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Analysis of drag reduction by polymers in a
turbulent channel flow

By B. K. Lieu� AND M. R. Jovanović�

We develop a model-based approach for studying the influence of polymers on drag
reduction in a turbulent channel flow. Our simulation-free method utilizes turbulence
modeling in conjunction with the analysis of stochastically forced linearized equations to
capture the effect of velocity and polymer stress fluctuations on the turbulent viscosity
and drag. We demonstrate that the essential drag-reducing trends observed in direct
numerical simulations are captured by our approach.

1. Introduction

The addition of a small amount of polymers to turbulent flows is an effective means
for reducing skin-friction losses (White & Mungal 2008). Most of our understanding of
the onset of drag reduction and the interaction of polymers with turbulence comes from
numerical and experimental studies. In particular, direct numerical simulations (DNS)
have offered tremendous insight on drag reduction mechanisms (Dimitropoulos et al.
1998; Min et al. 2003), maximum drag reduction (Li et al. 2006; Xi & Graham 2010), and
coherent structures (Dubief et al. 2004; Dimitropoulos et al. 2005; Li & Graham 2007).
In spite of this success, there is a need for the development of computationally attractive
models that are suitable for analysis and identification of key physical mechanisms.

In this paper, we combine turbulence modeling with analysis of stochastically forced
linearized flow equations to quantify the polymer-induced drag reduction in a simulation-
free manner. Our approach builds on recent efforts to develop model-based techniques
for controlling the onset of turbulence (Moarref & Jovanović 2010; Lieu, Moarref &
Jovanović 2010) and fully developed turbulent flows (Moarref & Jovanović 2012). In
contrast to the traditional approach that relies on numerical simulations, we use eddy-
viscosity-enhanced linearization to determine the influence of polymer additives on drag
reduction. Our predictions capture the essential trends observed in DNS studies.

Our report is organized as follows. In Section 2, we formulate the problem and briefly
discuss the governing equations and turbulence modeling. In Section 3, we examine the
influence of fluctuations on the turbulent viscosity and drag using a stochastically forced
model linearized around an approximation of the turbulent mean profile. We also present
an efficient method for computing the second-order statistics of velocity and polymer
stress fluctuations. In Section 4, we demonstrate that our model-based method is capable
of predicting the essential drag-reducing trends. We conclude with a brief summary of
our developments and outlook for future research in Section 5.

2. Problem formulation

We study a pressure-driven turbulent channel flow of a viscoelastic fluid in a Cartesian
coordinate system (x, y, z) where x is the streamwise, y the wall-normal, and z the
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spanwise direction. The conservation equations for momentum and mass are given by

Ut = − (U ·∇)U − ∇P +
β

Rτ
∆U +

(1− β)
Rτ

∇ · T ,

0 = ∇ · U ,
(2.1)

where U is the velocity vector, P is the pressure, T is the polymer stress tensor, ∇ is
the gradient, and ∆ = ∇ · ∇ is the Laplacian. The Reynolds number Rτ = uτh/ν0 is
defined in terms of the channel’s half-height h, the friction velocity uτ =

√
(τw/ρ), and

the zero shear rate kinematic viscosity ν0 = η0/ρ. Here, τw is the wall-shear stress, ρ
is the fluid density, η0 = ηs + ηp is the total viscosity, while ηs and ηp are the solvent
and polymer viscosities. The parameter β = ηs/η0 is the ratio of the solvent viscosity to
the total viscosity; for β = 1 the fluid is Newtonian and (2.1) simplifies to the standard
Navier-Stokes (NS) equations. Equations (2.1) have been brought to non-dimensional
form by scaling length with h, velocity with uτ , time with h/uτ , pressure with τw, and
polymer stress with ηpuτ/h.

We describe the evolution of the polymer stress tensor τ using the Oldroyd-B model (Bird
et al. 1987),

Tt =
1

We

(
∇U + (∇U)T − T

)
+ T ·∇U + (∇U)T ·T − (U ·∇) T +

D0

Rτ
∆T . (2.2)

The dimensionless parameter We = λuτ/h in (2.2) denotes the Weissenberg number
which is defined as the ratio of the polymer relaxation time λ to the characteristic flow
time h/uτ . In turbulent flows, the friction Weissenberg number Weτ = λu2

τ/ν0 is typically
used and the relationship between We and Weτ is given by (Housiadas & Beris 2004)

We = Weτ/Rτ .

The last term in (2.2) represents an artificial stress diffusive term. The numerical dif-
fusivity is denoted by D0 = κ/ν0 where κ is the isotropic numerical diffusivity. The
addition of this term helps alleviate numerical instabilities associated with the stan-
dard Oldroyd-B model. For small D0, Sureshkumar & Beris (1995) show that artificial
stress diffusivity has weak influence on the flow dynamics. In DNS of turbulent channel
flows, D0 is typically chosen to have the smallest value that provides numerically stable
computations.

2.1. Equations for mean flow

Here, we present a method for computing an approximation of the mean turbulent ve-
locity and polymer stresses. Even though this mean flow analysis shows that polymers
reduce drag, it does not capture the essential drag-reducing trends observed in DNS.
In Section 3, we show that analysis of the dynamics of flow fluctuations around this
approximate mean flow improves predictive capability of our model-based approach.

The mean flow equations are obtained by splitting the flow quantities into their mean
and fluctuating components

U = U + u, T = T + τ , P = P + p, (2.3)

where U = U , u = 0, with the bar denoting averaging in time and horizontal directions.
Substituting (2.3) into (2.1) and (2.2) and taking the average in time and horizontal
directions yields the steady-state mean equations for U and T (McComb 1991; Durbin
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& Reif 2000)

0 = − (U ·∇)U − ∇P +
β

Rτ
∆U +

(1− β)
Rτ

∇ ·T − ∇ ·
(
uuT

)
, (2.4a)

0 = ∇ ·U, (2.4b)

0 =
1

We

(
∇U + (∇U)T − T

)
+ T ·∇U + (∇U)T ·T − (U ·∇)T (2.4c)

+
D0

Rτ
∆T − (u ·∇) τ + τ ·∇u + (∇u)T · τ .

Since the second-order statistics of the fluctuations are not known a priori, system (2.4)
exhibits a closure problem. The first unknown term is the Reynolds stress tensor, uuT ,
which quantifies the transport of momentum arising from turbulent fluctuations (Mc-
Comb 1991). The remaining terms appear in the mean constitutive equation (2.4c),

Γ = (u ·∇) τ , Λ = τ · (∇u) + (∇u)T · τ , (2.5)

where Γ represents the contribution to the transport of the polymer stress tensor arising
from the fluctuating advective terms, and Λ accounts for the interactions between the
fluctuating components of the polymer stress tensor and the velocity gradient tensor.

2.2. Turbulent eddy viscosity

One of the most commonly used models for the second-order statistics of velocity fluc-
tuations is the Boussinesq approximation (McComb 1991)

uuT =
2
3

k I −
β νT

Rτ

(
∇U + (∇U)T

)
, (2.6)

where k is the turbulent kinetic energy, I is the identity operator, and νT is the turbulent
eddy viscosity. In turbulent flows of viscoelastic fluids, νT is determined from statistics of
velocity fluctuations and it is not known a priori. Hence, in order to accurately capture
influence of velocity fluctuations on the turbulent mean velocity and polymer stresses we
need an accurate model of νT . For a turbulent channel flow of Newtonian fluids, Reynolds
& Tiederman (1967) proposed the following model for the turbulent eddy viscosity

νT0(y) =
1
2

((
1 +

(c2

3
Rτ (1− y2) (1 + 2y2) (1− e−(1−|y|) Rτ /c1)

)2
)1/2

− 1

)
,

(2.7)
where c1 and c2 are modeling parameters selected to minimize least squares deviation
between the mean streamwise velocity obtained with turbulent viscosity (2.7), and the
mean streamwise velocity obtained in experiments and simulations. In particular, for
DNS data of Del Alamo & Jiménez (2003) at Rτ = 186 we have {c1 = 0.61, c2 = 46.2}.

For flow subject to a constant pressure gradient Px = −1, we determine an approx-
imation to the mean turbulent profiles by neglecting the influence of fluctuations (2.5)
in (2.4c) and utilizing (2.6) with eddy viscosity profile (2.7),

U =

 U(y)
0
0

 , T =

 T11(y) T12(y) 0
T12(y) 0 0

0 0 0

 .
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m
ea

n
ve

lo
ci

ty

y+

Figure 1. Mean velocity as a function of the distance from the wall in flows with no polymers
U0(y

+) (solid); and with polymers U(y+) for Weτ = 10 (4), Weτ = 50 (◦), and Weτ = 100
(×). For Newtonian fluids, we also show the linear wall asymptote, U = y+, and the logarithmic
inertial sublayer asymptote, U = 2.5 ln(y+)+6.5. Results are obtained for flows with Rτ = 186,
β = 0.9, and D0 = 3.25 using approximation up to fifth-order in α and the assumption that
turbulent viscosity νT0 captures the behavior of fluctuations.

Homogeneous Dirichlet boundary conditions are imposed on U , and the boundary condi-
tions for the polymer stresses are obtained using the procedure described in Sureshkumar
& Beris (1995).

We next utilize perturbation analysis with α = 1 − β as the perturbation parameter
to represent non-zero components of U and T as

U(y) = U0(y) + α U1(y) + α2 U2(y) + O(α3),
T1j(y) = T1j,0(y) + α T1j,1(y) + α2 T1j,2(y) + O(α3), j = {1, 2}.

By construction, U0 approximates the mean streamwise velocity in the turbulent flow
of Newtonian fluids. On the other hand, Ui, T11,i, and T12,i for i = 1, 2, . . ., denote
corrections to U0, T11,0, and T12,0 induced by polymers. They are obtained under the
assumption that the turbulent viscosity is not modified by polymers and that the second-
order statistics of fluctuations do not influence the mean polymer stresses. Figure 1 shows
the turbulent mean velocity profiles for the flow with no polymers U0 and for the flow
with polymers U as a function of the distance from the wall, y+ = Rτ (y + 1).

As shown in Figure 1, the linear relationship U = y+ is satisfied in the viscous sublayer
close to the wall (y+ < 2). In the inertial sublayer far away from the wall (y+ > 50),
the Newtonian turbulent mean velocity is approximated by the logarithmic profile U =
2.5 ln(y+)+6.5. This indicates that the turbulent mean profile computed using turbulent
viscosity (2.7) captures the essential trends in turbulent flows with no polymers. In flows
with polymers, U is increased in the inertial sublayer and the amount of increase is
reduced as Weτ increases. Note that the convergence of the perturbation series for the
mean velocity and polymer stresses is verified by full-scale nonlinear computations.

In flows with polymers, Housiadas & Beris (2004) defined drag reduction as

DR = 1 − (UB/UB,0)
−2/n

, n = 1.14775, (2.8)

where UB and UB,0 denote bulk velocities of flows with and without polymers,

UB =
∫ 1

−1

U(y) dy.
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The mean velocity profiles shown in Figure 1 induce 7.27%, 6.75%, and 5.77% of drag re-
duction at Weτ = 10, 50, and 100, respectively. Although in all three cases drag reduction
is achieved, decrease in drag reduction with Weτ contradicts DNS trends (Sureshkumar
et al. 1997). This indicates that the amount of drag reduction at large values of Weτ is
not correctly predicted by the above mean flow analysis. In what follows, we show that
dynamics of velocity and polymer stress fluctuations around the aforementioned mean
profiles play a crucial role in predicting the correct polymer drag reducing trends.

3. Stochastically forced flow with polymers: fluctuation dynamics

In this section, we examine the dynamics of infinitesimal velocity and polymer stress
fluctuations around the mean flow (U,T) of Section 2.2. Our model-based approach is
similar to the method that Moarref & Jovanović (2012) recently used to design drag-
reducing transverse wall-oscillations. Our analysis utilizes the NS and constitutive equa-
tions linearized around the turbulent mean flow of Section 2.2

ut = − (U ·∇)u − (u ·∇)U − ∇p +

1− α

Rτ
∇ ·

(
(1 + νT0)

(
∇u + (∇u)T

))
+

α

Rτ
∇ · τ , (3.1a)

0 = ∇ · u, (3.1b)

τ t =
1

We

(
∇u + (∇u)T − τ

)
+

D0

Rτ
∆τ + (3.1c)

T ·∇u + (∇u)T ·T − (u ·∇)T + τ ·∇U + (∇U)T · τ − (U ·∇) τ ,

where α = 1− β and

u =

 u

v

w

 , τ =

 τ11 τ12 τ13

τ12 τ22 τ23

τ13 τ23 τ33

 .

The evolution form of (3.1) is obtained by eliminating the pressure from the equations,
and by expressing the velocity fluctuations in terms of the wall-normal velocity v and
vorticity η = ∂zu − ∂xw. Furthermore, by rearranging the components of τ and by
applying the Fourier transforms in the x and z-directions, we arrive at a set of partial
differential equations in y and t parameterized by the wave-numbers κ = (kx, kz),

ψt (y,κ, t) = A(κ)ψ (y,κ, t) + B(κ) f (y,κ, t) ,

φ (y,κ, t) = C(κ)ψ (y,κ, t) ,
(3.2)

where ψ =
[
ψT

1 ψT
2

]T
is the state vector with

ψ1 =
[

v η
]T

, ψ2 =
[

τ22 τ23 τ33 τ12 τ13 τ11

]T
.

The output vector φ contains the velocity and polymer stress fluctuations. Due to space
constraints, the operators in (3.2) will be reported elsewhere. System (3.2) is forced with
a zero-mean temporally white stochastic process f ,

E (f (·,κ, t1)⊗ f (·,κ, t2)) = M(κ) δ(t1 − t2), (3.3)

where δ is the Dirac delta function, f ⊗ f is the tensor product of f with itself, and M(κ)
is the spatial spectral-density of the forcing.
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Jovanović & Georgiou (2010) showed that the steady-state statistics of velocity fluctu-
ations in homogeneous isotropic turbulence can be reproduced by driving linearized NS
equations with white-in-time forcing and properly selected spatial spectral-density. In-
spired by this observation, Moarref & Jovanović (2012) determined M(κ) to match the
DNS-generated energy spectrum in Newtonian turbulent channel flows. We adopt the
model for spatial spectral-density of forcing developed in Moarref & Jovanović (2012).

For the linearized system (3.2), the steady-state autocorrelation tensor of flow fluctu-
ations is obtained by solving the Lyapunov equation (Jovanović & Bamieh 2005)

A(κ) X(κ) + X(κ) A∗(κ) = −B(κ) M(κ) B∗(κ), (3.4)

where the asterisk denotes the adjoint of the corresponding operator. The operator X
represents the autocorrelation operator of ψ and it contains all second-order statistics of
velocity and polymer stress fluctuations. Furthermore, since we use a perturbation series
to represent the mean velocity U, the operator X can be represented as

X = X0 + α X1 + α2 X2 + O(α3), (3.5)

where X0 denotes the autocorrelation operator in the turbulent flow of Newtonian fluids,
and Xi for i = {1, 2, 3, . . .} denote the corrections induced by polymers.

By selecting proper velocity and length scales, the eddy viscosity can be expressed
as (McComb 1991)

νT = Cµ R2
τ

(
k2/ε

)
, (3.6)

where ε is the rate of energy dissipation and Cµ = 0.09 is a model constant. Here, we
utilize the autocorrelation operator X to determine the second-order statistics of the
velocity fluctuations and consequently k and ε. By expressing k and ε in terms of power
series expansion (in α), νT can be represented as

νT = νT0 + α νT1 + O(α3), νT1 = νT0 (2 k1/k0 − ε1/ε0) , (3.7)

where νT0 is the Reynolds–Tiederman eddy viscosity profile (2.7).
The developments of this section are used to study the influence of polymers on the

turbulent viscosity, mean velocity, drag, and turbulent kinetic energy; see Section 4 for
details.

4. Results and discussion

In this section, we examine the effect of flow fluctuations on the eddy viscosity, tur-
bulent mean velocity, drag and turbulent kinetic energy in flows with Rτ = 186, β = 0.9
and D0 = 3.25. We also analyze how Weτ influences the drag reduction and compare our
predictions with DNS results of Li et al. (2006). Furthermore, we study how polymers
influence the energy amplification of turbulent velocity fluctuations.

We use perturbation analysis up to fifth order in α for all our computations. In ad-
dition, for each computed flow quantity a series acceleration method known as Shanks
transformation (Shanks 1955) is used to increase the rate of convergence of the per-
turbation series. The finite-dimensional approximations of the underlying operators are
obtained using the pseudospectral method (Weideman & Reddy 2000). An automatic
Chebyshev collocation method (Trefethen et al. 2011) was also employed to verify our
results.
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Figure 2. (a) Turbulent eddy viscosity νT and (b) Reynolds stress uv as a function of y+ for
Rτ = 186, β = 0.9, D0 = 3.25: Weτ = 50 (5); Weτ = 70 (◦); and Weτ = 100 (2). Perturbation
series up to fifth order in α with Shanks approximation is used to obtain νT and uv.

4.1. Turbulent eddy viscosity and Reynolds shear stress

We first discuss the effect of polymers on the turbulent eddy viscosity νT and Reynolds
shear stress uv. Figure 2(a) shows the turbulent viscosity νT obtained using (3.6). The
eddy viscosity increases from zero at the channel wall to a maximum value within the
core of channel. As the friction Weissenberg number increases, νT decreases at all points
in the channel. In flows with polymers, the Reynolds shear stress shown in Figure 2(b) is
computed using the second-order statistics of stochastically forced linearized equations.
Similar to the eddy viscosity, the value of uv decreases throughout the channel as Weτ

increases. We note that reductions in the turbulent eddy viscosity and Reynolds shear
stress indicate that the drag is reduced; see Section 4.2 for additional details. Further-
more, the above-observed trends are in good agreement with the numerical findings of Li
et al. (2006) and Iaccarino et al. (2010).

4.2. Turbulent mean velocity and drag reduction

We next examine the influence of velocity and polymer stress fluctuations on the stream-
wise mean velocity and drag reduction. The modified turbulent mean velocity and poly-
mer stresses are obtained by solving the equations for mean flow (2.4) – (2.6) with
the corrected eddy viscosity (3.6). Note that the second-order statistics of flow fluctua-
tions (2.5), Γ and Λ, are obtained from the autocorrelation operator, X.

The modified turbulent mean velocity and drag reduction are shown in Figure 3. Fig-
ure 3(a) demonstrates that the fluctuations around the base flow computed in Section 2.2
have profound influence on the turbulent mean flow; c.f. Figures 1 and 3(a). For all mean
velocities, the constant pressure gradient constraint induces a linear dependence on y+

in the viscous sublayer close to the wall. As the friction Weissenberg number Weτ in-
creases, the streamwise velocity is increased in the inertial sublayer, which also increases
the amount of drag reduction; see Figure 3(b). Figure 3(b) also shows a curve that
provides a best fit to the amount of drag reduction obtained in simulations of the FENE-
P model (Li et al. 2006). Although the amount of drag reduction computed using our
simulation-free method does not match exactly the fitted curve, the drag-reducing trends
as a function of Weτ are nicely captured. More interestingly, it appears that our method
is capable of capturing the saturation of drag reduction at large Weτ . This phenomenon
is known as the maximum drag reduction asymptote (White & Mungal 2008). In our
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Figure 3. Modified turbulent mean streamwise velocity and drag reduction computed using νT ,
Γ and Λ for Rτ = 186, β = 0.9 and D0 = 3.25. (a) streamwise mean velocity as a function of the
distance from the wall, y+ = Rτ (y + 1): with no polymers U0 (solid); and with polymers U for
Weτ = 50 (5), Weτ = 70 (◦), Weτ = 100 (2) and Weτ = 120 (�). (b) Drag reduction obtained
using the mean velocities shown in (a). An approximation of the amount of drag reduction
achieved in high-fidelity simulations of Li et al. (2006) is also shown (solid line) in (b).

future work, we intend to gain additional insight into this phenomenon by conducting
study of the drag reduction dependence on 1/Weτ in flows with high Weτ .

4.3. Turbulent kinetic energy
Here, we study the energy amplification of velocity fluctuations in the flow with polymers.
Up to the second order in α, we have

E(kx, kz) = E0(kx, kz) + α E1(kx, kz) + α2 E2(kx, kz) + O
(
α3
)
,

= E0(kx, kz) + Ep(kx, kz),

where E0 represents the energy spectrum of the flow with no polymers and Ep denotes
the correction induced by polymers. The energy spectrum of the turbulent channel flow of
Newtonian fluids E0 is obtained by Del Alamo & Jiménez (2003) and it is always positive.
On the other hand, the corrections to it can assume both positive and negative values.
Figure 4 shows the corrections to the pre-multiplied energy spectrum of the velocity
fluctuations induced by polymers, Ep(kx, kz) = kx kz Ep(kx, kz).

In all three cases, the integral of Ep is positive indicating that polymer additives increase
the turbulent kinetic energy, which is in agreement with the DNS results of Min et al.
(2003). At Weτ = 50, Figure 4(a) shows energy amplification in the region where kx ∼
O(1) and kz ∼ O(1). As the Weissenberg number increases, the largest amplification
decreases. Furthermore, in all three cases, there is a narrow region of wavenumbers where
polymers slightly reduce fluctuations’ energy; as Weτ increases, the amplitude in this
region gets increased. This illustrates that energy amplification is reduced as the ratio
of the polymer relaxation time to the characteristic flow time increases. We note that
further investigation into the kinetic energy equation may provide additional insight into
the mechanisms behind energy amplification in flows with polymers.

5. Concluding remarks

We have developed a model-based approach for studying polymer drag reduction in a
turbulent channel flow. Our simulation-free method provides a computationally-efficient
way for predicting the amount of drag reduction by polymer additives. This is achieved
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Figure 4. Corrections to the pre-multiplied energy spectrum of velocity fluctuations induced by
polymers, Ep(kx, kz) = kx kz Ep(kx, kz), for Rτ = 186, β = 0.9, and D0 = 3.25: (a) Weτ = 50;
(b) Weτ = 70; and (c) Weτ = 100. Perturbation series up to fifth order in α are used with
Shanks approximation. All figures are shown in log-log-lin scale.

by combining a turbulent viscosity hypothesis with stochastically forced linearized flow
equations to study the influence of infinitesimal fluctuations around the turbulent mean
flow with polymers on drag reduction. The predicted turbulent mean velocity and drag
reduction trends agree with previously reported DNS results. Furthermore, we have iden-
tified the spatial length scales of the fluctuations that are most amplified by stochastic
disturbances.

Our results illustrate the predictive power of our model-based method and set the stage
for studying the physical mechanisms responsible for both the onset of drag reduction and
the maximum drag reduction asymptote. Our ongoing effort is dedicated to identifying
the underlying physics in the high Weissenberg number regime.
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Del Alamo, J. C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in
turbulent channels. Phys. Fluids 15 (6), 41–44.

Dimitropoulos, C. D., Dubief, Y., Shaqfeh, E. S. G., Moin, P. & Lele, S. K.
2005 Direct numerical simulation of polymer-induced drag reduction in turbulent
boundary layer flow. Phys. Fluids 17, 011705.

Dimitropoulos, C. D., Sureshkumar, R. & Beris, A. N. 1998 Direct numerical
simulation of viscoelastic turbulent channel flow exhibiting drag reduction: effect of
the variation of rheological parameters. J. Non-Newtonian Fluid Mech. 79, 433–468.



74 Lieu & Jovanović
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