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Abstract— Skin-friction drag reduction by transverse wall os-
cillations has received significant attention of flow control com-
munity. Both experiments and simulations have demonstrated
that oscillations with properly selected amplitude and frequency
can reduce turbulent drag by as much as 40 percent. For a
turbulent channel flow, we develop a model-based approach to
design oscillations that suppress turbulence. We show that judi-
ciously selected linearization of the flow with control can be used
to determine turbulent viscosity in a computationally efficient
manner. The resulting correction to the turbulent mean velocity
is then used to identify optimal frequency of oscillations, which
is in close agreement with previously conducted experimental
and numerical studies. This demonstrates the predictive power
of our simulation-free approach to controlling turbulent flows.

Index Terms— Drag reduction; flow control; stochastically
forced Navier-Stokes equations; time-periodic systems; turbu-
lence modeling.

I. INTRODUCTION

Flow control has a potential for enhancing the efficiency
and performance of engineering systems involving turbulent
flows. This is because turbulence is responsible for large
resistance to motion (drag) and therefore large loss of energy.
Over the last two decades, a large body of experimental and
numerical studies have shown the effectiveness of sensor-free
flow control strategies for turbulence suppression in wall-
bounded flows. For example, using high-fidelity numerical
simulations [1] and experiments [2], [3], it was shown that
a sustained suppression of turbulence can be achieved by
transverse wall oscillations, which lead to up to 40 percent
drag reduction. It was argued that a negative spanwise
vorticity is induced by the wall motion, which effectively
suppresses the turbulence by hampering the vortex stretching
mechanism [3]. By studying the balance of power, it was
further shown that a net power gain can be achieved for
small amplitudes of oscillations [4]–[6].

In parallel with the above numerical and experimental
studies, there has been a significant amount of effort for
theoretical modeling, analysis, and control of fluid flows [7].
Most of these efforts have been focused on stability analysis
and the problem of transition to turbulence. For example,
it was shown that the dominant flow structures that are
observed in transitional flows can be captured by studying
the H2 norm of the flow dynamics [8]. Since the H2 norm
quantifies the energy amplification of stochastic disturbances
by the flow, reducing the H2 norm can be used as a control
objective for preventing transition to turbulence. Based on
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Fig. 1. (a) Pressure driven channel flow; and (b) Channel flow subject to
transverse wall oscillations.

this idea, transverse wall oscillations were designed for sup-
pressing the kinetic energy of the fluctuations [9]. Recently,
a sensor-free control strategy based on traveling waves was
designed and shown to be effective in preventing transition
to turbulence [10], [11].

In this paper, we develop a novel model-based approach
to examine the effect of transverse wall oscillations on the
dynamics of a turbulent channel flow. We start by confirming
that the power necessary for maintaining wall oscillations
increases quadratically with their amplitude (as was first
shown by [12]). This suggests that large control amplitudes
may yield poor net efficiency. We thus confine our study
to small oscillation amplitudes and use perturbation analysis
(in the amplitude of oscillations) to identify the period of
oscillations that achieves largest drag reduction in a compu-
tationally efficient manner. In addition, we quantify the net
efficiency. The close agreement between our results and the
results obtained in experiments and simulations demonstrates
the predictive power of our model-based approach to flow
control design.

Our presentation is organized as follows: We formulate the
problem in Section II. The stochastically forced linearized
model for evolution of fluctuations around the base turbulent
flow is given in Section III. In addition, an efficient method
for computing the fluctuation statistics is provided and the
details of determining the influence of fluctuations on the
turbulent drag are presented. Our theoretical developments
are applied to the problem of turbulent drag reduction using
wall oscillations in Section IV. The paper is concluded in
Section V.

II. PROBLEM FORMULATION

Consider the pressure-driven channel flow of incompress-
ible Newtonian fluids with geometry shown in Fig. 1(a). This
flow is governed by the non-dimensional Navier-Stokes (NS)
and continuity equations

ut = −(u · ∇)u − ∇P + (1/Rτ ) ∆u,

0 = ∇ · u,
(1)
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where u is the velocity vector, P is pressure, ∇ is the
gradient, and ∆ = ∇ · ∇ is the Laplacian. The streamwise,
wall-normal, and spanwise coordinates are represented by
(x, y, z), and t denotes time. The subscripts are used to
denote the spatial and temporal derivatives, e.g., ux =
∂u/∂x = ∂xu. The friction Reynolds number Rτ = uτh/ν
is defined in terms of the channel’s half-height h and the
friction velocity uτ =

√
τw/ρ. Here, τw denotes the wall-

shear stress, ρ is fluid density, and ν is kinematic viscosity.
In (1), length is non-dimensionalized by h, velocity by uτ ,
time by h/uτ , and pressure by ρu2τ .

Throughout the paper we consider the case where the bulk
flux, which is obtained by integrating the streamwise velocity
over spatial coordinates, remains constant. This constraint
can be satisfied by adjusting the uniform streamwise pressure
gradient Px, which balances the wall-shear stress [13]. In
addition to the driving pressure gradient, the flow is also
subject to zero-mean transverse wall oscillations of ampli-
tude α and frequency ωt; see Fig. 1(b) for an illustration.
The period of oscillations normalized by h/uτ (outer units)
is given by T = 2π/ωt, which is equivalent to T+ = Rτ T
when normalized by ν/u2τ (viscous units). The streamwise
and wall normal velocities satisfy no-slip and no-penetration
boundary conditions at the walls.

The Reynolds decomposition of the velocity field is ob-
tained by time-averaging [13]

u = U + v, U = E (u) , E (v) = 0, (2)

where E ( · ) denotes the expectation operator, U =
[U V W ]T is the turbulent mean velocity, and v = [u v w ]T

is the vector of velocity fluctuations around U. The turbulent
mean velocity U obeys the Reynolds-averaged NS equations,
which are obtained by substituting (2) into (1) and by taking
the expectation

Ut = − (U · ∇)U−∇P + (1/Rτ ) ∆U−∇ · E
(
vvT

)
,

0 = ∇ ·U.
(3)

Here, E
(
vvT

)
denotes the Reynolds stress tensor which

quantifies the transport of momentum arising from turbulent
fluctuations [13]. Clearly, determination of mean velocity
requires knowledge of the fluctuation correlations (i.e., the
Reynolds stresses) which, in a turbulent flow, have profound
influence on the mean flow. The difficulty stems from the
fact that the nth velocity moment depends on the (n+ 1)th
moment (the so-called closure problem) [13].

The closure problem in (3) can be overcome by expressing
the higher order moments in terms of the lower-order mo-
ments. According to the turbulent viscosity hypothesis [13],
the turbulent momentum is transported in the direction of the
mean rate of strain,

E
(
vvT

)
− 1

3
tr
(
E
(
vvT

))
I = − νT

Rτ

(
∇U + (∇U)T

)
,

(4)
where νT (y) is the turbulent viscosity normalized by ν,
overline denotes averaging over x and z, tr(·) is the trace
of a tensor, and I is the identity operator.

A. Turbulent mean velocity

The steady-state solution of system (3)-(4) subject to a
uniform pressure gradient, Px, and transverse wall oscilla-
tions,

W (y = ±1, t) = 2α sin (ωt t) ,

is determined by [U(y) 0 W (y, t) ]T . It can be shown that
U arises from the uniform pressure gradient, while W is
induced by wall oscillations{

0 = ((1 + νT )Uy)y − Rτ Px,

U(y = ±1) = 0,
(5a){

Rτ Wt = ((1 + νT )Wy)y

W (y = ±1, t) = 2α sin (ωt t) .
(5b)

where (1 + νT ) represents an effective viscosity that accounts
for both molecular and turbulent dissipation [14].

For given turbulent viscosity νT and driving pressure
gradient Px, (5) represents an uncoupled system of equations
for U and W . In particular, the spanwise velocity W is
periodic in time

W (y, t) = α (W1(y) eiωt t + W ∗1 (y) e−iωt t), (6)

where ∗ denotes the complex conjugate, and i =
√
−1.

The difficulty in determining U and W from (5) arises
from the fact that νT depends on the fluctuations around the
turbulent mean velocity, and thus it is not known a priori.
A significant body of work has been devoted to finding an
expression for νT that yields the turbulent mean velocity in
the uncontrolled flow [15]

νT0(y) =
1

2

((
1 +

(c2
3
Rτ (1− y2) (1 + 2y2)×

(1− e−(1−|y|)Rτ/c1)
)2)1/2 − 1

)
.

(7)
The parameters c1 and c2 are selected to minimize least
squares deviation between the mean streamwise velocity
obtained from (5a) with Px = −1 and turbulent viscosity (7),
and the mean streamwise velocity obtained in experiments
and simulations. Application of this procedure yields c1 =
46.2, c2 = 0.61 for Rτ = 186. Under the assumption that
the turbulent viscosity (7) captures the effect of background
turbulence on the turbulent mean veocity, the system of equa-
tions (5)-(7) yields a solution U0 = [U0(y) 0 W0(y, t) ]T .
The implications of this assumption for determining the skin-
friction drag coefficient and the control net efficiency are
discussed in Section II-B where we show the necessity of
accounting for the effect of control on the turbulent viscosity.

B. Skin-friction drag coefficient and net efficiency

As mentioned in Section II, we adjust the pressure gradient
Px in order to maintain the constant bulk flux,

UB =
1

2

∫ 1

−1
U(y) dy.
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Fig. 2. The required power %Πreq,0 as a function of the period of
oscillations T+ for the flow with Rτ = 186. The symbols represent
%Πreq/α2 obtained from the numerical simulations of [6] for Rτ = 200
and three control amplitudes α = 2.25, ◦; α = 6, �; and α = 9, O.

Since the skin-friction drag coefficient is proportional to |Px|
and inversely proportional to U2

B [13],

Cf = 2 |Px|/U2
B ,

for the flow with constant UB , reduction (increase) in |Px|
induces drag reduction (increase). The change in the skin-
friction coefficient relative to the flow with no control is
given by

%Cf = 100
Cf,u − Cf,c

Cf,u
= 100 (1 + Px,c), (8)

where the subscripts u and c denote the quantities in the
uncontrolled and controlled flows, respectively. Thus, the
control leads to drag reduction when Px,c > −1.

The drag reduction induces saving in power (per unit area
of the channel surface and normalized by ρu2τ ) [16]

Πsave = 2UB (1 + Px,c).

Compared to the power required to drive the flow with no
control, Πu = 2UB , the saved power is determined by the
relative change in the skin-friction coefficient,

%Πsave = 100
Πsave

2UB
= 100 (1 + Px,c) = %Cf .

On the other hand, an input power is required for balancing
the spanwise shear stresses at the walls [16]. The required
power exerted by wall oscillations expressed in fraction of
the power necessary to drive the uncontrolled flow is given
by

%Πreq = 100
α2

RτUB
Im
(
W ′1|y=−1 − W ′1|y=1

)
, (9)

where Im (·) denotes the imaginary part of a complex num-
ber, and prime represents differentiation with respect to y.
The net efficiency of control is quantified by the difference
of the saved and required powers

%Πnet = %Πsave − %Πreq.

We start by studying the implications of solutions U0 and
W0 on the control net efficiency. For the spanwise mean
velocity W0, the required power grows quadratically with
α, %Πreq = α2 %Πreq,0. The solid curve in Fig. 2 shows
%Πreq,0(T+) for Rτ = 186. We see that the required power
is a monotonically decreasing function of T+. Therefore, in

view of net efficiency, the optimum period of oscillations
may be larger than the period that yields maximum drag
reduction. The symbols in Fig. 2 show close correspondence
between %Πreq,0 and the results obtained from numerical
simulations [6].

The apparent lack of influence of the wall movements on
U0, observed in Section II-A, is at odds with experiments
and simulations that have shown that properly designed
oscillations can reduce drag by as much as 40%. Thus,
model-based control of turbulent flows requires thorough
examination of the influence of control on νT .

C. The model equation for νT

The challenge here is to establish a relation between νT
and the second-order statistics of velocity fluctuations. Using
dimensional analysis a model equation for turbulent viscosity
is given by [14]

νT (y) = cR2
τ

k(y)2

ε(y)
, (10)

where k is the turbulent kinetic energy, ε is the its rate of
dissipation and c = 0.09. Both k and ε are determined by
the second-order statistics of fluctuations averaged over the
horizontal directions and one period T

k(y) =
1

2T

∫ T

0

E (uu + vv + ww) (y, t) dt,

ε(y) =
1

T

∫ T

0

E (2 (ux ux + vy vy + wz wz + uy vx +

uz wx + vz wy) + uy uy + wy wy +

vx vx + wx wx + uz uz + vz vz) (y, t) dt.
(11)

We next develop a computationally efficient method, that is
amenable to control design, for determining the effect of
actuation on νT .

III. STOCHASTICALLY FORCED FLOW WITH CONTROL

Since νT in (10) is determined by the second-order statis-
tics of velocity fluctuations, we use stochastically forced
linearized NS equations to compute k and ε in the flow with
control. Here, we utilize the fact that the second-order statis-
tics of linear time-periodic systems can be obtained from
the solution of the corresponding Lyapunov equation [17]. It
is well-known that the analysis of the steady-state variance
of infinitesimal fluctuations around the laminar flow can
be used to identify flow structures that initiate the onset
of turbulence [8], [18], [19]. In this paper, we show that
judiciously selected linearization of the turbulent flow with
control can be used to approximate the turbulent viscosity in
a computationally efficient way.

Next, we examine the effect of control on small-amplitude
fluctuations around U0 = [U0(y) 0 W0(y, t) ]T . An equiv-
alent expression for U0 can be found from the periodic
steady-state solution of the turbulent-viscosity-enhanced NS
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equations subject to wall-oscillations,

ut = − (u · ∇)u − ∇P +

(1/Rτ )∇ ·
(
(1 + νT0)

(
∇u + (∇u)T

))
,

0 = ∇ · u.

Our simulation-free design of drag-reducing transverse
oscillations involves four steps:

(i) the turbulent mean velocity in the presence of control is
obtained from (5) where closure is achieved using the
turbulent viscosity of the uncontrolled flow (7);

(ii) k and ε are determined from the second-order statistics
of fluctuations that are obtained from the stochastically
forced NS equations linearized around the turbulent
mean velocity determined in (i);

(iii) for the flow with control, the modifications to k and ε
are used to determine the modification to the turbulent
viscosity, νT ;

(iv) the modified νT is used in (5) to determine the effect
of fluctuations on the mean velocity, and thereby skin-
friction drag and control net efficiency.

The Fourier transform in x and z brings the NS equa-
tions (with turbulent viscosity) linearized around U0 =
[U0(y) 0 W0(y, t) ]T to an evolution form parameterized by
the streamwise and spanwise wavenumbers κ = (κx, κz)

ψt(y,κ, t) = A(κ, t)ψ(y,κ, t) + f(y,κ, t),

v(y,κ, t) = C(κ)ψ(y,κ, t).
(12)

Here, ψ = [ v η ]T is the state, η = iκzu − iκxw is the
wall-normal vorticity, and f is the stochastic forcing. The
same symbol is used to denote the variables in both physical
and wavenumber domains (these cases are distinguished from
the context). System (12) represents a family of PDEs in y
and t with time-periodic coefficients. The operators A and
C in (12) are given by

A =

[
A11 0
A21 A22

]
,

A11 = ∆−1
(
((1 + νT0)/Rτ )∆2 + (2ν′T0/Rτ )∆∂y +

(ν′′T0/Rτ )(∂2y + κ2) +

iκx
(
U ′′0 − U0∆

)
+ iκz

(
W ′′0 −W0∆

))
,

A21 = − iκzU
′
0 + iκxW

′
0,

A22 = ((1 + νT0)/Rτ )∆ + (ν′T0/Rτ )∂y −

iκxU0 − iκzW0,
(13)

C =

 Cu
Cv
Cw

 =
1

κ2

 iκx∂y − iκz

κ2 0

iκz∂y iκx

 ,
where ∆ = ∂2y − κ2 is the Laplacian, ∆2 = ∂4y − 2κ2 ∂2y +
κ4, κ2 = κ2x + κ2z, and {v(±1,κ, t) = v′(±1,κ, t) =
η(±1,κ, t) = 0}.

A. Computing the velocity correlations

We next briefly describe a method for determining the
steady-state statistics of the linearized system (12) driven
by a zero-mean temporally white stochastic forcing, with
second-order statistics,

E (f( · ,κ, t1)⊗ f( · ,κ, t2)) = M(κ) δ(t1 − t2). (14)

Here, δ is the Dirac delta function, f ⊗ f is the tensor
product of f with itself, and M(κ) is a spatial spectral-
density of forcing. For homogeneous isotropic turbulence,
the steady-state velocity correlation tensors can be repro-
duced by the linearized NS equations subject to white-in-
time forcing with second-order statistics proportional to the
turbulent energy spectrum [20]. Using this analogy, we select
M(κ) to guarantee equivalence between the two-dimensional
energy spectra of the uncontrolled turbulent flow and the flow
governed by stochastically forced NS equations linearized
around U0 = [U0(y) 0 0 ]T . To this end, we use the energy
spectrum of the uncontrolled flow obtained from numerical
simulations [21], E(y,κ), to define

M(κ) =
Ē(κ)

Ē0(κ)
M0(κ),

M0(κ) =

[ √
E I 0

0
√
E I

] [ √
E I 0

0
√
E I

]+
.

Here, Ē(κ) =
∫ 1

−1E(y,κ) dy is the two-dimensional energy
spectrum of the uncontrolled flow, Ē0(κ) is the energy
spectrum obtained from the linearized NS equations subject
to a white-in-time forcing f with spatial spectrum M0(κ),
and + denotes the adjoint of an operator.

For the time-periodic system (12), the operator A in (13)
can be written as

A(κ, t) = A0(κ) + α
(
A−1(κ) e−iωt t + A1(κ) eiωt t

)
.

It is a standard fact that the output of the linear time-periodic
system (12) subject to a stationary input is a cyclo-stationary
process [22], meaning that the statistical properties of the
output are periodic in time. For example,

X(κ, t) = E (ψ( · ,κ, t)⊗ψ( · ,κ, t)) =

X0(κ) + X1(κ) eiωt t + X+
1 (κ) e−iωt t +

X2(κ) ei 2ωt t + X+
2 (κ) e−i 2ωt t + . . . .

The averaged effect of forcing (over one period T ) on the
velocity correlations is determined by X0

1

T

∫ T

0

X(κ, t) dt = X0(κ). (15)

In the remainder of the paper, we consider small amplitude
of wall oscillations α. This choice is motivated by the
observation that the power required to maintain the oscil-
lations increases quadratically with α (cf. (9)). Thus, using
large amplitudes may be prohibitively expensive from con-
trol expenditure point of view. Furthermore, for sufficiently
small value of α the velocity correlations can be computed
efficiently using perturbation analysis in α [17]. Up to a
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second order in α, X0 in (15) can be written as a perturbation
series [9], [17]

X0(κ) = X0,0(κ) + α2X0,2(κ) + O(α4), (16)

where the operators X0,0 and X0,2 are obtained from a set
of decoupled Lyapunov equations [9], [17].

B. Influence of fluctuations on turbulent viscosity

According to (10), νT is determined by the second-order
statistics of velocity fluctuations. By considering dynamics
of infinitesimal fluctuations, these statistics can be obtained
from the auto-correlation operator X0. From (16), it follows

k = k0 + α2 k2 + O(α4),

ε = ε0 + α2 ε2 + O(α4).
(17)

Here, the subscript 0 denotes the corresponding quantities in
the uncontrolled turbulent flow, and the subscript 2 quantifies
the influence of fluctuations in the controlled flow at the level
of α2. A computationally efficient method for determining
k2 and ε2 from X0,2 is provided in Appendix I.

For small amplitude oscillations, substituting k and ε
from (17) into (10) yields

νT = cR2
τ

k2

ε
= cR2

τ

(
k0 + α2k2 +O(α4)

)2
ε0 + α2ε2 +O(α4)

,

which using Neumann series expansion leads to

νT = νT0 + α2 νT2 + O(α4),

νT2 = νT0

(
2k2
k0
− ε2
ε0

)
.

(18)

Therefore, up to second order in α, the influence of fluc-
tuations on turbulent viscosity in the flow with control is
determined by second-order corrections to the kinetic energy
k2 and its rate of dissipation ε2.

C. Skin-friction drag coefficient and net efficiency

We next show how velocity fluctuations in the flow subject
to small amplitude oscillations modify the skin-friction drag
coefficient and the net efficiency. As discussed in Section II-
B, Cf is determined by U and %Πnet is determined by both
U and W . The influence of fluctuations on U in the flow
with control can be obtained by substituting νT from (18)
into (5), and thereby expressing U and Px as

U = U0 + α2 U2 + O(α4),

Px = −1 + α2 Px,2 + O(α4).
(19)

An expression for the saved power is obtained by substi-
tuting Px from (19) into (8)

%Cf = %Πsave = α2 %Πsave,2 + O(α4),

where %Πsave,2 = 100Px,2. Therefor, a positive (negative)
value of %Πsave,2 signifies drag reduction (increase). Finally,
the net efficiency is given by

%Πnet = α2 %Πnet,2 + O(α4),

where %Πnet,2 = %Πsave,2 −%Πreq,0.

(a) (b)

Fig. 3. (a) Comparison between second order correction to the saved power
%Πsave,2(T+) for the flow with Rτ = 186 (solid curve), and %Πsave

obtained from numerical simulations (symbols) [6] for Rτ = 200 and
three control amplitudes α = 2.25, ◦; α = 6, �; and α = 9, O. The
data in (a) are normalized by their largest values; (b) Comparison between
second-order correction to the net efficiency %Πnet,2(T+) (solid curve)
for the flow with Rτ = 186 (solid curve), and %Πnet/α2 obtained from
numerical simulations (symbols) [6] for Rτ = 200 and α = 2.25, ◦.

IV. TURBULENT DRAG REDUCTION

We study turbulent drag reduction by transverse wall
oscillations in channel flows with Rτ = 186. The turbulent
statistics in the channel flow with no control are provided
by high-fidelity numerical simulations for this Reynolds
number [21]. We use this database to obtain the turbulent
energy spectrum which is used for determining the spectrum
of the stochastic forcing in the evolution model; see (14).
In addition, k0 in the uncontrolled flow is extracted from
this database, νT0 is obtained from (7), and ε0 is determined
from ε0 = cR2

τ k
2
0/νT0.

The differential operators are discretized in the wall-
normal direction using 101 Chebyshev collocation
points [23]. In x and z directions, the differential operators
are algebraized using 50 and 51 Fourier wavenumbers with
0.01 < κx < 42.5 and 0.01 < κz < 84.5, where the largest
values of κx and κz are equal to those in [21].

The solid curve in Fig. 3(a) shows the second order
correction (in α) to the saved power %Πsave,2(T+) for
the controlled flow with Rτ = 186. The positive value of
%Πsave,2 indicates that drag is reduced for all values of
30 < T+ < 300. The largest drag reduction takes place for
T+ = 102.5, which agrees closely with the results obtained
from high-fidelity numerical simulations (symbols) [6] for
Rτ = 200. The quantitative differences can be attributed to
the effect of higher order corrections. Another factor that
warrants further scrutiny is modeling of the spatial spectrum
of stochastic forcing. Analysis of these effects is beyond the
scope of the current study.

The solid curve in Fig. 3(b) shows the second-order
correction to the net efficiency, %Πnet,2(T+), in the flow
with Rτ = 186. We see that %Πnet,2 > 0 for T+ > 75,
indicating that, for small control amplitudes, a positive net
efficiency can be achieved if the period of oscillations is large
enough. Our prediction is in close agreement with numerical
simulations at Rτ = 200 [6] where positive net efficiency of
oscillations with α = 2.25 is obtained for T+ > 70.

3363



V. CONCLUDING REMARKS

This paper has introduced a model-based approach to
controlling turbulent flows. In contrast to standard practice
that embeds turbulence models in numerical simulations,
we have developed a simulation-free approach that enables
computationally-efficient control design and optimization.
We have shown that the study of dynamics is of prime
importance in designing drag-reducing wall oscillations. This
has allowed us to determine the influence of control on the
turbulent viscosity in a simulation-free manner. The first
step in our control-oriented modeling involves augmentation
of the molecular viscosity with the turbulent viscosity of
the flow with no control. The resulting model is then used
to determine the turbulent mean velocity in the flow with
control, and to study the dynamics of velocity fluctuations
around it. By considering linearized equations in the presence
of white-in-time stochastic forcing (whose spatial spectrum is
selected to be proportional to the turbulent kinetic energy of
the flow with no control), we have quantified the influence of
control on the second-order statistics of velocity fluctuations
and thereby on the turbulent viscosity. Finally, the modi-
fications to the turbulent viscosity determine the turbulent
mean velocity and skin-friction drag in the flow with control.
We have shown that perturbation analysis up to second
order reliably predicts the optimal period of drag-reducing
oscillations. We expect that our model-based approach will
find use in designing other feedback-based and sensor-less
turbulence suppression strategies.
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APPENDIX I
COMPUTING THE MODIFICATIONS k2 AND ε2 TO k AND ε

We show that the averaged effect (over one period T ) of
fluctuations around the mean velocity on k2 and ε2 can be
obtained from X0,2(κ). Following (11) and (16), the kinetic
energy of fluctuations and its rate of dissipation are given by

k2(y) =

∫
κ
Kk(y, y,κ) dκ,

ε2(y) =

∫
κ
Kε(y, y,κ) dκ,

where Kk(y, ξ,κ) and Kε(y, ξ,κ) are the kernel representa-
tion of the operators Nk and Nε, respectively

Nk(κ) = (CuX0,2 C
+
u + CvX0,2 C

+
v + CwX0,2 C

+
w ) /2,

Nε(κ) = 2
(
κ2x CuX0,2 C

+
u + ∂y CvX0,2 C

+
v ∂

+
y +

κ2z CwX0,2 C
+
w − iκx ∂y CuX0,2 C

+
v +

κxκz CuX0,2 C
+
w + iκz CvX0,2 C

+
w ∂

+
y

)
+

∂y CuX0,2 C
+
u ∂

+
y + ∂y CwX0,2 C

+
w ∂

+
y +

κ2 CvX0,2 C
+
v + κ2x CwX0,2 C

+
w +

κ2z CuX0,2 C
+
u .
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turbulence by streamwise traveling waves. Part 2: Direct numerical
simulations,” J. Fluid Mech., vol. 663, pp. 100–119, November 2010.

[12] P. Ricco and M. Quadrio, “Wall-oscillation conditions for drag re-
duction in turbulent channel flow,” Int. J. Heat Mass Transf., vol. 29,
no. 4, pp. 891–902, 2008.

[13] W. D. McComb, The Physics of Fluid Turbulence. Oxford University
Press Inc., 1991.

[14] S. B. Pope, Turbulent flows. Cambridge University Press, 2000.
[15] W. C. Reynolds and W. G. Tiederman, “Stability of turbulent channel

flow with application to Malkus’s theory,” J. Fluid Mech., vol. 27,
no. 2, pp. 253–272, 1967.

[16] I. G. Currie, Fundamental Mechanics of Fluids. CRC Press, 2003.
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