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Abstract— For a turbulent channel flow with zero-net-mass-
flux surface actuation in the form of streamwise traveling
waves we develop a model-based approach to design control
parameters that can reduce skin-friction drag. In contrast to the
traditional approach that relies on numerical simulations and
experiments, we use turbulence modeling in conjunction with
stochastically forced linearized equations to determine the effect
of small amplitude traveling waves on the drag. Our simulation-
free approach is capable of identifying drag reducing trends
in traveling waves with various control parameters. High-
fidelity simulations are used to verify quality of our theoretical
predictions.

Index Terms— Drag reduction; flow control; stochastically
forced Navier-Stokes equations; turbulence modeling.

I. INTRODUCTION

Sensor-free flow control strategies are capable of reducing
drag in turbulent flows; examples of these strategies in-
clude spanwise wall oscillations [1], riblets, and streamwise
traveling waves [2], [3]. Recently, numerical simulations
of turbulent channel flows were used to demonstrate that
upstream traveling waves can provide sustained levels of drag
that are lower than in the laminar flow [2]. These numerical
simulations have provided motivation for the development
of a model-based framework for designing traveling waves
to control the onset of turbulence [4], [5]. Furthermore, the
results of [4], [5] have recently been extended to turbulent
channel flows subject to spanwise wall-oscillations [6]. The-
oretical predictions obtained in [6] were able to capture the
behavior of the controlled turbulent flow which was previ-
ously observed in high fidelity simulations [1]. In this paper,
we utilize a similar computationally efficient model-based
method to study the effects of streamwise traveling waves
on turbulent channel flows. This is achieved by combining
turbulence modeling with stochastically forced linearized
dynamics to determine the effect of small amplitude traveling
waves on skin-friction drag. Our approach is capable of
identifying drag reducing trends in traveling waves with
various control parameters. We use high fidelity numerical
simulations as a means for verifying trustworthiness of our
theoretical predictions.

Our presentation is organized as follows: in Section II,
we present the governing equations along with the turbulent
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Fig. 1. (a) Pressure driven channel flow. (b) Boundary actuation of blowing
and suction along the walls.

viscosity model; in Section III, we describe the procedure
for determining an approximation to the turbulent mean
velocity in flow with control using turbulent viscosity of the
uncontrolled flow; in Section IV, we use linearized Navier-
Stokes (NS) equations to obtain second-order statistics of
velocity fluctuations in controlled flow and to show how
they influence the turbulent viscosity and skin-friction drag;
and finally, in Section IV-D, we demonstrate the utility of
our method in capturing drag-reducing trends of streamwise
traveling waves. We summarize our results in Section V.

II. PROBLEM FORMULATION

A. Governing equations

We consider a three-dimensional turbulent channel flow of
an incompressible viscous Newtonian fluid; see Fig. 1(a) for
geometry. The flow is driven by a pressure gradient and is
governed by the NS and continuity equations

ut = −(u · ∇)u − ∇P + (1/Rτ ) ∆u,

0 = ∇ · u,
(1)

where u is the velocity vector, P is the pressure, ∇ is the
gradient, ∆ = ∇ · ∇ is the Laplacian. The streamwise,
wall-normal, and spanwise coordinates are represented by
x̄, ȳ, and z̄, and time is denoted by t̄. Equation (1) has
been non-dimensionalized by scaling spatial coordinates with
the channel half-height h, velocity with the friction velocity
uτ =

√
τw/ρ, time with inertial time scale h/uτ , and

pressure with ρu2τ . The important parameter in (1) is the
friction Reynolds number, Rτ = uτh/ν, which determines
the ratio of inertial to viscous forces. Here, ρ is the fluid
density and ν is the kinematic viscosity.

In addition to pressure gradient, the flow with control is
subject to a zero-net-mass-flux surface blowing and suction.
This imposes the following boundary conditions on the
velocity fields,

u (x̄, ȳ = ±1, z̄, t̄) = [ 0 ∓ 2α cos (ωx(x̄− c t̄)) 0 ]
T
, (2)
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where ωx, c, and α denote the frequency, speed, and am-
plitude of the traveling wave. Positive (negative) values of
c define a wave that travels in the downstream (upstream)
direction. We can eliminate the time dependence in (2) using
a simple coordinate transformation, (x = x̄− ct̄, y = ȳ, z =
z̄, t = t̄), which adds an additional convective term to (1)

ut = cux − (u · ∇)u − ∇P + (1/Rτ ) ∆u,

0 = ∇ · u.
(3)

B. Navier-Stokes equations augmented with turbulent viscos-
ity

Following a similar procedure as in [6], we augment the
molecular viscosity in (3) with turbulent viscosity νT

ut = cux − (u · ∇)u − ∇P +

(1/Rτ )∇ ·
(
(1 + νT )

(
∇u + (∇u)T

))
,

0 = ∇ · u.

(4)

This model has been used in [6] for model-based design of
transverse wall oscillations for the purpose of drag reduction.
Moarref and Jovanović [6] showed that this model is capable
of capturing the essential features of the turbulent flow
with control that were previously observed in high fidelity
numerical simulations.

In order to determine the influence of traveling waves
on skin-friction drag we need to develop robust models for
approximating the turbulent viscosity, νT , in the presence
of control. Several studies [7]–[9] have attempted to find
expressions for νT that yield the turbulent mean velocity in
flows without control. For example, the following model for
the turbulent viscosity was developed in [9],

νT0(y) =
1

2

((
1 +

(c2
3
Rτ (1− y2) (1 + 2y2)×

(1− e−(1−|y|)Rτ/c1)
)2)1/2 − 1

)
(5)

where the parameters c1 and c2 are selected to minimize
least squares deviation between the mean streamwise velocity
obtained with τw = 1 and turbulent viscosity (5), and
the mean streamwise velocity obtained in experiments and
simulations.

Our model-based design of streamwise traveling waves for
drag reduction involves two tasks:
(i) [Section III] Mean flow analysis: assuming that (5) re-

liably approximates turbulent viscosity in the controlled
flow, we determine the turbulent mean velocity in the
flow subject to traveling waves;

(ii) [Section IV] Fluctuation dynamics: we quantify the ef-
fect of fluctuations around the mean velocity determined
in (i) on turbulent viscosity and drag reduction.

In Section III, we use perturbation analysis to determine
the steady-state solution to (4) with turbulent viscosity
given by (5) in the presence of small-amplitude boundary
actuation (2). Using high-fidelity simulations of nonlinear
flow dynamics we show that this approximation to turbulent
mean velocity does not reliably predict the drag reducing

effects of streamwise traveling waves. In Section IV, we then
demonstrate that predictive capability of our analysis can be
improved by examining stochastically-forced linearization of
system (4)-(5) around its steady-state solution.

III. TURBULENT MEAN VELOCITY IN FLOW WITH νT0

The first step in our analysis requires determination of an
approximation to the turbulent mean velocity,

U =
[
U(x, y) V (x, y) 0

]T
,

in the presence of blowing and suction along the walls. This
is achieved by finding the steady-state solution to (4)-(5),

0 = cUx − (U · ∇)U − ∇P +

(1/Rτ )∇ ·
(
(1 + νT0)

(
∇U + (∇U)T

))
,

0 = ∇ ·U,

(6)

with boundary conditions

V (x, y = ±1) = ∓ 2α cos (ωx x) , U(x,±1) = 0.
(7)

For small amplitude actuation, α � 1, a perturbation
analysis can be employed to solve (6) subject to (7) and
determine the corrections to the mean velocities,

U(x, y) = U0(y) + αU1(x, y) + α2 U2(x, y) +O(α3),

V (x, y) = αV1(x, y) + α2 V2(x, y) + O(α3).
(8)

Here, U0(y) represents the base velocity in the uncontrolled
turbulent flow and it is determined from the solution to

0 = (1 + νT0)U ′′0 + ν′T0 U
′
0 + Rτ ,

0 = U0(y = ±1),
(9)

where prime denotes differentiation with respect to the wall-
normal coordinate y. Higher harmonics of the mean velocity
can be represented as

U1(x, y) = U1,−1(y) e−iωxx + U1,1(y) eiωxx,

V1(x, y) = V1,−1(y) e−iωxx + V1,1(y) eiωxx,

U2(x, y) = U2,0(y) + U2,−2(y) e−2iωxx+ U2,2(y) e2iωxx,

V2(x, y) = V2,−2(y) e−2iωxx + V2,2(y) e2iωxx.

Under the assumption of the fixed bulk,∫ 1

−1
U(x, y) dy =

∫ 1

−1
U0(y) dy,

the skin-friction drag is determined by the slope of the
streamwise mean velocity at the walls,

D =
1

2

(
dU

dy

∣∣∣∣
−1
− dU

dy

∣∣∣∣
1

)
, (10)

where the overline denotes the average value obtained by
integration in the x-direction. Thus, up to a second-order in
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Fig. 2. Second-order correction to the skin-friction drag D2 as a function of traveling wave speed c and frequency ωx: (a) upstream traveling waves;
and (b) downstream traveling waves. Predictions are obtained using the solution to (6)-(7) with turbulent viscosity determined by (5).

α, the only terms that influence D are U0 and U2,0,

D = D0 + α2D2 + O(α4),

D0 := (U ′0(−1) − U ′0(1))/2,

D2 := (U ′2,0(−1) − U ′2,0(1))/2,

Figure 2 shows the second order correction to skin-friction
drag D2, as a function of the traveling wave speed and
frequency. We observe that both upstream and downstream
traveling waves increase drag. This is in contrast to the
results obtained using simulations of the nonlinear flow
dynamics [2], [5] where it was shown that drag reduction can
be obtained for certain values of traveling wave parameters.
For an upstream traveling wave with c = −2 and ωx = 0.5,
Fig. 3 also demonstrates increase in drag for all values of
the wave amplitude α. We observe close correspondence
between the results obtained from the solution to (6)-(7) with
νT0 determined by (5) using terms up to a second order in
α, fourth order in α, and Newton’s method.

The results of this section show the inability of the above
conducted mean flow analysis to capture the drag reducing
effects of streamwise traveling waves. In Section IV, we
demonstrate that the gap between our predictions and the
results of high-fidelity numerical simulations can be signif-
icantly reduced by analyzing the dynamics of fluctuations
around the mean velocity profile determined here.

IV. DYNAMICS OF VELOCITY FLUCTUATIONS

In this section, we examine the dynamics of fluctuations
around the turbulent mean profile U determined in Sec-
tion III. The second-order statistics of the flow with control
are obtained using stochastically-forced NS equations. For
small amplitude actuation, we employ perturbation analysis
to determine turbulent viscosity and the resulting correction
to the skin-friction drag from these statistics.

A. Linearized Navier-Stokes equations

The dynamics of infinitesimal velocity fluctuations v =[
u v w

]T
around the turbulent mean velocity U are

governed by

vt = cvx − (U · ∇)v − (v · ∇)U − ∇p + f

+ (1/Rτ )∇ ·
(
(1 + νT0)

(
∇v + (∇v)T

))
,

0 = ∇ · v.
(11)

Equation (11) is driven by zero-mean temporally white
stochastic forcing f . Since the boundary conditions (2) are
satisfied by turbulent mean velocity, the velocity fluctuations
v assume no-slip boundary conditions. Following a similar
procedure as in [4], we can bring the set of spatially periodic
PDEs (11) into the following evolution form

∂tψθ(y, kz, t) = Aθ(kz)ψθ(y, kz, t) + fθ(y, kz, t),

vθ(y, kz, t) = Cθ(kz)ψθ(y, kz, t),
(12)

where ψ = [ v η ]T is the state vector with η = ∂zu −
∂xw being the wall-normal vorticity. Homogenous Dirichlet
boundary conditions are imposed on η, while homogeneous
Dirichlet and Neumann boundary conditions are imposed on
v.

We note that ψ, v, and f are bi-infinite column vec-
tors parameterized by θ and kz , e.g., ψθ(y, kz, t) =
col{ψ(θn, y, kz, t)}n∈N. Furthermore, for each θ and kz ,
Aθ(kz) and Cθ(kz) are bi-infinite matrices whose elements
are integro-differential operators in y. The operator Aθ can
be written as Aθ = A0θ +

∑∞
`=1 α

`A`θ where the definition
of A`θ can be found in [4]. In the next section, we exploit
the structure of the operator Aθ and use perturbation analysis
to determine the auto-correlation operator of ψθ for small
values of the traveling wave amplitude, α.

B. Second-order statistics of velocity fluctuations

Consider the linearized system (12) driven by zero-mean
temporally white stochastic forcing with second-order statis-
tics,

E (f( ·κ, t1)⊗ f( · ,κ, t2)) = M(κ) δ(t1 − t2).

Here, κ = (θ, kz) denotes the wave-numbers, δ is the Dirac
delta function, f⊗f is the tensor product of f with itself, and
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Fig. 3. Drag variation, ∆D = D−D0, as a function of wave amplitude
α for an upstream traveling wave with c = −2 and ωx = 0.5. Predictions
are obtained from the solution to (6)-(7) with turbulent viscosity determined
by (5) using terms up to a second order in α (◦), fourth order in α (O),
and Newton’s method (solid curve).

M(κ) is the spatial spectral-density of forcing. We follow [6]
and select M so that the two-dimensional energy spectra
of the stochastically forced linearized NS equations match
those of the uncontrolled turbulent flow. For this purpose,
we use the energy spectrum of the uncontrolled flow E(y,κ)
resulting from numerical simulations of the nonlinear flow
dynamics [10], [11] to define

M(κ) =
Ē(κ)

Ē0(κ)
M0(κ),

M0(κ) =

[√
E I 0

0
√
E I

][√
E I 0

0
√
E I

]+
,

where Ē(κ) = (1/2)
∫ 1

−1E(y,κ) dy represents the two-
dimensional energy spectrum of the uncontrolled flow and
Ē0 is the energy spectrum obtained from the linearized
NS equations subject to white-in-time forcing with spatial
spectrum M0(κ). The + sign denotes the adjoint of an
operator which should be determined with respect to the
appropriate inner product; for additional details see [12].

For the linearized system (12), the steady-state auto-
correlation operator of ψθ can be determined from the
solution to the Lyapunov equation,

Aθ(kz)Xθ(kz) + Xθ(kz)A+
θ (kz) + M0(θ, kz) = 0,

and the energy spectrum is given by

E0(κ) = trace(Xθ(kz)) =

∞∑
n=−∞

trace(Xd(θn, kz)),

where Xd(θn, kz) represents the elements on the main di-
agonal of Xθ. For small amplitude actuation, perturbation
analysis in conjunction with the special structure of the
operator Aθ can be used to express Xθ(kz) as

Xθ(kz) = Xθ,0(kz) + α2 Xθ,2(kz) + O(α4),

where Xθ,0(kz) and Xθ,2(kz) are solutions to a set of cou-
pled operator-valued Lyapunov and Sylvester equations [13].
The auto-correlation operator Xθ,0(kz) contains the contri-

bution of the flow with no control, and Xθ,2(kz) captures
the effect of control (up to second-order in α).

C. Influence of fluctuations on turbulent viscosity and skin-
friction drag

We next show how velocity fluctuations in the flow with
control introduce a second order correction to turbulent
viscosity and skin-friction drag. We use the kinetic energy
of velocity fluctuations, k, and its rate of dissipation, ε,
to determine the influence of fluctuation on the turbulent
viscosity,

νT = CµR
2
τ

(
k2/ε

)
, (13)

where Cµ = 0.09 is a model constant. Both k and ε
are determined by the second-order statistics of velocity
fluctuations,

k(y) = (1/2) (uu+ vv + ww) ,

ε(y) = 2 (ux ux + vy vy + wz wz + uy vx

+uz wx + vz wy) + uy uy + wy wy

+ vx vx + wx wx + uz uz + vz vz.

(14)

The overline in (14) denotes averaging in the streamwise and
spanwise directions.

In the flow subject to small amplitude traveling waves, k
and ε can be expressed as

k = k0 + α2 k2 + O(α4),

ε = ε0 + α2 ε2 + O(α4),
(15)

where the subscript 0 denotes the corresponding quantities
in the uncontrolled flow, and the subscript 2 denotes the
influence of fluctuations at the level of α2.

By substituting (15) into (13) and applying the Neumann
series expansion we obtain an expression that establishes the
dependence of the second-order correction to νT on k2 and
ε2,

νT = νT0 + α2 νT2 + O(α4),

νT2 = νT0

(
2k2
k0
− ε2
ε0

)
.

(16)

The influence of fluctuations on turbulent mean velocity
(and consequently the skin-friction drag) can be obtained by
substituting νT from (16) into (4) and finding the resulting
steady-state solution.

D. Results: turbulent drag reduction and net efficiency

We next examine the effect of an upstream traveling
wave with c = −2 and ωx = 0.5 on the skin-friction
drag in a turbulent channel flow with Rτ = 186. For this
choice of traveling wave parameters, numerical simulations
of nonlinear flow dynamics at Rτ ≈ 63 have demonstrated
the drag-reducing ability of upstream traveling waves [2],
[5].

Figure 4 shows the time dependence of the skin-friction
drag for the uncontrolled turbulent flow and for the flow
subject to an upstream traveling wave with c = −2, ωx =
0.5, and two wave amplitudes (α = 0.01 and α = 0.05). The
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Fig. 4. Drag in a turbulent channel flow obtained from high-fidelity
simulations with Rτ = 186 subject to an upstream traveling wave (c = −2,
ωx = 0.5) at two wave amplitudes, α = 0.01 (�) and α = 0.05 (◦). The
black dots denote the drag computed using the model-based framework of
Section IV.

solid lines are obtained using simulations of the nonlinear
NS equations, and the black dots indicate the corresponding
steady-state values of drag resulting from the model-based
approach of Section IV. Compared to the flow with no
control, from Fig. 4 it appears that the traveling wave
with α = 0.01 slightly increases drag. However, numerical
simulation conducted over longer time horizon (not shown
here) indicates a very small discrepancy between the uncon-
trolled flow results and the results obtained for the upstream
traveling wave with α = 0.01. For α = 0.05, our results
(obtained using perturbation analysis up to second-order in
α) suggest that the upstream traveling waves should be able
to reduce drag. Even though this prediction is verified in
numerical simulations of the nonlinear NS equations (see red
curve in Fig. 4), we observe a mismatch between numerically
obtained values of the drag and those resulting from our
analysis. We are currently in the process of testing whether
this mismatch can be reduced by accounting for the higher
order corrections to the turbulent viscosity in our perturbation
analysis.

V. CONCLUDING REMARKS

We have developed a model-based framework to design
streamwise traveling waves for drag reduction in a turbulent
channel flow. Our approach consists of two steps: (1) we use
the turbulent viscosity of the uncontrolled flow to approxi-
mate the influence of control on the turbulent mean velocity;
and (2) we use second-order statistics of stochastically forced
equations linearized around this mean profile to examine the
influence of velocity fluctuations on the turbulent viscosity
and skin-friction drag. We demonstrate that the mean flow
analysis alone is not capable of capturing the essential drag-
reducing trends of streamwise traveling waves. In order
to improve quality of prediction, we need to incorporate
the influence of fluctuations on the turbulent viscosity and
skin-friction drag. For an upstream traveling wave with
c = −2 and ωx = 0.5 we have employed perturbation
analysis in the traveling wave amplitude to demonstrate that
analysis of dynamics can reduce the gap between theoretical

predictions and results of high-fidelity numerical simulations.
Our ongoing effort is focused on incorporating higher order
corrections to the turbulent viscosity and on studying the
mechanisms responsible for turbulent drag reduction.
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