found
numerically via gradient-based methods, where gradients of
the eigenvalues can be computed using analytical [55], [56] or
numerical [57] methods. On the other hand, the derivative feed-
back gain in σ2

II (η, λj) prevents us from establishing convexity
for second-order systems in general. However, if σ2

II (η, λj) is
convex in each coordinate,2 the design problem can be solved
by alternatively optimizing proportional and derivative gains and

2This can be checked for discrete-time double integrators, see Appendix E.

the centralized–decentralized trade-off can be studied irrespec-
tive of the particular topology.

V. CENTRALIZED-DECENTRALIZED TRADE-OFF

In the previous sections, we formulated the optimal control
problem for a given controller architecture (i.e., the number
of links) parameterized by n and showed how to compute
minimum-variance objective function and the corresponding
constraints. In this section, we present our main result: we
solve the optimal control problem for each n and compare the
best achievable closed-loop performance with different control
architectures.3 For delays that increase linearly with n, i.e.,
f(n) ∝ n, we demonstrate that distributed controllers with a
few communication links outperform controllers with a large
number of communication links.

Figure 4(a) shows the steady-state variances obtained with
single-integrator dynamics (24) and the quadratic approxima-
tion (26) for ring topology with N = 50 nodes. The best per-
formance is achieved for a sparse architecture with n = 2 in
which each agent communicates with the two closest pairs of
neighboring nodes. This should be compared and contrasted
to nearest-neighbor and all-to-all communication topologies
that induce higher closed-loop variances. Thus, the advan-
tage of introducing additional communication links dimin-
ishes beyond a certain threshold because of communication
delays.

Figure 4(b) shows that the use of approximation (27) with
η̃∗ = 70 identifies nearest-neighbor information exchange as
the near-optimal architecture for a double-integrator model with
ring topology. This can be explained by noting that the variance
of the process noise n(t) in the reduced model (23) is propor-
tional to 1

η and thereby to τn, according to (16), making the
variance scale with the delay.

Figures 4(c) and (d) shows the results obtained by solving
the optimal control problem for discrete-time dynamics. The
oscillations about the minimum in Fig. 4(d) are compatible
with the investigated centralized–decentralized tradeoff (1): in
general, the sum of two monotone functions does not have a
unique local minimum. Details about discrete-time systems are
deferred to Section VI. Interestingly, double integrators with

3Recall that small (large) values of n mean sparse (dense) architectures.
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Fig. 5. Network topology and its optimal closed-loop variance.

continuous- [see Fig. 4(b)] and discrete-time [see Fig. 4(d)] dy-
namics exhibits very different trade-off curves, whereby perfor-
mance monotonically deteriorates for the former and oscillates
for the latter. While a clear interpretation is difficult because
there is no explicit expression of the variance as a function of n,
one possible explanation might be the first-order approximation
used to compute gains in the continuous-time case.

Finally, Fig. 5 shows the optimization results for a random
graph topology with discrete-time single integrator agents. Here,
n denotes the number of communication hops in the “orig-
inal” network, shown in Fig. 5: as n increases, each agent
can first communicate with its nearest neighbors, then with
its neighbors’ neighbors, and so on. For a control architecture
that utilizes different feedback gains for each communication
link (i.e., we only require K = K�), we demonstrate that, in
this case, two communication hops provide optimal closed-loop
performance.

Additional computational experiments performed with differ-
ent rates f(·) show that the optimal number of links increases
for slower rates: for example, the optimal number of links is
larger for f(n) =

√
n than for f(n) = n. These results are not

reported because of space limitations.

A. Ring Topology: Analytical Insight into the Trade-Off

For a ring topology with continuous-time single-integrator
agent dynamics, a centralized–decentralized trade-off can be
explicitly quantified. By utilizing Proposition 3 to compute the
feedback gains, the objective function can be factorized as

σ2 = f(n)︸︷︷︸
J̃latency(n)

·
N∑
j=2

C̃∗j (n)︸ ︷︷ ︸
J̃network(n)

(29)

where σ2
I (λ̃

∗
j) = C̃∗j (n)τn and C̃∗j (n) only depends on n and

can be computed exactly; see Appendix C. This holds because
the suboptimal eigenvalues can be expressed as λ̃∗j = c̃∗j(n)λ

∗

(cf., Proposition 3). Such a decomposition can be interpreted as
a decoupling of the impact of network (c̃∗j(n)) and latency (λ∗)
effects on the control design. By inspection, it can be seen that
J̃network(n) is a decreasing function of n and that J̃latency(n) is
determined by f(n). Furthermore, when f(·) is sublinear, the

expression above can be equivalently written in form (1)

σ2 = f(n) ·
N∑
j=2

(
C̃∗j (n)− C∗

)
︸ ︷︷ ︸

Jnetwork(n)

+(N − 1)C∗f(n)︸ ︷︷ ︸
Jlatency(n)

(30)

where σ2
I (λ

∗) = C∗τn is the optimal variance according to (13)
and Corollary 1. Indeed, the summation decreases with superlin-
ear rate, so that Jnetwork(n) is a decreasing sequence. The terms
in Jnetwork(n), each associated with a decoupled subsystem (11),
illustrate benefits of communication: as n increases, the eigen-
values of K have more degrees of freedom and can squeeze
more tightly about λ∗, reducing performance gaps between
subsystems and theoretical optimum. We note that Jnetwork(n)
vanishes for the fully connected architecture.

Even though analogous expressions could not be obtained for
other dynamics, the curves in Fig. 4 exhibit trade-offs that are
consistent with the abovementioned analysis.

VI. DISCRETE-TIME AGENT DYNAMICS

We now consider discrete-time agent dynamics to illustrate
that the afore-established fundamental trade-offs hold in this
case as well. In what follows, we denote time instants by
{k}k∈N

.
= {kT}k∈N , with T being the sampling time. Sim-

ilarly, we redefine the delay as the number of delay steps
τn

.
= � τnTs

�.
Agent Models: The discrete-time versions of the agent dy-

namics considered in Section III are given by

x̄i(k + 1) = x̄i(k) + uP,i(k) + w̄i(k) (31)

for the single-integrator model, with w̄i(·) ∼ N (0, 1), and

x̄i(k + 1) = x̄i(k) + z̄i(k)

z̄i(k + 1) = (1− η)z̄i(k) + ηuP,i(k) + w̄i(k) (32)

for the double-integrator model, with uP,i(k) defined in (4).
Stability Analysis: The formation error dynamics can be

decoupled analogously to the continuous-time models. The de-
coupled subsystems are asymptotically stable if and only if all
the roots of their associated characteristic polynomials lie inside
the unit circle in the complex plane.

In general, given delay τn, stability conditions with re-
spect to the control gains can be derived in the form of
polynomial inequalities through the Jury criterion. For the
single-integrator case, one simple condition can be computed
analytically.

Proposition 4 (Stability of DT single integrators): The
network error x(t) is mean-square stable if and only if

λj ∈
(
0, 2 sin

(
π

2

1

2τn + 1

))
, j = 2, . . . , N. (33)

The upper bound in (33) approaches its continuous-time
counterpart (12) from below as the delay steps tend to infinity
(see Fig. 6). A discussion on general stability conditions and the
proof of Proposition 4 are provided in Appendix D. The basic
argument is the same as for the continuous-time case.
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Fig. 6. Stability regions of decoupled single integrators.

Fig. 7. Typical profiles of the steady-state variance for decoupled
discrete-time single integrators (left) and double integrators (right).

Performance Evaluation: With fixed parameters, the
steady-state variance of each decoupled subsystem can be com-
puted numerically via the Wiener–Khintchine formula. Also,
for any given value of τn, a closed-form expression of the
variance can be obtained via moment matching through a re-
cursive formula, see Appendix E. Such closed-form expressions
have been used for our computational experiments illustrated in
Fig. 4. Fig. 7 shows the typical profiles of the variance function
for decoupled subsystems with single- and double-integrator
dynamics [see (D.1) and (D.3) in Appendix E, respectively].

VII. CONCLUSION AND FUTURE RESEARCH

We study minimum-variance control design problem for undi-
rected networks with both continuous- and discrete-time agent
dynamics in the presence of communication delays. When feed-
back delays increase with the number of communication links,
we identify fundamental performance trade-offs and show that
distributed control architectures can offer superior performance
to centralized ones that utilize all-to-all information exchange.
Our hope is to pave the way to a new body of research that
will enable control design with a deeper understanding of the
fundamental behavior and limitations of large-scale wireless
network systems. Future work will focus on extending our
results to other classes of control problems, which include more
complex system dynamics and communication models, more
realistic information about structure of delays in a distributed
scenario, as well as different cost functions.

APPENDIX

A. Proof of Proposition 2

The error dynamics equation with agent model (15) reads

dx(t) = (A0x(t) +A1x(t− 1)) dt+Bdw̄(t)

A0 =

[
0 I

0 −ηI

]
, A1 =

[
0 0

−ηK 0

]
, B =

[
0

I

]
(A.1)

with w̄(t) standard N -dimensional Brownian motion. The de-
coupling (17) is obtained from (A.1) through the change of basis
x(t) = (T ⊗ I2)x̃(t). Rewriting (17) as a double integrator in
state-space form with state s̃j(·) yields

ds̃j(t) = (F0s̃j(t) + F1j s̃j(t− 1)) dt+Gdw̄j(t)

F0 =

[
0 1

0 −η

]
, F1j =

[
0 0

−ηλj 0

]
, G =

[
0

1

]
. (A.2)

Stability of (A.1) is equivalent to that of (A.2) for all j. In the
following, we drop the subscript j for the sake of readability.
For positive eigenvalues λ, (A.2) is mean-square asymptotically
stable if α0 < 0 and unstable if α0 > 0 [47], where the spectral
abscissa is defined as

α0
.
= sup {�(z) : z ∈ C, h(z) = 0} (A.3)

and the characteristic polynomial of (A.2) is

h(z)
.
= det

(
zI − F0 − F1e

−z) = z2 + ηz + ηλe−z. (A.4)

A sufficient and necessary condition for all roots of h(z) to lie
in the open left-hand half-plane is derived in [45].

Theorem 1 ([46, Th. 2.1]): Let the 2-vectors v(b) = (pb, q −
b2) and w(b) = (cos b, sin b), b ≥ 0, be given. If r > 0, a nec-
essary and sufficient condition for all roots of the equation
h(z) = (z2 + pz + q)ez + r = 0 to have negative real part
is that the orthogonality condition v(b) · w(b) = 0, with b ∈
∪∞k=0(2kπ, (2k + 1)π), implies |v(b)| > r.

From Theorem 1, (A.2) is asymptotically stable if the follow-
ing implication holds for b ∈ ∪∞k=0(2 kπ, (2k + 1)π):

ηb cos b− b2 sin b = 0⇒ η2b2 + b4 > η2λ2. (A.5)

In view of b ≥ 0 and sin b ≥ 0, (A.5) leads to (18) after standard
algebraic manipulations, where we replace b with β = min b ∈
(0, π

2 ). The inequality can be rewritten as

λ <
β

sinβ

.
= φ(η) (A.6)

where the definition of φ(·) follows from the implicit function
theorem applied to F (η, β)

.
= β tanβ − η, which states that

F (η, β) = 0 if and only if β = ϕ(η) and

ϕ′(η) =
cos2 (ϕ(η))

ϕ(η) + sin (ϕ(η)) cos (ϕ(η))
. (A.7)

Tedious but straightforward calculations on the first and second
derivatives show that φ(η) is concave increasing for any η > 0.
The limits at 0 and +∞ can be easily computed by noting that

β0
.
= ϕ(0) = 0, β∞

.
= lim

η→+∞ϕ(η) =
π

2
. (A.8)

B. Derivation of First-Order Reduced Model for
Continuous-Time Double Integrators

We now show that subsystem (17) can be approximated to
first-order dynamics when the gain η is sufficiently high. Let us
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consider (A.2) with state s̃(t) = [x̃(t), z̃(t)]�. Assume that the
feedback gain η is large, so that the variable z̃(t) evolves faster
than x̃(t). We can then approximate the dynamics of z̃(t) by
letting x̃(t− 1) ≡ x0 be constant overtime

dz̃(t) = (−ηz̃(t)− ηλx0) dt+ dw(t). (B.1)

Equation (42) defines a standard Ornstein–Uhlenbeck process

z̃(t) ∼ N
(
e−ηt(z̃(0) + λx0)− λx0,

1

2η

(
1− e−2ηt

))
.

(B.2)
In view of the time-scale separation, we assume that (B.2) holds
(with x̃(t− 1) constant) till z̃(t) settles at steady state

lim
t→+∞ z̃(t) = z̃∞ ∼ N

(
−λx0,

1

2η

)
. (B.3)

Using (B.3), we now approximate the dynamics of x̃(t) as if
z̃(t) reached the steady state instantaneously

dx̃(t) ≈ z̃∞dt = −λx̃(t− 1)dt+ dn(t) (B.4)

where the diffusion is embedded into the Brownian noise n(t)
with variance proportional to 1

η . In particular, as η → +∞,

z̃∞
a.s.−−→ −λx0 and (B.4) tends to deterministic dynamics.

C. Computation of Suboptimal Variance for
Continuous-Time Single Integrators

The N suboptimal eigenvalues have expression (cf., [53])

λ̃∗j = 2k̃∗
(
n−

n∑
�=1

cos

(
2π(j − 1)�

N

))
(C.1)

which we write as λ̃∗j = gj(n)k̃
∗. Being k̃∗ = α̃∗(n)λ∗ accord-

ing to Proposition 3, we write λ̃∗j = c̃∗j(n)λ
∗ with c̃∗j(n)

.
=

gj(n)α̃
∗(n). Then, each subsystem (11) has variance

σ2
I

(
λ̃∗j
)
=

1 + sin(λ̃∗jτn)

2λ̃∗j cos(λ̃
∗
jτn)

(i)
=

1 + sin(c̃∗j(n)β
∗)

2c̃∗j(n)β∗ cos(c̃
∗
j(n)β

∗)︸ ︷︷ ︸
.
=C̃∗j(n)

τn

(C.2)

where (14) is used in (i).

D. Stability Conditions for Discrete-Time Systems

General Case: In the following, we replace τn with τ for the
sake of readability. For the single-integrator case, decoupling
the error dynamics yields scalar subsystems of the form

x̃(k + 1) = x̃(k)− λx̃(k − τ) + w̃(k). (D.1)

The characteristic polynomial h(z) of (D.1) is obtained by
applying the lag operator z such that x̃(k)h(z) = w̃(k)

h(z) = z − 1 + λz−τ . (D.2)

Similarly, the double-integrator decoupled subsystems are

x̃(k + 1) = x̃(k) + z̃(k)

z̃(k + 1) = (1− η)z̃(k)− ηλx̃(k − τ) + w̃(k) (D.3)

Fig. 8. Solution of (D.6) in the complex plane.

with characteristic polynomial

h(z) = z − 2 + η + (1− η)z−1 + ηλz−τ−1. (D.4)

For positive λ, stability of (D.1)–(D.3) can be assessed via the
Jury stability criterion, which provides necessary and sufficient
conditions for the roots of (D.2) and (D.4) to lie inside the
unit circle in the form of inequalities involving the coefficients
of h(z). Being the latter polynomial in η and λ, the Jury
criterion yields Θ(Nτ) polynomial inequalities in the feed-
back gains, which can be computed through standard software
tools.

Proof of Proposition 4: Eq. (D.2) can be studied as a root
locus by varying the gain λ. In particular, λ = 0 yields a multiple
root at z∗1 = 0 and a simple root at z∗2 = 1. Negative values of
λ are discarded as they push the latter outside the unit circle.
As λ increases, the branches leave the unit ball along their
asymptotes. The admissible values for λ are upper bounded by
a threshold gain λth beyond which some roots leave the unit
ball. In particular, we are interested in the minimum gain for
which at least one root lies exactly on the unit circle. Thus, we
are looking for roots of (D.2) of the form z = ejθ

ej(τ+1)θ − ejτθ + λ = 0. (D.5)

Equation (52) can be equivalently written as the system{
cos((τ + 1)θ)− cos(τθ) + λ = 0

sin((τ + 1)θ) = sin(τθ).
(D.6)

Figure 8 depicts a solution of (D.6) for sin(τθ) > 0. The case
sin(τθ) < 0 is analogous and is omitted. Further, the solution
(τ + 1)θ = τθ can be discarded because it implies λ = 0 and,
thus, prevents asymptotic stability. From basic trigonometric
arguments (cf., Fig. 8), the second equation in (D.6) implies

τθ +
θ

2
=

π

2
+ 2kπ −→ θ =

π + 4kπ

2τ + 1
(D.7)

where we impose θ ∈ [0, π] and, thus, k ∈ {0, . . . , � τ2 �}. This
includes all possible cases, because the roots of (D.2) come in
complex conjugates pairs. From (D.7), the first equation in (D.6),
and the fact cos((τ + 1)θ) = − cos(τθ), we retrieve

λ = 2 cos

(
πτ + 4kπτ

2τ + 1

)
. (D.8)
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The right-hand term in (D.8) is monotone increasing ink. Indeed,
taking the argument of the cosine modulus 2π yields

πτ + 4kπτ

2τ + 1
mod 2π =

πτ − 2kπ

2τ + 1
∈
[
0,

π

2

)
(D.9)

which is nonnegative and monotone decreasing in k for any τ .
Finally, the upper bound for the gain λ is given by

λth = min
k

2 cos

(
πτ + 4kπτ

2τ + 1

)
= 2 cos

(
πτ

2τ + 1

)
. (D.10)

E. Variance Computation for Discrete-Time Systems

Wiener–Kintchine Formula: Given any fixed values of delay
and feedback gains, the steady-state variance σ2

I (λ) or σ2
II (η, λ)

of the decoupled subsystems can be computed numerically by

1

2π

∫ +π

−π

dθ

|h(ejθ)|2 (E.1)

where the characteristic polynomial h(z) is (D.2) or (D.4).
Single Integrator Model: The moment-matching method

applied to subsystem (D.1) yields a linear system of equations
in the variables (ρ0, . . ., ρτ ), where ρt

.
= E[x̃(k)x̃(k ± t)]

ρ0 = E[x̃(k + 1)2] = ρ0 + λ2ρ0 + 1− 2λρτ (E.2a)

ρ1 = E[x̃(k + 1)x̃(k)] = ρ0 − λρτ (E.2b)

...

ρτ = ρτ−1 − λρ1 (E.2c)

where (E.2b) and (E.2c) are the Yule–Walker equations. Sys-
tem (E.2) can be written compactly as A(τ)ρ = e1, where
ρ� = [ρ0, . . . , ρτ ], e1 is the canonical vector in Rτ+1 with
nonzero first coordinate, and A(τ) ∈ R(τ+1)×(τ+1) gathers all
coefficients of equations in (E.2).

It can be seen thatA(τ) is full rank for all τ ≥ 1, and thus (E.2)
has a unique solution. In particular, we are interested in the
autocorrelation ρ0 = σ2

I (λ), which is given by the ratio between
the minor associated with the top-left element of A(τ), named
nτ

.
= M

(τ)
1,1 , and the determinant dτ

.
= det(A(τ)). Specifically,

ρ0 is a rational function in λ and can be computed in a closed
form by a symbolic solver given any value of τ .

Further, nτ and dτ can be explicitly computed by leveraging
a recursive nested structure of the matrix A.

The solution obeys the following recursive expression in τ :

nτ =

{
(−1− λ)nτ−1 + ñτ−1 if τ odd

−(1− λ)nτ−1 − λñτ−1 if τ even
(E.3a)

ñτ =
(
2− λ2

)
ñτ−2 − ñτ−4 (E.3b)

dτ = dτ−2 − λ2 (nτ + nτ−2) (E.3c)

ñ−3 = − 1 + λ2, ñ−2 = λ2, ñ−1 = −1, ñ0 = 0 (E.3d)

n−1 = 0, n0 = 1, d−1 = −2λ, d0 = 2λ− λ2. (E.3e)

Detailed derivation of (E.3) is given in the technical report [52].
Given τ , convexity of ρ0 in λ can be assessed by checking
the sign of the second derivative in the stability region. This

reduces to a system of inequalities that can be solved, e.g., by
solve_rational_inequalities in Python. The vari-
ance was proved strictly convex for all tried delays.

Double Integrator Model: System (D.3) yields the following
τ + 2 coupled moment-matching equations:

ρ0 = [(2− η)2 + (1− η)2 + η2λ2]ρ0 − 2(2− η)(1− η)ρ1

+ 2(1− η)ηλρτ − 2(2− η)ηλρτ+1 + 1 (E.4a)

ρ1 = (2− η)ρ0 − (1− η)ρ1 − ηλρτ+1 (E.4b)

...

ρτ+1 = (2− η)ρτ − (1− η)ρτ−1 − ηλρ1 (E.4c)

with (E.4b) and (E.4c) the associated Yule-Walker equations.
Analogous analysis to single-integrator model can be performed.
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