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On using the streamwise traveling waves for
variance suppression in channel flows

Rashad Moarref and Mihailo R. Jovanovié

Abstract— We assess the efficacy of using a zero-net-mass-
flux blowing and suction in the form of an upstream traveling
wave for transition control in channel flows. Our study is
motivated by a recent paper by Min et al. (J. Fluid Mech.,
vol. 558) where it was shown that this type of surface actuation
yields a sustained sub-laminar drag in a fully developed channel
flow. We develop models that govern the dynamics of velocity
fluctuations in the presence of stochastic outside disturbances
(such as free-stream turbulence and acoustic waves) and show
how changes in control parameters affect the fluctuations’
kinetic energy density. Effectively, we establish that properly
designed streamwise traveling waves can be used to suppress
variance of both the streamwise streaks and the Tollmien-
Schlichting waves in transitional channel flows.

Index Terms—Flow control; input-output norms; spatially
periodic systems; turbulence suppression.

I. INTRODUCTION

An alternative approach to feedback flow control with
wall-mounted arrays of sensors and actuators relies on the
understanding of the basic flow physics and the open-loop
implementation of controls (i.e. without measurement of the
relevant flow quantities and disturbances). Examples of the
physics-based sensorless strategies include: wall geometry
deformation such as riblets, transverse wall oscillations,
and control of conductive fluids using the Lorentz force.
Although several numerical and experimental studies show
that properly designed sensorless strategies yield a significant
drag reduction, an obstacle to fully utilizing these physics-
based approaches is the absence of a theoretical framework
for their design and optimization.

An enormous potential of sensorless strategies was re-
cently exemplified by [1], where a direct numerical simu-
lation (DNS) study was used to show that a surface blowing
and suction in the form of an upstream traveling wave gives
a sustained sub-laminar drag in a fully developed channel
flow. The underlying mechanism for the sub-laminar drag
is the generation of the wall region Reynolds shear stresses
of the opposite signs compared to what is expected based
on the mean shear. By assuming that a surface actuation
only influences the velocity fluctuations, Min et al [1]
found an explicit solution to the two-dimensional linearized
NS equations and showed that the drag is increased with
the downstream traveling waves, and decreased with the
upstream traveling waves.

An important open question is related to the dynamics
of velocity fluctuations in the presence of the streamwise
traveling waves. We address this problem by analyzing the
variance amplification (i.e., the Hy norm) of the linearized
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Fig. 1. Three dimensional channel flow.

NS equations in the presence of controls. It is shown that the
properly designed surface actuation is capable of suppressing
variance of both the streamwise streaks and the Tollmien-
Schlichting (TS) waves.

Our subsequent development is organized as follows: in
section II we determine a nominal velocity induced by a
blowing and suction in the form of a streamwise traveling
wave. In § III, we present an appropriate frequency repre-
sentation of the linearized NS equations, and briefly discuss
a notion of the ensemble average energy density of the
statistical steady-state. A computationally efficient method
for determination of the energy density in the presence of
small amplitude traveling waves is described in § IV. In
§ V, we employ a perturbation analysis to identify the control
parameters that suppress variance of the linearized equations.
A brief summary of the main results is provided in § VL

II. NOMINAL VELOCITY PROFILE

Consider a channel flow governed by the non-dimensional
incompressible NS equations

uyy = —(u-V)u — VP + (1/R)Au + F,
= V.,

with the Reynolds number defined in terms of maximal
nominal velocity Uy and channel half-width §, R := Uyd/v.
The kinematic viscosity is denoted by v, the velocity vector
is given by u, P is the pressure, F' is the body force,
V is the gradient, and A := V? is the Laplacian. The
spatial coordinates and time are represented by (Z, 7, Z) and
t, respectively, and the flow geometry is shown in Fig. 1.

Let us assume that in addition to a uniform streamwise
pressure gradient the flow is exposed to a zero-net-mass-flux
surface blowing and suction in the form of a streamwise
traveling wave. In the absence of the nominal body force,
F = 0, the nominal velocity u := (U, V, W) represents a
solution to (1) subject to

V(g = +1) = F2a cos (wo(z — ct)), F = 0,
U(£l) = Vy(£1) = W(£1) = 0, Pr = —2/R,
where «, w,, and ¢, respectively, denote amplitude, fre-
quency, and speed of the streamwise traveling wave. Positive

values of c define a wave moving in the downstream direction
while negative values of ¢ define an upstream traveling wave.
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The time dependence in V(£1) can be eliminated by the
following coordinate transformation {z := T — ct,y =
y, z = Zz,t := t}. This change of coordinates does not
influence the spatial differential operators but it transforms
the time derivative to 9; = 0; — c¢0,, which adds an
additional convective term to the NS equations

w = cu, — (u-V)u— VP + £Au + F,

NS
0 = Vu (NS)
In the new coordinates, (1,2) exhibits a two-
dimensional  steady-state  solution of the form
ua = (U(,’E,y), V($7y)7 0) = (\ij(.%',y)7 _\Ilm(x7y)7 0)7

where stream function W(z,y) satisfies the following
nonlinear equation

A% + (c — V) AY, + VU, AT, = 0,

U(+1) = £12 (e — elwom) W, (+1) = 0.
The solution to (SF) can be determined numerically using
standard NS solvers. In this paper, however, we will consider

a situation in which a surface blowing and suction has a small
amplitude. For small values of «, we represent ¥(x,y) as

(SF)

\Il(x7y) = \Ilo(y) + Z al‘lll(x7y)a
1=1
and perform a perturbation analysis to efficiently solve (SF)
and determine corrections to the nominal velocity in the
plane channel flow. In the above expansion, Uy(y) :=
Wo,(y) = Up(y) = 1 — y? denotes the plane channel flow,
and U, (x,y) represent the corrections to the nominal stream
function caused by the surface blowing and suction. It turns
out that ¥;(z,y) can be represented as

) = > Wy, 1>,
2

where Z 2 _, signifies that r takes the values {—I,—I +

.1 —2,1}. Each W, ,(y) is obtained as a solution to
a hnear ordmary differential equation which is derived by
substituting the expression for ¥(z,y) in (SF) and matching
the terms of equal powers in «. These equations are not
presented here due to page constraints and they are to be
reported elsewhere.

III. LINEARIZED NAVIER-STOKES EQUATIONS

We next present the constitutive equations describing
the dynamics (up to a first order) of velocity fluctuations
v := (u, v, w) around the nominal velocity profile of § IL
These equations are obtained by decomposing each field
in (NS) into the sum of a nominal and a fluctuating part, e.g.
u := u + v, and by neglecting the quadratic terms in v. A
standard conversion to the wall-normal velocity (v)/vorticity
(n) formulation removes the pressure from the equations and
yields the following evolution model with forcing

Evy(r,y,2,t) = Fip(r,y,2t) + Gd(z,y, 2, 1),
V(l‘, Y, %, t) = C’l/)(x? Y, =, t)
(LNS)
This evolution model is driven by the body force fluctuation
vector d := (dy, da, d3), which can account for the outside

flow disturbances such as acoustic waves or free-stream
turbulence. These types of excitations are arguably present in
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most wall-bounded flow configurations and it is of interest
to investigate their influence on velocity fluctuations. The
internal state of (LNS) is determined by ) (v, m),
with Dirichlet and Neumann boundary conditions on v and
Dirichlet boundary conditions on 7.

All operators in (LNS) are matrices of differential oper-
ators in three coordinate directions z, y, and z. We note
that operator C' in (LNS) captures a kinematic relationship
between 1) and v, operator G describes how outside dis-
turbances enter into the evolution model, whereas operators
E and F determine internal properties of the linearized
equations (for example, stability). While operators E, G,
and C' do not depend on the nominal velocity, operator
F' is nominal velocity dependent and, hence, it determines
changes in the dynamics due to changes in u. For the nominal
velocity u = (U(x,y), V(z,y),0), F is a 2 x 2 block-
operator with components

F'' = (1/R)A* + ((AU) — (U — cI)A)d, — (AV)d,
VA, — 2V,04y + Uy (A — 20,4) — (AV,) + (2(AV)8 +
AV, + Vo(A — 20,,) — 2U,4y) (O + 022) 10y,
F12 = —(2(AV)d, + AV, + V(A — 20,,) —

2y 0uy) (Oze + 0:2) 710,

F21 = — (Uyaz + Va:(aa::r +aZZ)_layyz)7

F?? = (1/R)A — (Uy + (U — )9, + VO,) —
V (696:1: + azz)_lamﬁ

where 0., 0y, and 0, represent differential operators in z,
y, and z, respectively, and (0., + 0..)~ ! is defined by

-1, [ =

Moreover, for the nominal velocity presented in § II, F
inherits spatial periodicity in x from u and each of its
components can be represented as

1] lj irwex tJ
F - 0 + E : 2 : € Er’

=1 2z

where F/ and F}’. are spatially invariant operators in the
streamwise and spanwise directions.

A. Frequency representation of the linearized model

Owing to the structure of the linearized equations, dif-
ferential operators F, GG, and C' are invariant with respect
to translations in horizontal directions. On the other hand,
operator F' is (spatially) invariant in z and (spatially) periodic
in x. Thus, the Fourier transform in z can be applied to
algebraize the spanwise differential operators. In other words,
the normal modes in z are the spanwise waves e'*%, where
k. denotes the spanwise wave number. On the other hand,
the agpropriate normal modes in z are given by the product
of €Y% and the 27/w, periodic function in z, with 6 €
[0, w,) [2]. Based on this, each signal in (LNS) (for example,
d) can be expressed as

d(z7y7 Z’t) =
8(1'7 y’ kzat) =

with k, € R, § € [0, w,), where only real parts are to
be used for representation of physical quantities. Expressing

eikzzeiez a(x’ y, kz? t)’
d(z + 27 /we, y, k2, t),
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d(z,y, k.,t) in its Fourier series finally yields
d(z,y,2,t) = Z d,(y,k.,t) eifna +ikoz

n=-—0oo

gn =0 + nw,, kz € Rv 0 € [07 wO)’

(NM)

where {d,,(y, k,t)}necz are the coefficients in the Fourier
series expansions of d(z,y, k., t).

The frequency representation of the linearized NS equa-
tions is obtained by substituting (NM) into (LNS)

at"be(% kZ7 t) = A@(kz) 1/’9(2% k27 t) + B@(kz) dG(y7 kza t)?
VG(Z/: kZ7 t) = CQ(kz) 1/’9(3/7 k27 t)
(FR)

This representation is parameterized by k, € R and 6 €
[0, w,) and ¥y (y, k., t) denotes a bi-infinite column vector,
Yo(y, koo t) = col{¥(0n,y,k.,t)}ncz. The same defin-
ition applies to dg(y, k.,t) and vg(y, k.,t). On the other
hand, for each k, and 0, Ay(k.), Bo(k.), and Cy(k,)
are bi-infinite matrices whose elements are one-dimensional
operators in y. The structure of these operators depends on
frequency representation of F, F', G, and C in (LNS), and it
can be determined using the following set of simple rules [2]:

e A spatially invariant operator L with Fourier symbol
L(k,) has a block-diagonal representation

Ly = diag {L(en)}n EZL-

For instance, if L = 0,, then Ly = diag{i(6 +
Nwo) }n ez. Operators E, G, C, Fy, and Fj, in (LNS)
are spatially invariant and, thus, their representations are
block-diagonal.

o A spatially periodic function T(x) with Fourier se-
ries coefficients {7}, }, ¢z has a f-independent block-
Toeplitz representation

T := toep { ,T27T1,,T71,T727"'},

where the box denotes the element on the main diagonal
of 7. For instance, T'(x) = e~"® has a block-Toeplitz
representation 7 := S, with only non-zero element
T_,.=1

o A representation of the sums and cascades of spatially
periodic functions and spatially invariant operators is
readily determined from these special cases. For exam-
ple, a matrix representation of operator e~\"*d, is given
by S, diag {i(0 + nwo) }nez-

Based on these, we get the following representations for

Ay, By, and Cy in (FR)

0o l
A = & Fo = &' Fop + Y o' Y &8 Firg
l=1 r2
=: Agg + Zal A, By := 5‘9_1 Go,
1=1
Gy = diag{G(0n)}nez, Co = diag{C(0n)}nez,

where we have used the fact that & := diag {E(0,)}n ez
is an invertible operator. For a convenience of later
algebraic manipulations, we rewrite A as Ay =
Y2 SorAg where Ay = diag {A1,(0n)}nez =
diag {E7Y(0p4+) F1.+(0) }n e z- In other words, for a given
l > 1 operator A;p has non-zero blocks only on rth sub-
diagonals with r € {—I,—1+2,...,1—2,1}. This particular
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structure of A;9 is exploited in the Hy norm perturbation
analysis that we present in § IV.

B. Variance amplification of the linearized model

The frequency representation (FR) contains a large amount
of information about linearized dynamics. For example, this
model can be used to assess stability properties of the
underlying nominal flow condition: stability of the linearized
system (LNS) is equivalent to the stability of operator
Ay (k) for each pair (k,, ) [2]. However, since the transition
in wall-bounded shear flows is not appropriately described
by the stability properties of the linearized equations [3]-
[8], we perform an input-output analysis of stochastically
forced model (FR) to assess the effectiveness of the proposed
control strategy. Namely, we set the initial conditions in (FR)
to zero and study responses of the linearized dynamics to
uncertain body forces. When the body forces are absent the
response of stable flows eventually decays to zero. However,
in the presence of stochastic body forces the linearized
NS equations are capable of maintaining high levels of
the steady-state variance [5]-[8]. Our analysis quantifies
the effect of imposed streamwise traveling waves on the
asymptotic levels of variance and describes how receptivity
changes in the presence of control. In § V, we illustrate how
this approach can be utilized to provide systematic guidelines
for a selection of control parameters.

Let us assume that a stable system (FR) is subject to a
zero-mean white stochastic process (in y and t) dy(y, k., ).
Then, for each k, and 6, the ensemble average energy density
of the statistical steady-state (i.e., the Hs norm) is determined
by

E(9,k,) = trace (tlim E{vy(, k. t) ® ve(~7kz,t)}) ,

where £ is the expectation operator, and vy ® vy denotes
the tensor product of vy with itself. We note that E(6, k)
determines the asymptotic level of variance maintained by a
stochastic outside forcing in (FR). Typically, this quantity
is computed by running the DNS of the NS equations
until the statistical steady-state is reached. However, for the
linearized system (FR), kinetic energy density E(6, k) can
be determined using the solution to the following operator
Lyapunov equation [2]

Aé‘(kZ)Pé‘(kZ) + PO(kZ)AZ(kZ) = - Bg(k‘z)[)’;(kz), (LE)

® B(0,k.) = trace (Py(ks)Cp(k.) Colks)),

where Py (k) denotes the correlation operator of 1, that is

Pe(kz) = thjgog{"/’a(',kz,t)®"/’0(',kz,t)}~

Since Cj(k.)Cp(k,) is an identity operator we have
E(0,k,) = trace (Py(k.)), and the total ensemble average
energy is obtained by integration over 6 and k,

(271r)2/ / " trace (Py(k.)) d6 k.
—oc0 JO
1 [e%} [e%e] wo
W/_OO . ;OO /0 trace (Pg(0n, k-)) df dk.

ﬁ/ / E(k,, k.) dk, dk.,
u —oo J— o0

where Py(0,,k.) denote elements on the main diagonal of

E =
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operator Py, and E(k,, k) := trace (Py(ks, k.)). We have
arrived at the above expression for E using the fact that
Py(k.) denotes a frequency representation of a spatially
periodic operator, and a simple observation that as n and 6
vary over Z and [0, w,), respectively, k, = 0, = 0 + nw,
assumes all values in R [2], [9]. The last expression for the
kinetic energy density, i.e. E(k,, k.) := trace (P;(ky, k.)),
is particularly convenient for comparison between the vari-
ance amplification of the uncontrolled and controlled flow
systems.

IV. PERTURBATION ANALYSIS OF VARIANCE
AMPLIFICATION

Solving (LE) is an arduous undertaking; a discretization
of the operators (in y) and truncation of bi-infinite matrices
converts (LE) into a large-scale matrix Lyapunov equation.
However, since we want to quantify changes in variance
amplification with control parameters, as well as with the
spatial frequencies, determining even the solution to this
approximation to (LE) is computationally expensive. Instead,
we employ an efficient perturbation analysis based approach
for solving (LE) [9]. This method is well suited for systems
with small amplitude spatially periodic terms, and it results
in a set of equations with a convenient structure. Namely,
the variance amplification can be computed by solving a
conveniently coupled system of operator valued Lyapunov
and Sylvester equations. A finite dimensional approximation
of these equations yields a set of algebraic matrix equations
whose order is determined by the size of discretization in y.

Theorem 1: Up to a second order in perturbation para-
meter «, the ensemble average energy density (variance
amplification, Hy norm) of system (LNS) is given by

E(ky, k.) = trace (X(kg, k) + a?Z(ky, k=) + O(a*)
= Eo(kx,kz) + QQEQ(km,kZ) + O(Oé4),

where X and Z solve the following system of Lyapunov and
Sylvester equations

Ao(6n) X(05) + X(05) Aj(6n) = —B(0n) B*(6n),
Ag(0n-1)Y (6n) + Y(0n) A5(0n) =

— (A1,-1(0n) X(02) + X (0n-1) AF 1 (6n-1)) ,
Ao(0n) Z(0n) + Z(0,) A5(0n) =

—(A2,0(0n) X(0,) + X(0,) A5 (05) +
Al,l(an—l)y(‘gn) + Y*(en) AT 1(9n 1) +

A1 —1(0ng1) Y (Ony1) + Y(9n+1)A1,_1(9n+1))-

Remark 1: Notation 6,,_; in Theorem 1 represents a short-
cut for ky — lwy, ie. 0y == 0+ (n—Dw, = 0, — lw, =
ky — lw,. Furthermore, in the system of Lyapunov and
Sylvester equations for X and Z we have slightly abused
the notation by suppressing the dependence on k., e.g.
Y(0ni1) = Y(Ont1, k) = Y(ks + wo, kz).

Remark 2: The expression for the Hs norm in Theorem 1
can be generalized to account for higher order corrections in
o It turns out that only terms of even powers in « contribute
to E, which in controlled flows depends on six parameters,

E(kx7 k., R,a,wo,c) =

Eo(krak27R) + ZamE?l(kz?kav Wo, €). ED)

=1
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Since our objective is to identify trends in variance amplifi-
cation, we confine our attention to a perturbation analysis up
to a second order in cv. We briefly comment on the influence
of higher order corrections to the Hs norm in § V, where we
show that the trends are correctly predicted by a perturbation
analysis up to a second order.

V. VARIANCE AMPLIFICATION IN PLANE CHANNEL FLOW
WITH R = 2000

In this section, we study the variance amplification of
stochastically excited linearized model. Theorem 1 reveals
the dependence of the Hs norm on the traveling wave
amplitude «, for 0 < o < 1. However, since the operators
in (FR) depend on the spatial wave-numbers, the Reynolds
number R, the wave frequency w,, and the wave speed c, the
‘Hs norm is also a function of these parameters. We discuss
how the variance amplification changes with these parameter
in plane channel flow with R = 2000, and demonstrate
that the streamwise traveling waves of properly selected
frequency and speed have a potential for reducing the Ho
norm. We also underline some of the basic tradeoffs that
need to be addressed in the process of selecting control
parameters.

A. Variance amplification of uncontrolled flow

We next briefly comment on the variance amplification in
uncontrolled channel flow with R = 2000. For an in-depth
treatment of this problem we refer the reader to [7], [8].

Fig. 2(a) illustrates the dependence of the uncontrolled Hy
norm on horizontal wave-numbers, Eq(k, k.). The dark red
regions signify that the low streamwise wave numbers and
O(1) spanwise wave numbers carry most of the uncontrolled
flow energy. The largest value of Eg(k,,k.) occurs at
(ky =0, k, = 1.78), which means that the most amplified
structures are infinitely elongated in the streamwise direction
and have the spanwise length scale of approximately 3.54,
where 0 is the channel half-width. We note that these
input-output resonances do not correspond to the least-stable
modes of the linearized equations. Rather, they arise due to
the coupling from the wall-normal velocity v to the wall-
normal vorticity 7. Physically, this coupling is a product
of the vortex stretching (vortex tilting, lift-up) mechanism;
the nominal shear is tilted in the wall-normal direction
by the spanwise changes in v which leads to a transient
amplification of 7. This mechanism does not take place either
when the nominal shear is zero (i.e., U’ = 0), or when there
is no spanwise variations in v (i.e., K, = 0). On the other
hand, the least-stable modes of (LNS) create a local peak
in Eg(ks, k) around (k, = 0, k, ~ 1.2), with a magnitude
significantly lower compared to the magnitude achieved by
the dominant streamwise constant flow structures.

Flow structures that contain most variance in uncontrolled
plane channel flow with {R = 2000, k, = 0, k, =
1.78} are shown in Fig. 2(b). The color plots represent
streamwise velocity and the contour lines represent stream
function. The most amplified set of fluctuations results in
pairs of counter rotating streamwise vortices that generate
high and low speed streaks antisymmetric with respect to
the channel’s centerline. These structures are ubiquitous in
both experimental and numerical studies related to transition
in channel and boundary layer flows. Thus, it is of interest
to design a control strategy capable of weakening the energy
content of streamwise constant velocity fluctuations.

2063



10" 10°

®)

k:
@
Fig. 2. (a) The Ha norm Eq(k, k) in uncontrolled flow with R = 2000.
The plot is given in the log-log-log scale. (b) Flow structures that contain
most variance in uncontrolled flow with { R = 2000, k; = 0, k. = 1.78}.

The color plots represent streamwise velocity fluctuations and the contour
lines represent stream function fluctuations.

B. Variance amplification of controlled flow

In this section, we use Theorem 1 to show how blow-
ing/suction in the form of a streamwise traveling wave
influences amplification of stochastic outside disturbances
in (LNS). We demonstrate that a judicious selection of
wave frequency and speed can reduce the Ho norm. We
also discuss some of the basic tradeoffs that need to be
considered when selecting control parameters for turbulence
suppression.

For a fixed Reynolds number, Eq is just a function of
ks and k, and it can be easily visualized as in Fig. 2(a). On
the other hand, Es depends on four parameters (k,, k., ¢, w,)
which somewhat complicates the visualization process. Here,
we analyze the cross-sections of Eq(k,, k., c,w,) by fixing
the values of certain parameters. A complete parametric
study of the contribution of E, to the variance amplification
will be reported elsewhere.

Since most amplification in the uncontrolled flow occurs at
k. = 0, it is relevant to first study the influence of controls
on the streamwise constant fluctuations. The uncontrolled
Ho norm at k, = 0 is shown in Fig. 3(a), where we
observe a characteristic peak in Eq(k,) at k, ~ 1.78. This
peak determines the most energetic structures in the velocity
field excited by a broad-band, stochastic input field d. On
the other hand, Fig. 3(b) illustrates the dependence of E,
on k, and c for the streamwise constant fluctuations with
w, = 0.01. As evident from this plot, the wave speed c
determines whether surface blowing and suction amplifies or
attenuates the most energetic components of the uncontrolled
flow. We observe the variance attenuation for a fairly broad
range of negative wave speeds, with the largest attenuation
occurring for upstream traveling waves with ¢ ~ —2.655.
This value of ¢ represents the wave speed that provides
the largest variance suppression (up to a second order in
«) of streamwise constant fluctuations in plane channel
flow with R = 2000 and w, = 0.01. On the other hand,
the downstream waves and the low speed upstream waves
amplify variance of the uncontrolled flow. Note that the
largest negative contributions of Eg to the Hy norm take
place in the region of k.’s where function Eq(k.) peaks.
This indicates that the upstream traveling waves introduce
resonant interactions with the most energetic modes of the
uncontrolled flow. The details of the underlying physical
mechanisms that lead to a parametric resonance are deferred
to a future study.

The above analysis illustrates the ability of the streamwise
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Fig. 3. (a) The H2 norm Eq (k) in uncontrolled flow with {R = 2000,
kz = 0}. (b) The second order correction Eo(k,c) to the Ho norm in
controlled flow with { R = 2000, k; = 0, wo = 0.01}.
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Fig. 4. (a) The H2 norm Eo(kz) in uncontrolled flow with { R = 2000,
k- = 0}. (b) The second order correction Eo(kz,c) to the Ho norm in
controlled flow with { R = 2000, k, = 0, w, = 0.01}.

traveling waves to weaken the intensity of the most energetic
modes of the uncontrolled flow. However, an important
aspect in the evaluation of any control strategy is to consider
the influence of controls on all of the system’s modes.
In view of this, we next discuss how control affects the
spanwise constant fluctuations and the full three-dimensional
fluctuations.

Fig. 4(a) shows the Ho norm of the uncontrolled flow
with k, = 0. The peak in Eq(k,) at k, =~ 1.2 is caused
by the least-stable linearized modes, and the corresponding
flow structures (TS waves) carry much less energy than the
streamwise constant modes (cf. Fig. 3(a)). Fig. 4(b) shows
Eqs(ky, c) for the traveling waves with w, = 0.01. Note that
the regions with negative and positive contributions to E
have changed compared to the streamwise constant case. In
particular, the wave speed that provides the largest variance
suppression at k,, = 0 increases the variance of the TS waves.
In order to reduce the energy content of the TS waves the
speed of the upstream traveling waves needs to be increased.
We observe that ¢ ~ —20 provides variance suppression of
both streamwise vortices and streaks an the TS waves.

Fig. 5(a) and Fig. 5(b), respectively, show the Ho norms
of the full three-dimensional fluctuations in the uncontrolled
and controlled flows with { R = 2000, w, = 0.01, ¢ = —20}.
These plots demonstrate that the properly designed stream-
wise traveling waves are capable of reducing the energy
content of the uncontrolled modes for all k£, and k.. Fur-
thermore, we observe that the dark red regions (representing
large positive values of Eg) in Fig. 5(a) almost overlap with
the dark blue regions (representing large negative values of
Es) in Fig. 5(b). Therefore, the surface blowing and suction
reduces the energy density of the uncontrolled flow for wave-
numbers where Eq(k,, k) achieves its largest values. Thus,
if the perturbation analysis (up to a second order in o)) were
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Fig. 5. (a) The Ha norm Eq(ky , k=) in uncontrolled flow with R = 2000.
(b) The second order correction Eg(kz, k=) to the Hz norm in controlled
flow with {R = 2000, w, = 0.01, ¢ = —20}.

kz kz
(a) (b)

Fig. 6. The H2 norm E(k) in the uncontrolled (blue curve) and controlled
flows with {R = 2000, k, = 0, wo = 0.01, ¢ = —20}, and: (a)
o = 5/2000, (b) « = 8/2000. The controlled flow plots are obtained
by approximating the infinite summations in (ED) by the summations with:
1 (green), 2 (red), 3 (cyan), 4 (magenta), and 5 (black) terms, respectively.

to be used as a basis for the selection of control parameters
(in the plane channel flow with R = 2000 and w, = 0.01),
the wave speed ¢ ~ —20 would be a reasonable choice.
However, we note that the stability of (LNS) will ultimately
determine how much « can be increased before destabilizing
the equations, which is an important parameter for choosing
(o, wy, ). The analysis of stability properties is outside the
scope of this work.

Fig. 6(a) and Fig. 6(b) show the H3 norm of the uncon-
trolled flow (blue curve) with {R = 2000, k, = 0}, as
well as the Hy norms of the flows subject to the surface
blowing and suction in the form of a streamwise traveling
wave with {w, = 0.01, ¢ = —20}, & = 5/2000 (Fig. 6(a)),
and o = 8/2000 (Fig. 6(b)). The controlled flow plots are
obtained using perturbation analysis by approximating the
infinite summations in (ED) by the summations with: one
term (green curves), two terms (red curves), three terms (cyan
curves), four terms (magenta curves), and five terms (black
curves), respectively. Clearly, for selected values of the trav-
eling wave parameters, the approximations of the controlled
flow Hy norms converge in both cases. We note that these
results closely match the results obtained using large-scale
computations. It is remarkable that the traveling waves of
amplitudes equal to only 0.5% and 0.8% of the maximal
nominal velocity (o« = 5/2000 and « = 8/2000) are capable
of suppressing the largest variance of the uncontrolled flow
by approximately 23 % and 50 %, respectively. Furthermore,
it is noteworthy that the second order correction to the Ho
norm captures the essential trends as to how much variance
can be suppressed in the presence of controls.

WeC19.4

VI. CONCLUDING REMARKS

This paper represents a continuation of recent efforts [10]—
[12] to develop a model-based approach for a design of
sensorless flow control strategies in wall-bounded shear
flows. The proposed method uses input-output analysis of
the linearized NS equations as a basis for a selection
of control parameters for variance suppression. The pro-
posed system-theoretic framework avoids the need for the
DNS/experiments in the early design stages and is capable of
predicting the essential trends in a computationally efficient
manner.

The new model-based design paradigm represents a spa-
tial analog of the well-known principle of vibrational con-
trol [13], where the system’s dynamical properties are altered
by introducing zero-mean oscillations into the system’s co-
efficients. Depending on the relationship between the natural
modes of the uncontrolled system and the forcing frequency,
the vibrational control may have a potential for providing
stability of the overall system and for changing its input-
output norms. For example, it is well known that the inverted
pendulum can be stabilized by sensorless means using high
frequency oscillations of the suspension point [13]. We show
that the principle of vibrational control can be also utilized
in systems governing the dynamics of flow fluctuations in
channel flows, where coefficients multiplying system’s state
have spatial periodicity. The key observation is that there is a
potential for changing dynamical properties of the linearized
NS equations (in favorable or unfavorable manner) whenever
controls with spatial and/or temporal periodicity enter into
the system’s coefficients.
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