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On the least-squares approximation of structured covariances

Fu Lin and Mihailo R. Jovanovi¢

Abstract— State covariances of the linear systems satisfy
certain constraints imposed by the underlying dynamics. These
constraints dictate a particular structure of state covariances.
On the other hand, sample covariances (e.g., obtained in exper-
iments) almost always fail to have the required structure. In
view of this, it is of interest to approximate sample covariances
by positive semi-definite matrices of the required structure. The
structured covariance least-squares approximation problem is
formulated and the Lyapunov-type matrical linear constraint is
converted into an equivalent set of trace constraints. Efficient
quasi Newton and generalized Newton methods capable of
solving the corresponding unconstrained dual problems with
the large number of variables are developed.

Index Terms— Convex optimization; least-squares approxi-
mation; sample covariances.

I. INTRODUCTION

The use of second order statistics has been widely studied
in spectral estimation. State covariances of the linearized
equations satisfy certain constraints imposed by the lin-
earized dynamics [1]-[3], which dictate a particular structure.
On the other hand, sample covariances (e.g., obtained in ex-
periments or in numerical simulations of nonlinear equations)
almost always fail to have the required structure. In view
of this, it is relevant to approximate sample covariances by
positive semi-definite matrices of the required structure [3].

Our main motivation for this problem stems from fluid
mechanics, where the objective is to develop tractable
control-oriented models that will reproduce turbulent flow
statistics. Over the past 20 years, a variety of experimental
and numerical studies have provided an invaluable insight
into both structural and statistical characteristics of wall-
bounded furbulent flows. Although these characteristics of
turbulent flows represent the critical factor in evaluation of
drag reduction strategies, their utilization in development of
control-oriented models has been elusive. In [4], the problem
of modeling disturbances in the linearized Navier-Stokes
equations by testing the validity—in quantitative sense—of
a stochastically excited version of this model was addressed.
A model for second order statistics of a turbulent channel
flow using an associated linear stochastically forced input-
output system was developed. These results showed that
certain portions of numerically generated flow statistics can
be closely matched by the appropriate choice of input forcing
covariance. This was done in an ad hoc fashion using
a variety of excitation force correlations and showing the
dependence of the velocity field statistics on them.

The objective of this paper is to develop a convex opti-
mization procedure for least-squares approximation of large-
scale sample covariances. Even though our main motivation
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for this problem stems from fluid mechanics, the theory
we propose to develop is generic enough to be applied to
the other areas where questions of estimating the power
spectrum of the input using state statistics arise [5], [6].
The covariance approximation problem can be cast into a
standard semidefinite programming (SDP) problem, which
can be solved by available SDP solvers (such as SeDuMi)
with modest number of variables, i.e. around 1,500. In this
paper, we develop efficient methods for large scale problems.
The quasi Newton method that we develop in section III-B is
capable of solving problems with around 200,000 variables.

Our paper is organized as follows: in Section II, we set
up the problem and provide an equivalent formulation. The
dual of the original problem, which is very suitable for
optimization, is presented in Section III. We provide an
illustrative example and compare the numerical results in
Section IV. The paper is concluded with a brief summary
and remarks on future work in Section V.

II. PROBLEM FORMULATION

Let a finite dimensional linear system be given by its state
equation,
z = Az + Bd,

where d € C™ is a stationary, zero-mean stochastic process
and x € C” is the state vector. The system is characterized
by controllable pair (A, B), where A € C"*" is a Hurwitz
matrix, and B € C™ ™ is a full column rank matrix.
Under these assumptions, the steady state covariance of z,
X = limy_,oo E{x(t)x*(¢)}, satisfies the following linear
constraint [1]

AX + XA* = —(BH + H*B") (LC)

where H € C™*" represents a matrix which depends on
the input power spectrum and the pair (A4, B). However, the
sample covariance

| X
Y= N};xkx}z

almost always fails to have the required structure [1]. It was
recently established [1] that a condition for X = X* >
0 to be the state covariance of a linear system (A, B) for
some stationary, zero-mean, stochastic input d, is equivalent
to solvability of (LC) in terms of H. In view of the above,
we formulate the following approximation problem:

e given a positive semidefinite matrix ¥ = X* > 0 and
a controllable pair (A, B) with A Hurwitz and B full
column rank, find X = X* = 0 that is closest to %
in the least-squares sense and satisfies (LC) for some
H e Cm>m,
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Thus, we propose to solve the following primal optimiza-
tion problem:

1
minimize §||X - 3%

subjectto X = X* »= 0 (P1)
AX + XA* = —(BH + H*B*),
where || - || denotes the Frobenius norm, and X and H are

the optimization variables. The solution to this optimization
problem can be used to determine the power spectrum of an
input to a linear dynamical system whose state covariance
approximates a given matrix 2 = X* > 0 in the least-squares
sense.

A. Available methods and motivation

The primal problem (P1) is a convex optimization problem
with a norm objective function and a linear constraint. By
introducing an auxiliary variable x, it can be cast into an
SDP problem [7],

minimize &

1
subject to §||X - X% <&

X =X*=0
AX + XA* = —(BH + H*B*).

This quadratic SDP problem can be solved by standard
primal dual interior point methods. However, the number
of optimization variables is O(n?), which implies the in-
efficiency of this method when dealing with large scale
problems. The numerical experiments of Section IV verify
that SeDuMi runs into numerical problems and fails to give
solution when the number of variables is around 1,500, say
matrix X of size 30 x 30 and matrix H of size 30 x 20.
The goal of this paper is to develop efficient methods for
solving large scale problems. The quasi Newton method of
section III-A can solve problems with matrices A and H of
respective sizes 300 x 300 and 300 x 295, i.e. the total number
of variables around 180,000. We note that all numerical
studies are conducted in MATLAB.

B. Equivalent constraint

For a given positive semidefinite matrix X, the solvability
of (LC) in terms of H qualifies X to be a valid state
covariance. However, having H as an optimization variable
increases the problem size by m x n, and computations
become more expensive as the number of inputs m grows.
We note that the Lyapunov type constraint (LC) implies
that X must lie in the range of a certain operator £. The
constraint (LC) can be equivalently represented as

X = / e (BH + H*B*)e* tdt =: L(H),
0
where L is an operator that maps H into X, i.e. X € R(L).
Therefore, X must be orthogonal to the null space of Lod,
N (L£2?). By constructing the basis of this space, {G; = G,
i=1,...,r}, (LC) is transformed into the following set of
equivalent constraints

trace (G;X) = 0, i=1,2,...,r
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It can be shown that we need r = (2n — 2m + 1)(n — m)
Gy’s to span the null space of £%¢. This transformation is
advantageous for optimization as it:

« eliminates n X m optimization variables,
« significantly decreases the number of trace constraints
for large m’s.

The details of constructing the basis of £%¢ are to be reported
elsewhere.
The primal problem is now formulated as

1
minimize §||X — X%,

subjectto X = X* = 0 (P2)

trace(G;X) =0, i=1,2,...,r,

where G;’s determine the orthonormal basis for the null
space of L. After solving (P2), we can find the least-
squares solution H with a very cheap computation, using
the procedure given in Appendix.

We note that the primal problem (P2) is the semidefinite
least-squares (SDLS) problem [8]. Furthermore, Boyd &
Xiao [9] studied the least-squares covariance adjustment
problem, which is an extension of the SDLS problem with
trace inequality constraints. Motivated by their work, in the
next section, we explore the corresponding dual problem,
which is shown to be an unconstrained maximization prob-
lem.

III. DUAL PROBLEM

In the sequel, the primal problem (P2) is cast into a
dual problem, which can be formulated as an unconstrained
maximization problem. To begin with, the Lagrangian is
formed by introducing Lagrange multipliers v; € C and
Z e C"" with Z=2* >0

1

Lv,Z,X) = §||E — X||% — trace(ZX) +
Zuitrace (GiX).
i=1

The minimizer of L(v, Z, X) over X satisfies

OLw.Z,X) _ |
0X N
Xmin = Y¥+7Z- Z::l Vsz

By choosing X = X,,,;, and denoting G, = > _._, 1;,G; the
dual problem is given by
maximize g(v,Z) = —%HZ—&—Z—GVH% + %nzn%
subject to  Z > 0.
Note that any Hermitian matrix can be decomposed as [10]
X =Xy - X, X;X_ =0,
Xy = X3 =0, X =X =0,
with X and X_ respectively being the positive and negative

semidefinite parts of X, that is
D> (= Nz

XJr = E )\Zlﬂl.’ﬁr, X_ =
;>0 A <0
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Here zi,...,x, denote a set of orthonormal eigenvectors
of X with the corresponding eigenvalues Aj,...,A,. It
can be shown that —(1/2)||X + Z — G, ||% is maximized
over all positive semidefinite matrices Z, by the following
choice Z = (X — G,)_. By selecting Z as the negative
part of ¥ — G, the dual problem is finally cast into an
unconstrained dual problem

- 1 1
maximize (v) = ~2(S = G )4l + 5lISIE,  ©)
where ()4 denotes the projection on the positive semidefi-

nite cone S, The dual variables are scalars v;.

Remark 1: Since strong duality is guaranteed by the fea-
sibility of the original convex problem (P1) with linear
constraints [11], the optimal of the primal problem can be
obtained by solving the dual problem (D).

Remark 2: An advantage of working with dual problem
(D) comes from the absence of constraints. Thus, any method
for unconstrained maximization can be utilized. Furthermore,
the size of the dual problem r = (2n — 2m + 1)(n — m) is
only a fraction of the size of the primal problem (n? + n)
when m is close to n.

A. Unconstrained maximization methods

To implement unconstrained maximization methods, one
needs to determine the first or second derivatives of the
objective function with respect to dual variables. It is note-
worthy that the objective function is not twice continuously
differentiable when the matrix ¥ — G, is singular [9].
However, it was shown by Qi and Sun [12] that a generalized
Newton method can be implemented using the fact that the
metric projection operator over positive semidefinite cone is
strongly semismooth [12].

The projection on the positive semidefinite cone brings
the difficulty of calculating the derivatives directly from the
objective function (D). This is because of the absence of an
explicit expression for projection, which prevents us from
applying the chain rule to determine derivative. To avoid this
problem, we utilize the relationship between the Frobenius
norm of a Hermitian matrix and its eigenvalues. Namely, the
eigenvalue decomposition of ¥ — G, = UDU?™, yields

IE—-G,2 = trace((X —G)* (X —G)))
= trace(DD) = }_, dz.
Let ¢(d) := max(0,d), d € R, the objective function is

rewritten as
Z ¢*(d;

We now employ results from standard perturbation analysis
[13] to determine the gradient of g(v), i.e.

Vo) = | % . 8g$>r

For simplicity, consider a matrix F' perturbed by vG, where
G and F are Hermitian matrices and v is a scalar. The
derivative of an isolated eigenvalue A of the resulting matrix
F — vG with respect to v is given by

oA

— = —u"Gu,

ov

\EIIF
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where w is the unit eigenvector associated with A. Therefore,
the elements of Vg are given by

99(v) .
8%‘ Zj /\juj qu]
Furthermore, the entries of Vg can be compactly rewritten
as
99(v) »
o0, Zj)\lu-G:uj

= 2u(E-G)
= >, trace(u;uj(X — G,)+Gy)
= trace(}; ujuj (¥ — Gy)+Gi)
= trace((X — G,)1+Gi)
using U*U = I and trace(AB) = trace(BA).
To compute generalized second derivative of the objective

function, V2 g(v), we follow [12] and construct the symmet-
ric matrix €2 as follows,

) (o(di) — &(dy))/(d:i — dj)

+G2u]

if d; # d;
if d; = d

Then for any infinitesimal variation Arv € R”, we have
trace (—U (2 o U*(Ga,)U)U*GH)

9(v)(Av) = : ;
trace (U (2 o U*(Ga,)U)U*G,)

where o denotes the Schur product, i.e., entrywise multipli-
cation. The solution to

g(v)(Av) = ~Vg(v)

yields the generalized Newton direction Av. The approxi-
mate solution to this equation can be obtained using conju-
gate gradient (CG) method. Alternatively, the direct Hessian
whose 7, jth entry is given by

H;; = —trace(U(Q o U*(G;)U)U*G,),

can be used to solve this equation. The computation expense
of each method is discussed in III-C.

B. Implementation

Three standard unconstrained methods, i.e. gradient
method, quasi Newton method (e.g. Broyden-Fletcher-
Goldfarb-Shanno (BFGS)), and generalized Newton method
are implemented next. More details about these algorithms
can be found in [10]-[12]. The basic principles of all of
these three methods are the same; given an initial point,
after projecting ¥ — G, onto the positive semidefinite cone
Sf{ , one calculates the step direction, chooses a step size,
updates iterative point and then repeats the procedure until
the optimal point with specified accuracy is obtained.

The difference between these methods is the ascending
direction v, i.e.

Vg = VQ(V)>
vpras = H;'Vg(v),
UNT (V2g(v)~'Vyg(v),

for gradient, quasi Newton, and Newton methods respec-
tively. The quasi Newton method utilizes the gradients of
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two consecutive steps to approximate the Hessian. Starting
with identity, the positive definite matrix H is updated using
the following BFGS scheme [11],

H,ssTH,
+ sTH,s ’
where y = Vg(at) — Vg(z), s = 27 — 2 and symbols
()T denote the current values. We choose the standard
backtracking line search [10] with parameters o = 0.3, 5 =
0.5 as the method for selecting step size.

Algorithm

Start with initial point vy = [0,0, - -
k

repeat:

1) project ¥ — G, on S;F,

2) compute ascending direction vy,

3) use the backtracking line search to obtain step size 7,

4) update vii1 = v + YUk

until: stopping criterion is reached

T
+ vy
.I-Tl-S = Hs —+ %

,0], and at each step

C. Complexity analysis

The cost estimation of each algorithm is studied in this
section. At each step of the gradient method, the main cost is
the computation of a gradient direction, which is of O(n3r)
operations. It takes O(2n?r) flops to form the matrix G,
whereas the eigenvalue decomposition of ¥ — (G, requires
O(n?) operations. The total cost of each gradient step is of
O((r + 1)n3). As BFGS method utilizes gradient direction
information, the expense of constructing H, is of the same
order as for the gradient method. The extra cost comes from
the computation of the inverse of Hj, which is of O(r?3).
Thus, the cost of each BFGS step is O(max(r3, (r+1)n?)).

To compute the generalized Newton direction, if conjugate
gradient method is employed, then in each CG step, it takes
O(max(n3,rn?)) to compute U(Q o U*(Ga,)U)U*. The
number of CG steps depends heavily on problem size r.
When r is not too large and the problem is well precondi-
tioned, the number of steps is of order O(r). Therefore, each
Newton step needs O(max(rn?,7?n?)) flops. On the other
hand, the cost of direct computation is more expensive. It
takes O(n?) operations to compute each entry of the Hessian
and the inverse needs O(r3) flops. Therefore, each Newton
step takes O(max(r?n3,73)). However, direct computation
method outperforms CG method in most experiments due to
the slow convergence of CG method.

For a given problem with number of states n, the cost of
the above algorithms relies heavily on the number of dual
variables. From the construction of this basis, we observe
that the number of inputs m dictates the size of r. It is
thus expected that if the number of inputs is close to the
number of states, i.e. m close to n, presented algorithms
should outperform standard interior point method (which
requires O(n®) computation in each iterative step) in terms
of computation efficiency.

IV. NUMERICAL EXPERIMENT

For illustrative purpose, we consider a nonlinear heat
equation on y € [—1, 1] with Dirichlet boundary conditions,
ie. Y(y==x1,t)=0

Ve(y,t) = Pyy(y, t) — 0.10°%(y,t) + f(y)uly,t). (1)
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It is assumed that the zero-mean white stochastic process
u(y, t) enters the equation through

s ~(y+0.9)?

After linearizing the above equation around the origin, we
obtain

Y = Pyy + fy)u(t,y). 2

To approximate this partial differential equation, we dis-
cretize the spatial operator at each point of the Gauss-Lobatto
grid, using a Chebyshev collocation scheme [14]. The weight
function f(y) is also discretized at the same points and the
input matrix B is built by putting the discrete values of f(y)
on the diagonal. By neglecting entries less than a specific
tolerance (10~%) , the matrix B is truncated into a skinny
matrix. We employ the 4th order Runge-Kutta method to
approximate the solution to (1) as time propagates. With
zero initial conditions and stochastic inputs, a large number
of samples are collected and the sampled covariance ¥ is
computed. It turns out that 3 does not satisfy linear constraint
(LC). Thus, we want to compute a covariance matrix of (2)
that approximates X in the least-squares sense.

As already discussed, the original primal problem (P1) is
equivalent to primal problem (P2), which is cast into the
dual problem (D). The first two formulations can be solved
by available SDP solvers such as SeDuMi. We develop
unconstrained methods for the dual problem. As there are
three different but equivalent formulations, it is relevant to
consider their numerical efficiency in terms of computation
time and solution accuracy. The following experiments are
performed in MATLAB on a personal computer with 3.2GHz
CPU and 2.5GB RAM. Both the primal problems (P1) and
(P2) are solved using YALMIP, a MATLAB interface running
SeDuMi as its SDP solver.

A. Performance of BFGS method

To compare with standard solvers, we mainly present the
results from BFGS method for the dual formulation. The
discussion of Newton method performance is postponed to
next section. From complexity analysis presented in section
II-C, the cost of BFGS method at each step is of order
max{r3, (r + 1)n3}, where r is the number of G;’s and n
is the number of states. The number of inputs determines
the number of G,’s, hence dictates BFGS performance.
From results listed in Table I, the time required to construct
the basis is negligible compared to the optimization time.
Moreover, the basis can be calculated offline and stored
for future utilization. The time in all of the tables below
is in seconds. The stopping criterion for BFGS method is
IVg(v)|| < 10-5.

Two sets of optimization experiments are carried out with
difference in the number of inputs m with respect to the
number of states n. The first set of computations restricts
the input number to one and increases the number of states
(discretization size in y). The results are shown in Table
II. Three different formulations give very close optimal
solutions, i.e. up to at least five significant digits. In terms
of solution time, the two primal formulations have similar
performances. On the other hand, BFGS (as well as gradient
and Newton method), has the difficulty in solving problems
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N=10 M=1 N=20 M=1 N=30 M=I
Basis Time 0.066 0.23 2.3
BFGS Time 1.4 114.8 1418.5
N=30 N=50 N=100 N=300
M=28 M=47 M=93 M=297
Basis Time 0.06 0.06 0.28 1.16
BFGS Time 0.2 1 67.7 121
TABLE 1

COMPARISON OF OPTIMIZATION TIME AND BASIS CONSTRUCTION TIME.

Method Time Optimal Value
N =10 BFGS 1.4 0.05014808
M=1 Pl 0.6 0.05014818
P2 0.7 0.05014818
N =20 BFGS 114.8 0.39130384
M=1 PI 3.6 0.39130563
P2 4.0 0.39130563
N =30 BFGS 1418.5 0.39854288
M=1 Pl 26.5 0.39854725
P2 24.6  0.39854726
TABLE I

COMPUTATION RESULTS FOR EXAMPLES WITH A SINGLE INPUT.

with a small number of inputs. As discussed in Section III-C,
the reason is that the cost of algorithms for dual problem is
dictated by the number of inputs compared with the number
of states.

In second set of computations, the number of inputs is
close to the number of states. The results are shown in
Table III. Similarly, the optimal solutions obtained from the
three formulations are very close to each other. In terms
of efficiency, BFGS method shows very attractive feature
in computation time. This is because the number of dual
variables is small when m is close to n. Between the two
primal formulations, (P2) can be solved with approximately
half of time it takes to solve (P1) and more importantly,
SeDuMi is more numerically stable when solving (P2).
When dealing with (P1), SeDuMi usually runs into numerical
problems and fails to give solutions when the problem size
is larger than 1,500 "NA’ denotes that numerical problems
have occurred).

From the numerical experiments, we observe that the
transformation of primal problem (P1) to primal problem
(P2) is advantageous for optimization. For large scale prob-
lems, the dual unconstrained formulation can be solved
efficiently by developed algorithms when the number of
inputs is close to the number of states (which is, for example,

ThA16.4

Method Time Optimal Value
N=10 BFGS 0.04 0.0052754
M=9 P1 1.6  0.0052754

P2 1.3 0.0052754
N =30 BFGS 0.2 0.0662776
M=28 Pl 40.7 NA

P2 12.4  0.0662776
N =50 BFGS 1.0 0.9997168
M=47 Pl 489.4 NA

P2 243.8 0.9997167
N =100 BFGS 67.7 16.344947
M=93
N =300 BFGS 121 158.50262
M =297

TABLE III

COMPUTATION RESULTS FOR EXAMPLES WITH m CLOSE TO n.

of interest in fluids problems).

B. Performance of generalized Newton method

It is proved by Qi and Sun [12] that generalized Newton
method is quadratically convergent provided that v is suffi-
ciently close to its optimal value v*. In our computations,
[IVg(v)|| decreases almost always by half in each Newton
step before quadratic convergence occurs (see Fig. 1 for
illustration).

The conjugate gradient method is also implemented to
solve for the Newton direction. It almost always takes 7
steps, i.e. the size of the problem to obtain a sufficiently
good solution. Another observation is that the Gram-Schmidt
orthonormalization of the G;’s tremendously speeds up the
convergence rate of CG method compared to the case with
the original G;’s. The results are listed in Table IV, where
CG and Dir denote the conjugate gradient method and direct
method of computing Newton directions, respectively.

V. CONCLUDING REMARKS

The sample state covariances almost always fail to satisfy
linear constraint dictated by the underlying dynamics. The
consistency with such dynamics is crucial in addressing the
problem of characterizing the input power spectrum. Hence,
we formulate the structured covariance least-squares problem
and convert the matrical linear constraint into an equivalent
set of trace constraints. We develop quasi Newton and gener-
alized Newton methods capable of solving the corresponding
unconstrained dual problems with large number of variables.

With a different notion of distance, one can formulate an
alternative version of covariance approximation problem [3].
The quantum relative entropy is a metric used to quantify
information and uncertainty in quantum systems. Georgiou
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Fig. 1. The norm of gradient is plotted for different problem sizes using

direct Newton method. The norm decreases approximately by half before
quadratic convergence occurs.

recently provided a solution to this problem using homotopy
based approach in [15]. We intend to explore large-scale
covariance approximation problems with this metric in a
future work. An interesting question may be to compare the
optimal covariances from both the relative entropy distance
and the Euclidean least-squares distance.
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APPENDIX

To compute the least-squares H after finding optimal X,
one approach is to vectorize (LC) and solve the resultant
linear equations of size nm X nm. An alternative way devel-
oped in [1] is described as follows. Denote D = AX 4+ X A*
for notation simplicity,

BH + H*B* = -D
B*(BH + H*B*)B = —B*DB
B*B(HB) + (HB)*B*B = -B*DB.

With X € R(L), there exists H such that H B is Hermitian.
Therefore, solving this Lyapunov equation, one obtains H B
and computes H as follows,

B*(BH + H*B*) = —-B*D

B*BH + B*H*B* = —-B*D

H = —(B*B)"Y(B*D + HBB").
The cost of this computation is much smaller than the cost
of solving the linear equations of dimension nm x nm.
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