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Transition control using an array of streamwise vortices

Rashad Moarref and Mihailo R. Jovanovié

Abstract—In this paper, we assess effectiveness of using an
array of counter-rotating streamwise vortices for transition
control in channel flows. We develop models that govern the
dynamics of velocity perturbations in the presence of body
force excitations and show how changes in control parameters
affect perturbation Kinetic energy. Effectively, we establish that
high frequency streamwise vortices result in the largest energy
amplification reduction. Our findings complement a numerical
study of Schoppa & Hussain [1] and provide theoretical guide-
lines for a design of efficient turbulence suppression strategies.

I. INTRODUCTION

Sensorless flow control is a promising technology for
implementation, as it represents a much simpler alternative to
feedback flow control with distributed wall-mounted arrays
of sensors and actuators. In this paper, we study the energy of
velocity perturbations in channel flows subject to an array of
counter-rotating streamwise vortices. Our approach comple-
ments the numerical results of Schoppa & Hussain [1], and
provides a system-theoretic framework for design of efficient
sensorless transition control strategies. Since the transition
(to turbulence) in channel flows is not appropriately captured
by the eigenvalue analysis [2]-[9], we conduct an input-
output analysis of stochastically excited linearized Navier-
Stokes (NS) equations. Our analysis quantifies the effect
of imposed streamwise vortices on velocity perturbations
and furnishes systematic guidelines to optimal selection of
control parameters for preventing transition.

Our subsequent development is organized as follows: in
section II we determine a linearization of the NS equations
around the plane channel flow subject to an additional
array of counter-rotating streamwise vortices. An appropriate
frequency representation of the streamwise constant three-
dimensional linearized model is presented in § 1I-B. A brief
overview of the notion of frequency response of linear spa-
tially periodic systems is given in § II-C. A computationally
efficient method for determination of the Ho norm in the
presence of small amplitude oscillations is discussed in
§ III. This method was originally developed by Fardad &
Bamieh [10], [11], and it is extended in this paper to account
for the higher order corrections to the Hy norm. In § IV,
we employ perturbation analysis to identify the oscillation
frequencies that lead to the largest Ho norm reduction for
streamwise constant perturbations. Effectively, we show that
high frequency streamwise vortices result in the largest
energy amplification reduction. We also derive an explicit
dependence of the Ho norm with the Reynolds number R.
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We summarize our presentation in § V and provide a brief
outlook for future research directions.

II. LINEARIZED NAVIER-STOKES EQUATIONS

Consider a channel flow of an incompressible fluid with
geometry illustrated in Fig. 1. The dynamics of velocity
and pressure fluctuations (v, p) around some nominal flow
condition (i, P) are described by the linearized NS and
continuity equations

vi = —Vgv — Vyu — Vp + %Av + d,
0 = V.

The spatial coordinates and velocities in (1) are normalized
by channel half-width é and largest nominal streamwise
velocity U,,, respectively, and the Reynolds number R is
given by R := U,,0/v, where v denotes the kinematic
viscosity. Operator V represents the gradient, A := V-V
is the Laplacian, and Vg is defined as Vg := u-V.
System (1) is driven by the body force fluctuation vector
di=[d dy d3]"

(D

L

Fig. 1. Three dimensional plane channel flow.

We assume the nominal velocity of the form

[U®y) Vg2 W2 ], )

where U(y) denotes the plane channel flow, i.e. U(y) :=
1 — 1?2, and

u =

V(y,z) = 2aQV(y)cos(Qz),

W(_y,z) = 2aW(y)sin (Q2), 3)
Viy) == =1 + cos(my)),
W(y) = —V,(y) = —msin(my).

Here, « and () are positive constants denoting the non-
dimensional amplitude and the spanwise frequency of the
applied flow, respectively. If W,, represents the largest
nominal spanwise velocity then o = R, /R, where R,
is the Reynolds number defined in terms of W,,, R, :=
W0 /v. Note that @ satisfies the continuity equation. Since

the nominal vorticity is determined by
@i=Vxa=[W,-V 0o -U,]",

the flow given by (3) can be visualized as an array of counter-
rotating two-dimensional streamwise vortices.
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The wall-normal and spanwise components of u given
by (3) are introduced by Schoppa & Hussain [1]. The
direct numerical simulations showed that a significant drag
reduction can be obtained by super-imposing V(y,z) and
W (y, z) to a fully developed turbulent channel flow [1]. In
this paper, we study how (3) influences evolution of velocity
fluctuations v := | w v w |  in transitional channel
flows. We develop a system theoretic framework for selection
of amplitude and frequency of spanwise oscillations and
show that the approach of Schoppa & Hussain can be also
employed to control transition to turbulence.

A. Streamwise constant model

In this paper, we study the externally excited linearized
NS equations in the presence of streamwise constant three-
dimensional perturbations. This model is usually referred to
as the 2D/3C model, and it is obtained by assuming the z-
independence for all fields in (1), e.g. d = d(y, z, t). In other
words, all derivatives in (1) with respect to x are set to zero,
i.e. 9;(-) = 0. Here, 2D stands for two-dimensional (in the
(y, 2)-plane), and 3C stands for three velocity perturbation
components (u, v, w).

There are several reasons for a careful study of the 2D/3C
model. An overwhelming body of theoretical and numerical
evidence suggests that the streamwise constant perturbations
create the largest contribution to the kinetic energy. Thus,
any control strategy should be evaluated on the 2D/3C model
to determine whether the energy amplification increases or
decreases compared to the uncontrolled flow.

The state-space representation of the streamwise constant
system (1) is obtained by applying a standard transformation
to the wall-normal Velocity (v)/vorticity (n) formulation

Ev,(y,2z,t) = F(y,2,t) + Gd(y,z,t),
v(y, z,t) = C(y,z,1),

where v := [ v ] [
v(£l, 2,t) = vy (£1, 2,t) =n(£l,2,t) =0, z € R, t > 0.

4)

}T and

Operators E, G, and C' do not depend on u and their
structure will be specified shortly. On the other hand, F'
is a 2 x 2 block-operator whose elements depend on the
underlying nominal velocity. In particular, for u given by (2)
we have

Fno= (1/R ) + (Vy = Vo, - Wo.)A

(AV) = V0. + (AV2)07Y) 0, +

(A W) — (AV,) — V2071 0yyy,
Fo = (1/R)A — W, — Wo, — (V + V.o:Da,,
Foy = -Uy0., Fio = 0.

Note that 0, and O, represent differential operators in the
wall-normal and spanwise directions, respectively, and 9!
is a symbol for the integral operator in z, i.e.

_1:f'_>g <~ f:azg::gz-

Furthermore, for V (y, z) and W (y, z) determined by (3), F’
can be represented as

F = Fy + 2a(cos (Qz)F. + sin(Qz2)Fs),  (5)
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where Fy, F,, and Fs denote operators that are spatially
invariant in the spanwise direction. The Fourier symbols of
these operators are given by

1/R)A?
Folk:) = [ (—Gk)U 1/RA]
Far(k:) = Q(V, — Vo )A + Q Vyy - Q%) +
QW — W),

Fo1(k,) = jk, ( w — W(A + Q1 ))
HO2/02)(V,y — V(A + 0210,

F522(kz) = Q(Vy — Vay),
Fsgg(kz) = J(kzvy — (QQ/kz)Vay),
where k. is the spanwise wave-number, and j := /—1.

Operators F, GG, and C are also spatially invariant in z, as
evident from their Fourier symbols

0 _j/kz
a0 _
B = | 7|tk .

0 —k?> —jk.0
G(kz) = |:sz OZ ']0 v

With a slight abuse of notation we use the same notation for
A and A? in the physical and frequency domains. Note that
in the frequency domain A := 9,, — k2, with homogenous
Dirichlet boundary conditions, and A% := 9, — 2k20,,, +
k%, with homogenous Dirichlet and Neumann boundary
conditions. A complete description of the underlying spaces
and domains of these operator can be found in [5], [12].

B. Frequency representation of the 2D/3C model

The 2D/3C model represents a system of partial integro-
differential equations in two spatial directions (y,z) and
time, with the coefficients determined by u. In particular,
for the nominal velocity (2,3), this set of equations has the
periodic coefficients in z. Using a method for representation
of spatially periodic operators in the frequency domain [13],
we rewrite (4) in a form suitable for input-output analysis

at¢0(yat) = A0¢0(y7t) + BG d@(yvt)a
VO(yat) = C9¢9(y7t)'

System (4) is rendered into (6) using a unitary lifting
transformation which preserves both stability properties and
input-output system norms. Note that (6) represents a family
of decoupled infinite dimensional systems parameterized by
6 €10, Q).

For any triple (aay7t)’ {1/)9(yat)’ dG(yvt)’ VQ(y7t)} de-
note bi-infinite vectors whose nth components are, re-
spectively, obtained by evaluating {(y, k.,t), d(y, k., t),
v(y k., t)} at k, = 0 +nQ =: 0,, n € Z. Here, ¢ (y, k., 1)
represents a Fourier transform of ¥ (y, z,t), i.e

=/ P(y,z,t) e 77 dz,

(6)

¢(y7 k., t)
and, thus
Yo(y,t) = col {b(y,0 +nQt)}, .
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On the other hand, 4y, By, and Cy denote bi-infinite operator-
valued matrices whose structure will be specified shortly.
These matrices can be determined from the following two
special cases [13]:

o A spatially invariant operator G with a Fourier symbol
G(k,) has a block-diagonal matrix representation

Gy = diag {G(0 +nQ)}, ., =: diag {G(On)}, cz-

For example, spatially invariant operators {FE, Fy, F,,
F.,G,C}% in (4,5) have block-diagonal representations.
e A periodic pure multiplication operator T(z)
with Fourier series coefficients {7,},cz has a
#-independent block-Toeplitz matrix representation

% ;= toep { ,T27T1,7T,1,T,2,"' },

where the box denotes the element on the main diagonal
of 7Ty. For example, if T(z) := cos(2z), then Ty =
(1/2)T, where T'. is a block-Toeplitz operator with
{Ty1 =1;T, =0,n# +1};if T(2) := sin (Qz), then
To = (j/2)T's, where T’y is a block-Toeplitz operator
with {Th = -I,T_,=1;T, =0, n # +1}.
A matrix representation of the sums and cascades of spa-
tially invariant and periodic pure multiplication operators is
readily determined from these special cases. For example,
for operator F' in (5) we have

Fo = Foo + a(LeFeo + TsFop)

where, for r = {0,c¢,s}, F,¢ denote block-diagonal operators,
Fro = diag {F(0n)}, c4 - Thus, Ag, By, Cg in (6) are
determined by

A = &1 Fp = Aog + aAig,

Aoo = 59_1]:00 = diag{E_l(en)FO(en)}nEZ =
diag {Ao(0n)}nez

Avg = & 'TeFep + & 'TsFep,

By = &£,'Gy = diag{E1(0,) G(0n)}nez =
diag {B(0,)}nez, Co = diag{C(bn)}ncz,

where we used the fact that & = diag{E(0,)}nez is
invertible. For a convenience of later algebraic manipulations
we rewrite Ajg as

A = Sidiag{A_1(0n)}nez + diag{A1(05)}n ez ST,
where S; := toep{- - ,O,(),@,I,(),~~}7 and
A_1(0n) = E7M(0n-1) (Fe(0n) + JF5(0n)),
Ai(0,) = E7N(0n) (Fe(0n1) — iFs(0n-1))-
C. Frequency response of the 2D/3C model

We next define the frequency response of the 2D/3C
model, and introduce a notion of the Hs norm. An in-depth
treatment of frequency responses and input-output system
gains for spatially periodic systems is contained in [13].

The frequency response of the 2D/3C model is obtained
by evaluating the transfer function of (6) on the jw-axis

Ha(w) = C@(ij - ./49)_169,

where w € R denotes the temporal frequency, and Z is the
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bi-infinite identity operator. For any value of (w, 6), Hg(w)
is an operator that relates the temporal Fourier transforms of
bi-infinite input and output vectors dy(y,t) and ve(y,t)

vo(y,w) = [Ho(w)do(w)](y)-

Equivalently, the frequency response of a stable spatially
periodic system can be interpreted in terms of exponentially
modulated periodic (EMP) signals. The spatial EMP signals
represent the appropriate test functions for spatially periodic
systems; namely, the steady-state response of (4) to a spatial
EMP signal

dn(y, t) e+ Dz,

NE

d(y,z,t) = €% d(y,2,t) =

n — 00

is also a spatial EMP signal
oo

vy, z,t) = %9 (y, z,t) = Z Ty, t) el O+ Dz,

n=—oo

Here, d(y,2,t) and v(y,z2,t) denote the 27/Q periodic
functions in z, and {d,,(y,t), v,(y,t)} are the coefficients
in the Fourier series expansions of {d(y, z,t), v(y,z,1)}.
The frequency response of (4) is an operator that maps a
bi-infinite vector col {d,,(y,w)}, ez to a bi-infinite vector
col {{’n(yv w)}n € Z-

Note that, for each pair of (w, ), Hg(w) represents a bi-
infinite matrix whose elements are one-dimensional operators
in y. This infinite dimensional object contains a large amount
of information about the behavior of the linearized NS
system. The dynamical properties of (4) are often easier
to visualize by introducing certain scalar quantities that
compare the relative sizes of the inputs and the outputs.
Amongst the various input-output amplification measures,
the Ho norm is one of the most vastly used. For spatially
periodic systems, the Ho norm is determined by [13]

Q  roo
%/0 /_ trace (Ho(w)Hp(w)) dw db

1 Q
= %/0 trace (PoCyCy) db,

M5 =

where Py represents the solution to the following operator
Lyapunov equation

AgPo + Po Ay = —BpB;. (7

For block-diagonal operators Cy, the Ho norm can be ex-
pressed as

113

n=-—oo

% i /Otrace (Pa(0,)C™(0,)C(0r)) dO

= %/_ trace (Py(k,)C* (k,)C(k,)) dks,

®)
where P,;(6,,) denote elements on the main diagonal of
Py. We have arrived at (8) using the unitaryness of the
lifting transformation, the fact that Py denotes a frequency
representation of a spatially periodic operator, and a sim-
ple observation that as n and 6 vary over Z and [0, §2),
respectively, k., = 6, = 6 + nf) assumes all values in R.
This expression for the Ho norm is particularly convenient
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for comparison between the energy amplification of the
uncontrolled and controlled systems.

III. PERTURBATION ANALYSIS OF THE Hy NORM

Since we are dealing with bi-infinite matrices whose en-
tries are operator valued, solving the Lyapunov equation in its
original form is a difficult task. A discretization of the under-
lying operators in the wall-normal direction and truncation
of bi-infinite matrices would yield a large-scale Lyapunov
equation; determination of the solution to this equation for
different values of 6 and 2 is computationally expensive.
Instead, we employ a much more efficient approach for
solving (7) by utilizing a perturbation analysis [10], [11].
This method is well suited for systems in which spatially
periodic terms are of small amplitude, and it results in a set
of equations with a convenient structure. Namely, the Ho
norm can be computed by solving a conveniently coupled
system of operator valued Lyapunov and Sylvester equations.
A finite dimensional approximation of the entries to these
equations yields a set of algebraic matrix equations whose
order is determined by the size of discretization in y.

The results of this section are derived for system (6) with
block-diagonal operators By and Cy, Ag := Agg + aAig,
where Agy is a block-diagonal operator, 414 is an operator
with non-zero elements on the first block sub-diagonals,
and 0 < a < 1. The structure of these operators for the
linearized NS system is described in § II-B.

Following [10], [11], we define
Py = Zak'Pke = Pog + aPrg + a*Pag + -+,
k=0

and compare equal powers of « in (7) to derive the a set of
Lyapunov equations for self-adjoint operators {Prg}x e N,
AooPoo + PooAsy = — BBy, (9a)
AooPig + PigAsg = — (A16Pi—1,0 + Pic1.0A74), (9b)
with ¢ > 1. Now, since both ByBj; and Agy in (9a) are

block-diagonal, so is Pog, Pog := diag {Po,0(0n)}n ez, and
Py,0(6,,) is determined from

Indices [ and m in P, ,, indicate that operator P, ,,, belongs
to the mth upper block sub-diagonal of Pjg; m = 0 denotes
elements on the main diagonal. Since Pyg is block-diagonal
and A19Ppy has non-zero blocks only on the first sub-
diagonals, by evaluating (9b) at ¢ = 1, we observe that Py
has the same structure as Ay, i.e.

Pro = Sidiag {P11(0n)}nez + diag{P[,(0n)}nez Sy
Thus, trace(P1g) =0, and P 1(6,,) satisfies
AO(enfl)Pl,l(an) + Pll(en)AB(en) =
- (Afl(gn)PO,O(en) + PO,O(enfl)AT (en)) .

Observing the right hand side of (9b) for 7 = 2, we see that
Aj19P19 has non-zero blocks only on the main diagonal and
the second sub-diagonals. Since Agg is block-diagonal, Pag
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has the same structure as A15P1p, i.c.

Pap = diag {P2,0(0n)}nez + Sadiag{P22(0n)}nez +
ding {P35(0,)}n ez S5,
Sy = 82 = toep{---,0,0,0,[0],0,7,0,---}.

The self-adjoint operator P (6,) satisfies the following
Lyapunov equation

Aog(0n)Pao(0n) + Poo(0n)A5(0n) =
- (Al(on)Pl,l(an) + Pil(@n)AT(Qn) +
A_1(On+1) P (Ont1) + Pra(0n1) A% (0n41)),

and P 2(6,,) satisfies the following Sylvester equation

Ag(On—2)P22(0n) + Po2(0,)A5(0n) =
— (A1 (0p_1)Pr1(0n) + Pr1(0,_1)A%(6,)).

Furthermore, for any k& € N, the structure of operators Agg,
Ajg, and P;_1 ¢ in (9b) implies

k
Z Som—1 diag { Pog—1,2m—-1(0n) nez +

m=1
k

Z dlag {P2*k—1,2m—1 (0”)}" €Z S;m—h
m=1
Paoro = diag{Por,0(0n)tnez +

Po—1,0 =

k
Z SZm dlag {PZk,Qer(97L)}n €7 +

m=1

k
Z dlag {P;k,,Qm (en)}n €L S;m’

m=1

with S,,, := S". The equations for operators P, ,,,(6,,) are
easily obtained by elementwise comparison of bi-infinite
matrices on both sides of (9b). These equations and the above
derivations are summarized in Proposition 1.

Proposition 1: The Hs norm of system (6) with Ay =

Aps + aAyp, block diagonal operators {By, Cy, Agg}, 0 <
a < 1, and

Arg = Sy diag{A_1(6n)}nez + diag {A1(0n)}nez ST,

is determined by

I = 5 [ DIIB) () e,
[HHH%] (k) = Za%trace(Pg;g,o(kz)C*(k;Z)C(k'z)),
k=0
where
AO(en)PO,O(gn) + PO,O(an)AEk)(gn) = _B(an)B*(an)v

AO(en)PQk,O(on) + P2k,0<9n)A3(9n) -

— (A1(05) Pak—1,1(0n) + Py 1(00)A7(0n) +

A1 (Onr1) P11 (Ong1) + Por—1,1(0n+1) A% (6nr1)),
Ao(On-1)Pri(0n) + Pri(0n)A5(0) =
—(A_1(0n—141)Pi—1,1-1(0n) + P—1,-1(0r—1) A5 (0n)),
Ao(On—m)Pim(0n) + Prm(0,)A5(0,) =

- (Al(enfm)Pl—l,erl(en) + Pl—l,m+1(9n+1)At1(9n+l) +
Afl(enferl)Plfl,mfl(en) + Plfl.,mfl(enfl)AT(Gn))v
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-

Remark 1: Notation 6,,_; in Proposition 1 represents a
shortcut for k, — IQ, ie. 0, :=0 + (n—01)Q = 0,, —
==k, —IQ.

2,4,...,1—2
1,3,...,0—2

l
l

even,
odd.

IV. ENERGY AMPLIFICATION OF THE 2D/3C MODEL

We next study the energy amplification of stochastically
excited 2D/3C model (6). In this special case, the Lyapunov
and Sylvester equations in Proposition 1 can be rewritten in
an R-independent form which results in an explicit expres-
sion for the Ho norm in terms of the Reynolds number . We
discuss the energy amplification dependence on k, and €2 and
demonstrate that the arrays of counter-rotating streamwise
vortices of appropriately selected amplitude and frequency
have a potential for reducing the energy amplification of the
uncontrolled flow.

Our main result, establishes a formula for the energy
amplification of streamwise constant perturbations in parallel
channel flows U(y) subject to an array of counter-rotating
streamwise vortices (3) with a small amplitude «, « :
R,/R < 1. The proof of Theorem 2 is omitted due to
page constraints and will be reported elsewhere.

Theorem 2: For any parallel channel flow U(y) subject
to an array of counter-rotating streamwise vortices (3) with
a = R, /R < 1, the energy amplification of streamwise
constant perturbations is given by

13 = o [ PB) ) a
HI3] (k) = (folkz) + > R for(k=, Q) R +
k=1
(90(k2) + ZRffggk(kz,Q))RS.
k=1

Theorem 2 represents the basis for our next discussion
on the effectiveness of the controls given by (3). f and g
in Theorem 2 are determined by the traces of the solutions
to certain operator Lyapunov equations. The f-functions are
the same for all parallel channel flows U(y), and the g-
functions depend on the underlying parallel flow through
their dependence on the nominal shear Uy (y). For the large-
Reynolds-number flows the energy amplification is mostly
influenced by go(k.) and go,(k,,2); this is an immediate
consequence of the O(R?) scaling in Theorem 2.

Fig. 2 shows how fy and gy change with k.. These
functions are independent of 2 and they determine the Ho
norm of the uncontrolled flow. The exact value of the energy
amplification in the uncontrolled system is given by a scaled
summation of these two functions with the coefficients de-
termined by R and R3. This result was originally established
by Bamieh & Dahleh [6] and it implies that the energy
amplification of the large-Reynolds-number flows roughly
follows the trend of go. We note that gy peaks at k, ~ 1.78
which determines the prevalent spanwise length scale.

Plots of fa(k.,€?) and go(k.,?) from Theorem 2 are also
shown in Fig. 2. From the plot of g5 we see that a spanwise
periodic sensorless flow control strategy (3) has a potential
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for decreasing the amount of energy amplification. Up to a
second order in R,,, the largest suppression of the energy
amplification takes place in the regions of spanwise wave-
numbers where frequency responses of the uncontrolled
system achieve their maxima. Moreover, as indicated by the
dark-blue regions in the plot of go, this suppression gets
larger as () increases but it rapidly flattens and reaches a
very slow rate of change for 2 larger than ~ 30.

fO(kz):

0.5

4 5

k

z

f2 kZ7Q :

0.1
a
30 02
0.3
10
0.4
1 2 3 4 5
k
2

Fig. 2. Plots of functions fo, go, f2, and g2 in Theorem 2. The g-functions
are shown in plane channel flow.

The (k.,2)—dependence of functions g4, g6, gs, and g1o
in plane channel flow is shown in Fig. 3. These plots
indicate that the higher order corrections to the Hy norm
generate alternating positive and negative contributions to
the energy amplification, but otherwise follow the general
trends observed in the plot of go. We also note a progressive
increase in the magnitude of the higher order corrections,
which necessitates a judicious choice of R,, in Theorem 2
to guarantee convergence.

The plots in Fig. 4 show the k.-parameterized Ho norms
of the uncontrolled plane channel flow with R = 2000 (blue
curves) and the flow subject to (3) with {R,, = 0.25, Q =
61.48} (left plot) and {R,, = 0.3, 2 = 61.48} (right plot).
The energy amplification of the controlled flow is obtained
using Theorem 2 by approximating the infinite summations
in the expression for [[|#[3] (k.) by the summations with:
one term (green curves), two terms (red curves), three terms
(cyan curves), four terms (magenta curves), and five terms
(black curves), respectively. Clearly, for selected values of
R, and €, the second order corrections to the Hs norm
give optimistic estimates of the energy amplification reduc-
tion that can be achieved with an array of counter-rotating
streamwise vortices. In the left plot, the curves corresponding
to the sixth, eight, and tenth order corrections lie almost
on the top of each other. These results closely match the
results obtained using large-scale computations (not shown
here), and indicate that the largest energy amplification of
the uncontrolled flow is reduced by approximately 25 %
with {R,, 0.25, Q 61.48}. This demonstrates the
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g6 (K-, Q):
60
50
40}
G 30}
20 H
910 :

Plots of functions g4, ge, gs, and gio in plane channel flow.

5

Fig. 3.

ability of control strategy (3) to significantly weaken the most
energetic structures in transitional channel flows. Finally, we
note that the truncations obtained using the fourth order
corrections yield somewhat conservative estimates, but these
estimates are much closer to the true values of the energy
amplification than the estimates obtained using the second
order corrections.

The right plot in Fig. 4 illustrates the slower rate of
convergence of our method for larger values of R,; by
increasing the amplitude of oscillations even further, the
perturbation analysis may fail to converge. In spite of this, the
procedure presented here is capable of identifying important
trends in amplification of stochastic disturbances and thereby
providing systematic guidelines for a selection of control
parameters in (3).

[IH113] (k2):

4x10° 4x10°

[IH113] (k):

Fig. 4. The energy amplification in plane channel flow with R = 2000,
{Rw = 0.25, Q = 61.48} (left), and {R., = 0.3, Q@ = 61.48} (right).
The blue curves denote the uncontrolled flow; the controlled flow plots are
obtained using Theorem 2 with the infinite summations approximated by the
summations with: 1 (green), 2 (red), 3 (cyan), 4 (magenta), and 5 (black)
terms, respectively.

V. CONCLUDING REMARKS

This paper develops a system theoretic paradigm for
modeling, optimization, and evaluation of spatially periodic
sensorless flow control strategies in wall-bounded shear
flows. The new paradigm represents a spatial analog of the
well-known principle of vibrational control [14], where the
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system’s dynamical properties are altered by introducing
zero-mean vibrations into the system’s coefficients. Depend-
ing on the relationship between the natural modes of the
uncontrolled system and the forcing frequency, the vibra-
tional control may have a potential for providing stability of
the overall system and for changing its input-output norms.
For example, it is well known that the inverted pendulum
can be stabilized by sensorless means using high frequency
oscillations of the suspension point [14]. We show that the
principle of vibrational control can be also utilized in systems
governing the dynamics of flow fluctuations in channel flows,
where coefficients multiplying system’s state have spatial
periodicity. The key observation is that there is a potential for
changing dynamical properties of the linearized NS equations
(in favorable or unfavorable manner) whenever controls with
spatial periodicity enter into the system’s coefficients.

We model and analyze the influence of small amplitude
streamwise vortices on energy amplification in channel flows.
We develop models that govern the dynamics of flow fluc-
tuations. Our results provide a theoretical explanation as to
why properly designed arrays of counter-rotating streamwise
vortices can reduce the energy amplification in channel flows.

In our future efforts we will: a) investigate the optimal
ratio between the control amplitude and frequency for tur-
bulence suppression; b) employ our analysis to highlight the
physical mechanisms leading to turbulence suppression; c)
test our results in direct numerical simulations of the NS
equations.
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