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Convex Reformulation of a Robust Optimal Control Problem
for a Class of Positive Systems
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Abstract—In this paper we consider the robust optimal con-
trol problem for a class of positive systems with an application
to design of optimal drug dosage for HIV therapy. We consider
uncertainty modeled as a Linear Fractional Transformation
(LFT) and we show that, with a suitable change of variables,
the structured singular value, p, is a convex function of the
control parameters. We provide graph theoretical conditions
that guarantee 1 to be a continuously differentiable function of
the controller parameters and an expression of its gradient or
subgradient. We illustrate the result with a numerical example
where we compute the optimal drug dosages for HIV treatment
in the presence of model uncertainty.

I. INTRODUCTION

In recent years, significant effort has been devoted to iden-
tifying classes of convex structured control proplem. These
include funnel causal and quadratically invariant systems [1],
[2], positive systems [3], structured and sparse consensus and
synchronization networks [4]-[7], optimal sensor/actuator
selection [8], [9], and symmetric modifications to symmetric
linear systems [10]. Unfortunately most of the approaches
mentioned above involve variable transformations that make
explicit constraints or regularizations of the control variables
not tractable. Moreover there are very few approaches that
consider the problem of designing optimal decentralized
controllers for uncertain systems.

In [11], the authors show how the problem of designing
optimal H, and H ., decentralized controllers for a class of
positive systems is convex with respect to the controller vari-
ables directly. It is therefore possible to solve optimization
problems that involve convex constraints of the controller
variable or sparsity inducing regularizations. The class of
positive systems studied in [11] has applications in biology
and network theory. In this work we extend these results
to the decentralized optimal control for uncertain positive
systems. Again we show that it is possible to solve the robust
optimal control problem by convex optimization.

Positive systems have received much attention in recent
years because of convenient properties that arise from their
structure. A system is called positive if, for every nonnegative
initial condition and input signal, its state and output remain
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nonnegative [12]. Such systems appear in the models of
heat transfer, chemical networks, and probabilistic networks.
In [13], the authors show that the KYP lemma greatly simpli-
fies for positive systems, thereby allowing for decentralized
H oo synthesis via Semidefinite Programming (SDP). In [3], it
is shown that static output-feedback can be solved via Linear
Programming (LP) for a class of positive systems.

Robust stability analysis for positive systems was pre-
viously studied in [14], [15], where the authors develop
necessary and sufficient conditions for robust stability of pos-
itive systems with respect to induced £;—L, norm-bounded
perturbations and in [16], [17] where it is shown that the
structured singular value is equal to its convex upper bound.
Thus, assessing robust stability with respect to induced Lo
norm-bounded perturbation is also tractable. Robust control
design, however, requires a change of variables that makes
constraints and regularizations intractable.

Notation

The set of real numbers is denoted by R. R denotes the
set of nonnegative reals. The set of n x n Metzler matrices
(matrices with nonnegative off diagonal elements) is denoted
by M". The set of n X n nonnegative diagonal matrices is
denoted by D"?. Given a matrix A, AT denotes its transpose.
We use 7(A) to indicate the largest singular value of A. We
write A > 0 (A > 0) if A has nonnegative (positive) entries
and A = 0 (A > 0) to denote that A is symmetric and
positive semidefinite (definite).

II. PROBLEM SETUP AND MOTIVATING EXAMPLE
A. Combination drug therapy design for HIV treatment

Let us introduce the class of uncertain positive systems
studied in this paper with a motivational example. As shown
in [18], [19], a suitable model for the evolution of the HIV
virus in the presence of a combination of drugs, is given by

A — Zuka r + Bid
k=1 (D

Oll‘,

where A is a Metzler matrix and Bj,C; are nonnegative.
The HIV virus is known to be present in the body in the
form of different mutant strands; in the model (1), the ith
component of the state vector x represents the population of
the sth HIV mutant. The diagonal entries of the matrix A
represent the net replication rate of each mutant, and the off
diagonal entries of A, which are all nonnegative, represent

z =
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the rate of mutation from one mutant to another. The control
input uy is the dose of drug £ and the diagonal matrix Dy
specifies at what rate drug k kills each HIV mutant. The
signal d represents an external disturbance and z represents
a performance output that we would like to keep small.

System (1) is a positive system, that is for every non-
negative initial condition zy and any nonnegative external
disturbance d, the state and the output remain nonnegative
for all time. In this paper we will deal with positive systems
of the form (1) with the following key characteristics

o The system is positive, that is the matrix A is Metzler

and the matrices B; and C; are nonnegative.

o The control parameter u affects linearly the diagonal

elements of the system matrix.

e The control parameter w is constant in time.

The task of computing an optimal control parameter u for
systems of this form has been studied in the recent literature.
For example, [20] [21] explore optimal finite horizon L;
control while [11] provide the solution to the Ho and Hoo
optimal control problems. In this work we are interested
in exploring the case when the model in (1) is not known
precisely.

B. Introducing uncertainty into the model

Modeling the evolution of the HIV virus is a complex task.
If the model is incorrect and uncertainty is not taken into
account, the efforts of designing an optimal controller (drug
dosage) might be vain. In order to overcome this problem
we propose the following uncertainty modeling for systems
of the form (1)

= (A - > wDi|z + Bid + By
k=1 )
le7 p = 02I7 q = Apa

where B, and Cs are nonnegative matrices that specify
which input-output pairs are affected by the uncertainty,
which is collected in the block diagonal operator operator
A and must satisfy the following assumption.

z =

Assumption 1: The uncertainty operator A is of the form

A:diag(Ah...,AN), (3)

where each term Ay, k € {1,...N} can represent one of the
following types of uncertainty

1) An unknown real matrix in R™**"* gatisfying the norm
bound 5(Ag) < 1.

2) An unknown stable linear system in H2 <" satisfying
the norm bound || A, < 1.

3) An unknown static, piecewise continuous, nonlinear
function Ay : R™* — R™* of the form g, = Ag(pg,t)
satisfying the bound ||gx(¢)||2 < ||pk(¢)||2 for all time.

We further require the control parameter w to lie in

a compact convex set U. This could represent a budget
constraint for the drugs or upper and lower bounds on the
dosages dictated by the drugs’ side effects.

Problem 1: We are interested in designing an input (drug
dosage) u € U which satisfies the following specifications:

o Robust stability: « stabilizes the system for every A
satisfying Assumption 1.

« Robust Performance: © minimizes the ., norm from
d to z, for the worst case A satisfying Assumption 1.

III. PRELIMINARIES ON ROBUST STABILITY FOR
POSITIVE LINEAR SYSTEMS

In this section we review some tools and results from
the literature in order to assess robust stability and robust
performance for a linear positive system

A. Robust Stability and the structured singular value

Let us now consider just the problem of assessing the
robust stability of an uncertain feedback interconnection,
without considering external inputs and outputs. More for-
mally, let M be a stable linear time invariant positive system.
We study the stability of the interconnection of the form

p= Mgq

4
q = Ap, @

where A is an unknown operator satisfying Assumption 1.

The “p framework™ provides necessary and sufficient
conditions for the interconnection in (4) to be robustly
stable for all admissible uncertainties A in terms of the
structured singular value, p. Before defining i, we introduce
the following set of structured nonnegative matrices R’"*"™
A = {diag(Al, ey AN)|Ak S RTkxmk Vk € Z[I,N]}-
Given the uncertainty set A, the structured singular value is
a function pa : C"™*™ — R, defined as [22]

1
inf{z(A)[A € A, det(I — QA) =0}

pa(Q) =

In general, each A; can be a complex matrix [22], [23],
however, since M is a positive system we can restrict each
A; to be real and nonnegative without loss of generality [17],
[24]. Furthermore, the robust stability of the interconnec-
tion (4) can be assessed with a single p test as summarized
in the following preposition.

Proposition 1 ( [17], [24]): The interconnection in (4) is
stable for all A satisfying Assumption 1 if and only if

na (31(0)) <1, 5)

where M (jw) the Laplace transform of M evaluated along
the imaginary axis.

B. Tight upper bound for n

In general computing g is hard, however there is a well
known upper bound for the structured singular value which,
in general, provides a tractable sufficient condition for robust
stability, we refer the interested reader to [23] for a thorough
review of the subject. It is known that for positive systems
this upper bound is tight at w = 0 [17], therefore, because
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of Proposition 1, robust stability can be verified with convex
programming.

Let us define the set of positive definite matrices that
commute with all A € A:

© := {diag(01Lm,, .-, OnLny)| O > Ok € Zp ny} (6)

Proposition 2 ( [17], Theorem 10): Let M be a positive
system and the sets A and ® be as defined above. Then

ua (31(0)) = int 7(©'31(0)07). @)

Using (7) we can perform the p test in (1) with a

Linear Matrix Inequality. In particular as shown in [17] the
following are equivalent

TN (J\Z/(O)) <1 <

inf 7(©'M(0)07!) < 1 (8)
[CISC]

Joec® : OM(0)O -6 < 0.

C. Robust performance is equivalent to robust stability for
an augmented uncertainty

In the previous sections we consider the problem of as-
sessing robust stability of a feedback interconnection without
considering performance, we now consider the case where
we have an external disturbance d and a performance output
z as in the system in (2) and we want to guarantee robust
stability and to minimize the worst case H., norm from d
to z. This setup is shown in Figure 1.

A

Y

z M | d
AR —

Fig. 1: The interconnection of M and A with an external
disturbance d and a performance output z.

Let us introduce a new uncertainty block Ap € RT‘lxmd,
where m is the dimension of d and z (again one can zero
pad C; or B if the dimensions are different).

Proposition 3: The following are equivalent

1) The system (2) is stable and the H ., norm from d to z is

smaller or equal to -y for all A satisfying assumption 1.
2) The interconnection depicted in Figure 2 is robustly

stable for all A satisfying Assumption 1 and Ap €
R™4X™4 with o(Ap) < 1, ie.,

HA, (MV(O,U)) < 1,

where

-1
1

=C'
v ! [Bl BQ}:

o0 =-| %

(30

X
and A, = A x R,

> A 0
> 0 Ap

o My  Map |«
%qu %Mdz <€

Fig. 2: Equivalent reformulation of the robust performance
problem as an augmented robust stability problem.

Proposition 3 is the result of a fundamental theorem in
robust control called the “Main Loop Theorem” [23] and it
is important because, for a desired performance level v, it
shows that we can assess robust performance with a single
w test for an augmented uncertainty. In order to optimize for
~ one can run a standard bisection algorithm.

D. A review of log-convexity

We now provide some basic definitions and preliminary
results on log-convex functions. These will be useful to prove
the main result of the paper.

Definition 1 ( [25]): A function f : R®™ — R, is said
to be logarithmically convex or log-convex if g(x) :=
log(f(x)) is a convex function.

Every log-convex function is convex, the opposite is not
true, for example the function f(x) = |x| is convex but
clearly not log-convex. We now present some properties of
log-convex functions that we will be useful for developing
the main result. The first result shows how log-convexity is
preserved under limits

Proposition 4: Let f, : R® — R, be a family of log-
convex functions, then if limy_, ., fi exists, it is also a log
convex function.

Proof: if limy_, o, fi exists,

log(lim fi) = lim log(fx).

Since, if it exists, the limit of convex functions is convex [21,
Lemma 2], the proof is complete. [ ]

The second result show that log-convexity is preserved
under conic combinations

Proposition 5 ( [25]): Given two log-convex functions f
and fo mapping R™ — R, and positive scalars a; and as,
the conic combination

arfi + axfs

is log-convex.

IV. CONVEXITY OF ;4 WITH A CHANGE OF VARIABLES

We are now in the position to examine the problem of
designing an optimal control w that robustly stabilizes the
system (2). In Section III-C we show how the problem of
assessing whether a system satisfies an H., performance
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specification for the worst case disturbance is no harder than
assessing robust stability and it can be done with a y test. In
this section we then focus on the structured singular value,
1, as a function of the control input, u. We show that, with
a suitable change of variables, ;. becomes a convex function
of uw and it can therefore be minimized efficiently.

Let us consider the uncertain interconnection

<A+2Dkuk) I+Bq
k

"t:

o ©)
z = X
q = Az,

with A Metzler, B, C' nonnegative and A being uncertain
and satisfying Assumption 1. We define the DC gain as a
function of u as

M(0,u) =

-1
_O<A+2Dkuk> B.
k
We know from Proposition 2 that the at DC, the struc-
tured singular value is equal to the upper bound, that
is pa (M(0,u)) = infeco & (OM(0,u)07 "), therefore,
given a convex constraint set U/ for the input wu, in order
to minimize the structured singular value, we need to solve
min & (OM(0,u)07"),
u€U,0€0
where ® was defined in (6).

Remark 1: For a given u, the structured singular value, p,
can be computed by solving the LMI (8), however the LMI
is not linear in the variable w and it requires a nonlinear
change of variables. Thus minimizing ; while constraining
u cannot be done with standard optimization tools from the
literature.

(10)

We will now provide a change of variables that renders the
optimization problem (10) convex and thus easy to solve.

We consider the following change of variables

log(0;),

The variables y; € R are well defined since 6; > 0 for all
ie{l,..,N}.

We are now ready to prove the main result of the paper: the
convexity of the structured singular value, p, as a function
of the new variables y and the control input w.

Theorem 6: The function & (OM(0,u)©!) is jointly
convex in u and the variables yq, ..., yx defined in (11).

Y = i=1,..,N (11)

Proof: Let us denote with f;; the ij element of the
matrix OM (0,u)©~1, that is f;; := [@M(O,u)@‘l]ij,
and the function (;;(u) := log(m;;(u)), where m;;(u) :=
M;;(0,u). We can rewrite f;; in terms of the new variables
as

fii = Bmmi(w)6; = S tum v,

for some (m,n) € {1,..., N}2.

If we can show that (;;(u) is convex in w or equivalently
that m;;(u) is log-convex then, since e” is an increasing
convex function, by the composition rules of convex func-
tions [25], we know that f;; is jointly convex in u and y.

To show that (;;(u) is convex, let us consider the system

T = <A+ZDiui>x+Bq

(12)
Czx.

z =

with the external disturbance ¢(t) = e; for all ¢ > 0, where
e; is the j™ unit vector. We then obtain

myj(u) = tlirgo zi(t) = tlggo el a(t). (13)
Equation (13) is very intuitive as the ¢5 element of the DC
gain matrix of a linear system is the value at which output
i settles when a unit disturbance is applied to the 7" input
channel.
Now let us consider the change of variable &;(t) =
log(x;(t)) as in [20]. Then & = % and

& = ai+ Z ajpe S + Z Dy iiup + bije 5.
k#i P

(14)

The system in (14) is a convex monotone system as defined
in [20] and thus every element of the trajectory £(t) is convex
in v for any initial condition. Since £(t) = log(x(t)), every
element of the original trajectory x(t) is log-convex and
therefore, by Proposition 4, lim;_, . «(t) is log-convex. By
Proposition 5 the conic combination of log-convex functions
is log-convex, we can then conclude that c,t-T lim; 00 x(t) is
also a log-convex function. Since

Gijlw) = Tog(mis(w)) = log (¢ lim a(t)),

we conclude that (;;(u) is a convex function of w.

Now Let us define Y := log(©), we know that Y € Y,
where

Y = {Y =diag (y1lm,s s Yidmy)

We established that each element e¥ M (0, u)e¥ is a convex
function in Y and u jointly. Then, since e¥ M (0,u)eY is
a nonnegative matrix and &(-) is convex and nondecreasing
in every entry of its argument (on R'*™), from the com-
position rules of convex functions [25], we conclude that
7 (OM(0,u)071) = & (e¥M(0,u)e”Y), is a convex
function in Y, u jointly. |

: yNGR}.

Remark 2: The convexity of & (eYM e’Y) , with respect
to Y has been noted for the first time in [26]. With Theorem 6
we extend this result for positive systems and we show
convexity with respect to Y and the control parameter u
jointly.

Once convexity is established, In order to minimize the
structured singular value we can then solve the optimization
problem

min _ & (e¥ M(0,u)e™Y).

1
u€U,Y €Y (15
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This problem cannot be recast as a standard conic program
amenable to commercial solvers. For this reason, in the next
section we provide a description of the sub-gradient for the
structured singular value so standard descent methods can be
employed to solve (15).

V. COMPUTATION OF THE SUBGRADIENT OF p

In order to simplify the notation we define the linear
function D(u) := >, D;u;, and we denote the convex
upper bound to p as

Jo(u,y) == 5 (OM(0,u)07") = & (—e"CA,'Be™™),

where Ay = A+ D(u) and Y = diag (y1Lm,, s YN I )-
As already mentioned in section III-C, for a positive system
1 is equal to the upper bound at DC.

We next derive the subdifferential set of J, both with
respect to u and with respect to the variables yi, ..., yn.

Proposition 7: Let D be a linear operator and A, := A+
D(u) be Hurwitz. Then,

Oudr(u,y) = { Z a; DY (A;lBe_YviwiTeYCAgl)

| —wl(eYCA™'Be Y )v; = J.(u,y), o; € 73}
(16)
where D' (u) is the adjoint of D(u), and,

ayj Jr (U, y) =
{ Z aiwiT (enyjCAnge_Y —e Y eYCAQIBHj)vi

| —wl (¥ CA™ Be™ Yo, = Jy(u,y), @i € P}
(17)
where the matrix

II; := blkdiag(0p,,... ,O0mn ),

is nonzero only at the position of the relevant uncertainty
block associated with 6; or y;, and P is the simplex defined

as P = {a|aj20, Zjajzl}.

A

The proof of Proposition 7 is omitted for reasons of space.

It is well known that, in general, the structured singu-
lar value, u, is not differentiable. We next provide graph
theoretic conditions on the system matrix A for p to be
continuously differentiable.

Proposition 8: Let A be Metzler, B and C' be nonnegative
matrices, and K (u) be a diagonal linear operator such that
Ag = A+ K(u) is Hurwitz. If the graph associated with
A is strongly connected, J,. is a continuously differentiable
function of w.

The proof of Proposition 8 follows the same reasoning as
the proof of [11, Proposition 9] and it is omitted for reason
of space.

Using the expression of the (sub)gradient presented in
this section one can employ standard first order methods
to optimize p as a function of the control parameter u. In
the next section we illustrate our results with a numerical
example.

VI. NUMERICAL EXAMPLE

We now illustrate how our result can be used to compute
the optimal drug dosage for HIV treatment in case of
an uncertain interaction model by means of a numerical
example.

A. Uncertain model

We consider a nominal model of the form (1) with
five virus mutants x1,...,x5, and an interaction matrix
A € {0,1}™*™ wwhich represents the incidence ma-
trix of the blue graph in Figure 3 We have the choice
of three drugs wj,us and wug acting on the dynamics
through the matrices D; = diag(—1, 0, 0, 0, 0),
Doy = diag(0, -0.2, 0, -0.2, -0.2), and
Ds; = diag(0, 0, —1, 0, 0). The effect of the different
drugs is represented in green in Figure 3. We constrain
the drugs such that u; + us + us = 10. We consider the
matrix B = I5 through which the disturbance d affects
the system and the performance output is z = Cjx, where
Cy =[1 00 0 0], this is a reasonable choice, for example,
if x; is the strand of the virus which is deadly and we care
about suppressing it.

S 2

@2 ©®
® 0@

Fig. 3: The uncertain model for HIV virus dynamics. Each
blue node represents a virus mutant and blue edges represent
the known interactions between the mutants. The A blocks
in red represent uncertain interactions. The green edges show
the inhibitory effect of the different drugs.

We finally consider the uncertain interactions represented
by the A blocks in Figure 3: each block in A represent
a norm bounded unmodeled interaction which satisfies As-
sumption 1, i.e., it can be a static nonlinearity, a linear
dynamical system or a fixed real parameter. We now show
that computing an optimal controller using only the nomi-
nal model can give rise to disastrous consequences in the
presence of uncertainty.

B. Robust vs nominal control

We first compute the optimal nominal H . controller, that
is the optimal controller without taking the uncertainty into
account. To do so we use the proximal subgradient method
proposed in [11] and we obtain u},,, = [5.90 1.94 2.15],
which achieves the nominal cost J7,, = 0.22.

nom
We compute the optimal robust controller by exploiting
Proposition 3 and a bisection routine.
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We obtain the following drug dosage as the optimal robust
controller uf, = [2.38 5.73 — 1.90], which achieves the
worst case cost Ji, = 4.45.

The robust optimal drug dosage u,;, has a nominal cost
of 0.49 which as expected, is worse than J3 , however u,
guarantees stability for all possible uncertainties A satisfying
Assumption 1. In Figure 4 we show some sample trajectories
for the robust controller and the nominal controller. As
expected the robust controller performs well for all tested
values of the uncertainty while the nominal controller is often
even unstable. For the sake of consistency we sampled pos-
itive A blocks such that closed-loop positivity is preserved.
Such a restriction does not change the solution as it is shown
in [16], [17] that the worst case perturbation for a positive
system is always positive.

1
u;om H
uz(ob
10 12 14

Time

Fig. 4: Sample trajectories from random initial conditions
and with random positive uncertainties A; and A, satisfying
Assumption 1 using the nominal controller (red) and the
robust controller (blue).

VII. CONCLUSION AND OUTLOOK

In this paper we complete the work from [11], [20], [21]
and we show that the problem of designing an optimal robust
controller for the class of positive systems of the form (1)
is convex and thus tractable. We exploit this result to design
the optimal drug dosage for HIV treatment when model
uncertainty is considered. In our work we assume the drug
dosage to be constant over time. A natural extension is to
look at the possibility of time-varying drug dosage both for
the nominal and uncertain case.
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