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Dynamic mode decomposition of H-type
transition to turbulence

By T. Sayadi, J. W. Nichols, P. J. Schmid† AND M. R. Jovanović‡

For H-type transition to turbulence in a flat-plate boundary layer, we identify dynamically
important features resulting from direct numerical and large eddy simulations (DNS and
LES, respectively). Even though LES coupled with a dynamic subgrid-scale model pro-
vides an accurate prediction of the transition location, it fails to predict initial overshoot
and subsequent turbulent skin friction. Dynamic Mode Decomposition (DMD) is used to
quantify the contribution of coherent structures to the total Reynolds shear stress. We
show that low-frequency modes, corresponding to the legs of hairpin vortices, account for
most of the total Reynolds shear stress gradient. We conclude that LES underpredicts
the skin friction because the dynamically important low frequency modes do not attain
sufficient amplitude.

1. Introduction

Dynamic Mode Decomposition (DMD) is a novel data analysis technique that extracts
coherent features from otherwise complicated flows (Schmid 2010). Because DMD is
data-driven, it applies to both experimental and numerical data. Given a sequence of
flow snapshots, DMD identifies spatial modes which oscillate with a single frequency. In
this respect, DMD is somewhat similar to Fourier analysis and shares its broad range of
applicability. An important difference, however, is that DMD allows for non-uniformly
spaced, complex frequencies, which may involve linear growth and decay. This enables
DMD to identify and resolve instabilities and self-sustaining cycles with complex multi-
scale behavior.

To further understand the advantages of DMD, it is useful to compare it to an-
other commonly used data analysis technique: Proper Orthogonal Decomposition (POD)
(Sirovich 1987; Holmes et al. 1996; Moin & Moser 1989). For a sequence of snapshots,
POD produces a set of modes such that the residual is minimized with respect to an
“energy” norm. Unlike DMD, each POD mode corresponds to a temporal evolution that
may contain a range of frequencies. While POD optimally captures the energy of a flow,
some flows are strongly affected by temporally coherent, but weakly-energetic, modes.
The “natural” (H-type) transition of a flat-plate boundary layer from laminar flow to
turbulence is an example of such a flow: weakly-energetic harmonic Tollmien-Schlichting
waves undergo secondary instability and then, by extracting energy from the mean shear,
grow dramatically before breaking down into turbulence (Herbert 1988).

For engineering applications, it is important to predict the location of the laminar-to-
turbulent transition, the level of the skin-friction coefficient through the transition region
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Figure 1. Formation of packets of hairpin vortices in H-type transition.

Lx Ly Lz Nx Ny Nz ∆x+ ∆y+

min
∆z+ Reθmax

λz

H-type(DNS) 9.6 1.0 0.605 4096 550 512 10.3 0.41 5.4 1250 0.1514
H-type (LES/UNS) 9.6 0.5 0.1514 480 160 16 90 0.91 42 1250 0.1514

Table 1. Characteristics of the different grids.

and the statistical features of the turbulence downstream. Previous work has shown that
large-eddy simulation (LES) coupled with a dynamic subgrid-scale (SGS) model provides
an adequate prediction of the transition location (Sayadi et al. 2011). This represents an
improvement over static SGS models, which inhibit transition by introducing unphysi-
cally high levels of SGS viscosity in the upstream laminar flow. A remaining difficulty,
however, is that the dynamic SGS models tend to underpredict the strength of the tran-
sition, and some measures of the turbulence downstream. Visualizations (see Figure 1)
of direct numerical simulations (DNS) of H-type boudary layer transition show that Λ-
vortices created by secondary instabilities lead to highly organized packets of hairpin
vortices in the transition region. Traditional SGS models do not account for this type of
coherence, which is considered as the primary reason for the discrepancy between LES
and DNS observations.

The purpose of this study is to apply DMD to DNS of natural (“controlled”) H-
type transition on a zero-pressure-gradient flat-plate boundary layer. In particular, we
investigate whether a few dynamically important modes, extracted through DMD, can
provide a good estimate of the total Reynolds shear stress. Moreover, applying DMD
to LES of the same flow establishes whether these modes are represented correctly with
lower resolution; it also provides insight into the effect of SGS modeling on these modes.

2. Methodology

Direct and large eddy simulation of the H-type transition to turbulence is performed
using a compressible Navier-Stokes solver for an ideal gas with Sutherland’s law for
viscosity (Sayadi et al. 2011; Nagarajan et al. 2003). The inlet Reynolds number based
on the distance from the leading edge is Rex = 105, and the characteristic length scale
used for non-dimensionalization is based on the distance of the inlet station from the
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Figure 2. Streamwise profiles of skin friction: —–, DNS; −−−, LES (dynamic Smagorinsky);
− · ·−, UNS; − · −, turbulent correlation Cf = 0.455/ ln2(0.06Rex) (White 2006); · · · , laminar
correlation.

leading edge of the plate, x0 = 1. The dimensions of the computational domain are given
in Table 1. In order to assess the performance of the dynamic Smagorinsky SGS model,
a simulation without any SGS model is performed on the same grid as the LES. This
simulation corresponds to an under-resolved numerical simulation with no SGS model,
or UNS.

DMD is performed using the algorithm presented in Schmid (2010), with a preprocess-
ing step based on singular value decomposition. This implementation allows for rank-
deficient snapshot sequences, and it avoids ill-conditioned companion matrices (Rowley
et al. 2009). In its simplest form, DMD provides the following representation of a flow
field U ,

U(x, y, z, t) =
N

∑

n=1

an exp (λnt)φn(x, y, z), (2.1)

where x, y, and z are spatial coordinates and t is time. In Eq. (2.1), φn’s are the DMD
modes, an’s are the amplitudes and λn’s are the frequencies of the respective modes. φn,
an, and λn are complex-valued quantities.

In DMD, the modes and frequencies are determined without the need for specifying
an inner product or a norm. Compared to POD, this gives DMD the advantage of being
applicable to any choice of flow quantities or spatial locations. We exploit this fact in
section 3.2.

Once the modes and frequencies of the system are computed, we recover the complex
amplitudes through a reconstruction of the original data. To solve for the magnitudes of
each mode, an, we apply a pseudo-inverse to find the bi-orthogonal basis, ψ, of dynamic
modes, φ such that

< ψi, φj >=

∫

ψ∗

i φjdV =

{

0, i 6= j

1, i = j.
(2.2)

While this could be done over all snapshots, in this report we choose to apply the pseudo-
inverse to the first snapshot only, and then use the remaining snapshots to evaluate the
closeness of fit over later times. Multiplying both sides of Eq. (2.1) at t = 0 by ψn and
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(a) —–, DNS; −−−, first DMD mode (mean). (b) Contours of Cf obtained using the
first DMD mode (mean).

Figure 3. Skin friction coefficient, Cf (H-type).

using the bi-orthogonal relation (2.2) gives

< ψn, v1 >= an < ψn, φn >= an, n = 1, 2, · · · , N − 1. (2.3)

If the dynamic modes are normalized, |ãn| gives the relative magnitude of the nth mode.

3. Results

Figure 2 shows the streamwise development of skin friction from UNS, LES and DNS.
Both LES and UNS predict the point of transition accurately. For the early transitional
flow, however, the skin friction coefficient predicted by the LES remains in closer agree-
ment with DNS than does the coefficient predicted by UNS. Further downstream, both
LES and UNS underpredict the overshoot and turbulent skin friction coefficient.

3.1. DMD of the skin friction coefficient

DMD is performed on the two-dimensional skin friction coefficient taken from the DNS
data. The streamwise coordinate of the domain used for this analysis extends from Rex =
5.5×105 to Rex = 6.1×105, between the vertical dotted lines in Figure 3(a). Figure 2(b)
shows that this streamwise length coincides with the region where the skin friction starts
diverging from the laminar correlation to the location where the skin friction reaches its
maximum. Figure 3(a) compares the time- and spanwise-averaged skin friction from the
total DNS data (solid curve) to the spanwise-average of the first DMD mode (dashed
curve). In the limit of infinitely many snapshots, the first DMD mode is mathematically
equivalent to a time-average, so the good agreement shown in Figure 2(a) is expected,
and serves as a verification of the method. The spatial structure of the first DMD mode
is shown in Figure 3(b).

Figure 4 shows the magnitude of all the DMD modes versus their frequency. This
amplitude spectrum identifies four modes (shown in black, together with their complex-
conjugates) as dynamically important to the original skin friction signal. The recon-
structed skin friction coefficient using these four modes is plotted in Figure 5. The con-
tours of skin friction coefficient from the original DNS data are also plotted in this figure.
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Figure 4. Magnitudes, an: ◦, all modes; •, modes 2,4,6 and 8.

(a) Reconstruction using 8 modes (b) DNS data

Figure 5. Contours of instantaneous skin friction.

Comparison of the reconstructed and the original skin friction data shows that four low-
frequency modes are able to provide a good approximation of the DNS data.

3.2. Composite DMD

In order to identify three-dimensional flow features responsible for the wall skin-friction
measured in the previous section, composite DMD is performed on the second invariant of
the velocity gradient tensor, Q (Hunt et al. 1988), and the skin friction coefficient. DMD
rearranges both two-dimensional and three-dimensional fields into column vectors in the
snapshot matrix. In the present case, composite DMD means that a vector corresponding
to the Q field is simply appended to each of the Cf vectors before performing DMD. As
previously mentioned, concatenation of vectors containing quantities of different units is
possible because DMD does not require an inner product.

Figure 6(b,e) shows the first three low frequency modes resulting from the composite
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Figure 6. Composite DMD: an isosurface of the Q-criterion is shown in the top row and
contours of the skin friction coefficient are shown in the bottom row. (a,d): full DNS data; (b,e):
superposition of three low-frequency DMD modes; (c,f): a single high-frequency mode.

DMD. Although some small-scale features are missing in the reconstruction, the overall
quality of approximation is satisfactory. This figure also shows the structures, through
the Q-criterion, of the superposition of these three low frequency modes. While the legs
of the hairpin vortices are represented by these low frequency modes, the heads are not
represented accurately if at all.

In contrast to the low-frequency modes, Figure 6(f) shows the signature of the skin
friction profile from one high frequency mode and its respective structure in the boundary
layer. The skin friction profile from this single high frequency mode does not contribute
much to the overall skin friction profile. The contours of the skin friction profile of the
high frequency modes are an order of magnitude smaller than the original DNS data.
The Q-criterion shows that this mode corresponds to the heads of the hairpin vortices
in Figure 6(c). This wall normal distribution of frequencies into different layers may be
explained by considering the wall-normal dependence of the convection velocity inside the
boundary layer. The formation of high frequencies away from the wall that later spread
towards the wall is consistent with the mechanism discussed by Bake et al. (2002).

3.3. Triple decomposition

Triple decomposition originally introduced by Reynolds & Hussain (1972), can be used
to decompose a signal into three components,

f = f + f̃ + f ′. (3.1)

Here, f is the time-averaged component, f̃ is the time periodic component and f ′ is the
component arising from turbulent motion. f̃ is obtained by phase-averaging the data with
a specific frequency (resulting in 〈f〉) such that f̃ = 〈f〉 − f . Time- and phase-averaging
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Figure 7. Magnitudes: ◦, LES; ∆, UNS; +, DNS.

of the incompressible Navier-Stokes equations yields:

∂ui

∂xi

=
∂ũi

∂xi

=
∂u′i
∂xi

, (3.2)

uj

∂ui

∂xj

= −
∂p

∂xi

+
1

Re

∂2ui

∂xj∂xj

−
∂

∂xj

(u′iu
′

j) −
∂

∂xj

(ũiũj). (3.3)

Performing a conventional time-averaging operation on the momentum equation would
yield the same left-hand side and the first two terms on the right-hand side of Eq. (3.3).
The third and fourth terms are combined into the Reynolds shear stress gradient

∂

∂xj

(u
′t
i u

′t
j ) =

∂

∂xj

(u′iu
′

j) +
∂

∂xj

(ũiũj), (3.4)

where u
′t is defined as u

′t = u−u, ∂
∂xj

(u′iu
′

j) is the contribution of the turbulent motion

and ∂
∂xj

(ũiũj) is the contribution of the coherent motion to the Reynolds shear stress.

In DMD, each mode is sampled based on its specific frequency. We argue that each
DMD mode is an optimal phase-average at its respective frequency. Based on this descrip-
tion, the contribution of each DMD mode to the Reynolds shear stress is the coherent
motion from one specific phase-average. The contribution of the nth coherent structure
to the total Reynolds shear stress is evaluated by ∂

∂xj
(ũn

i ũ
n
j ), where n represents the nth

DMD mode. Our aim is to assess whether a reduced order model consisting of a few
DMD modes (n << N) can reliably capture the Reynolds shear stress and skin friction
profiles.

DMD in the context of triple decomposition is applied to the velocity components of the
DNS data of H-type transition as well as LES and UNS of the same flow configuration.
The magnitude spectrum of the DMD is shown for these three data-sets in Figure 7.
This figure shows that the magnitudes of the modes are underpredicted in LES and
UNS. However, the frequencies seem to be correctly captured by both LES and UNS.

In Figure 6, we observed that the superposition of three low-frequency DMD modes
provided a good estimate of the the skin friction. Here, we choose the same three low-
frequency modes to construct the Reynolds shear stress at x = 5.68 × 105. Figure 8
shows that these modes from are also sufficient to approximate the total Reynolds shear
stress gradient. The first three DMD modes from LES and UNS, on the other hand,
dramatically underpredict the total Reynolds shear stress. Although, LES seems to give a
better estimate of this value than UNS. The shape of the Reynolds stress profile from LES
is similar to the DNS profile, however, to within a multiplicative factor. This indicates
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Figure 8. Reynolds shear stress gradient: •, DNS; and three low-freqency DMD modes from
—–, DNS; −−−, LES; − · −, UNS.

Figure 9. Contours of wall-normal velocity

that the underprediction of the skin friction owes only to an underprediction of the
magnitudes of each DMD mode. The shape of the three modes extracted from the DNS
are shown in Figure 9 using contours of wall-normal velocity. These low frequency modes
correspond to large scale structures in the flow.

To investigate whether or not the underprediction of the Reynolds shear stress owes
to the underpredicted magnitude instead of the modal shape itself, each of the three
low-frequency modes are multiplied by the ratio of the DNS value to that of the first
low-frequency mode. Figure 10(a) shows that while rescaled LES modes do a reasonable
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Figure 10. Reynolds shear stress gradient: •, DNS; —–, DMD modes from DNS; −−−,
DMD modes from LES; − · −, DMD modes from UNS.

job in approximating the total Reynolds shear stress profile, the performance of UNS is
less satisfactory. In particular, the Reynolds shear stress profile remains underpredicted.
The fact that the LES modes recover the shape of the DNS wall-normal Reynolds stress
profile to within a scaling factor is encouraging from a modeling perspective.

Figure 7 shows a kink in the spectrum of the LES and UNS which is not apparent
in the DNS spectrum. The contribution to the total Reynolds shear stress from this
relatively high frequency mode is shown in Figure 10. At this frequency, the DNS mode
has a very small contribution to the total Reynolds shear stress value. The mode from
UNS has a higher contribution but the LES mode has the highest contribution of all.
This suggests that the LES model artificially magnifies higher frequency modes at the
expense of dynamically important lower frequency modes.

To determine the generality of these results, a future work will perform the same
exercise on the DNS data of K-type transition (Sayadi et al. 2011). In addition to the
dynamic Smagorinsky model, several widely used dynamic SGS models have also been
investigated by Sayadi & Moin (2011) in the context of H-type transition, and may be
used to assess the effect of different SGS models on the shapes and frequencies of the
LES modes. If these results prove to be general across different transition scenarios and
SGS models, these low frequency modes can be used as an alternative wall model in the
vicinity of the transition region, providing the correct amount of Reynolds shear stress.

4. Conclusions

DMD is performed on the two-dimensional skin friction data of the DNS of H-type
transition to turbulence. With few low frequency modes the skin friction profile is es-
timated accurately. DMD on the composite Q and skin friction data shows that these
low frequency modes are associated with the legs of hairpin vortices inside the boundary
layer. High frequency modes do not affect the total skin friction coefficient significantly
and represent the heads of the hairpin structures. DMD, interpreted in the context of
triple decomposition (Reynolds & Hussain 1972), is performed on the velocity compo-
nents of the DNS, LES and UNS data. The total Reynolds shear stress is approximated
correctly by three low frequency modes in the case of the DNS data. The same low
frequency modes in LES and UNS underpredict the value of the Reynolds shear stress
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gradient. The spectrum of LES and UNS shows a kink at a relatively high frequency.
While this relatively higher frequency mode has no contribution to the total Reynolds
shear stress in the DNS data, it is artificially magnified through the use of the dynamic
Smagorinsky SGS model.
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