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Abstract— We develop a second order primal-dual algorithm
for nonsmooth convex composite optimization problems in
which the objective function is given by the sum of a twice dif-
ferentiable term and a possibly non-differentiable regularizer.
After introducing an auxiliary variable, we utilize the proximal
operator of the nonsmooth regularizer to transform the associ-
ated augmented Lagrangian into a continuously differentiable
function, the proximal augmented Lagrangian. We employ a
generalization of the Jacobian to define second order updates on
this function which locally converge quadratically/superlinearly
to the optimal solution. We then use a merit function to develop
a customized algorithm in which the search direction can
be computed efficiently for large values of the regularization
parameter. Finally, we illustrate the utility of our method using
the `1-regularized least squares problem.

I. INTRODUCTION

We study a class of composite optimization problems in
which the objective function is the sum of a differentiable,
strongly convex component and a nondifferentiable, convex
component. Problems of this form are encountered in di-
verse fields including compressive sensing, machine learning,
statistics, image processing, and control. They often arise in
structured feedback synthesis problems where it is desired
to balance controller performance (e.g., the closed-loop H2

or H∞ norm) with structural complexity [1], [2].
The lack of differentiability in the regularization term

precludes the use of standard descent methods for smooth
objective functions. Proximal gradient methods [3] and their
accelerated variants [4] generalize gradient descent, but typ-
ically require the nonsmooth term to be separable.

An alternative approach introduces an auxiliary variable to
split the smooth and nonsmooth components of the objective
function. The reformulated problem facilitates the use of
splitting methods such as the alternating direction method
of multipliers (ADMM) [5]. This augmented-Lagrangian-
based method divides the optimization problem into simpler
subproblems, allows for a broader class of regularizers than
proximal gradient and it is convenient for distributed imple-
mentation. In [6], we introduced the proximal augmented
Lagrangian to enable the use of the standard method of
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multipliers for this reformulation, which leads to more robust
convergence guarantees and better practical performance.

Although first order approaches are typically simple to
implement, they tend to converge slowly to high-accuracy so-
lutions. A generalization of Newton’s method to nonsmooth
problems was developed in [7]–[10], but it requires solving
a regularized quadratic subproblem to determine a search
direction. Related ideas have been successfully utilized in a
number of applications, including sparse inverse covariance
estimation in graphical models [11] and topology design in
consensus networks [12].

Generalized Newton updates for identifying stationary
points of (strongly) semismooth gradient mappings were
first considered in [13]–[15] and employ a generaliza-
tion of the Hessian for nonsmooth gradients. In [16]–[18]
the authors introduce the once-continuously differentiable
Forward-Backward Envelope (FBE) and solve composite
problems by minimizing the FBE using line search, quasi-
Newton methods, or second order updates based on an
approximation of the generalized Hessian.

For smooth constrained optimization problems, recent
work has extended the method of multipliers to incorporate
second order updates of the primal and dual variables [19]–
[21]. Since the optimal solution is the saddle point of
the augmented Lagrangian, it is challenging to assess joint
progress of the primal and dual iterates. In [19], Gill and
Robinson introduced the primal-dual augmented Lagrangian
which can serve as a merit function for measuring progress.

We draw on these advances to develop a second order
primal-dual algorithm for nonsmooth composite optimiza-
tion. Second order updates for the once-continuously differ-
entiable proximal augmented Lagrangian are formed using
a generalization of the Hessian. These updates have local
(quadratic) superlinear convergence when the regularizer is
associated with a (strongly) semismooth proximal operator.
To guarantee convergence, we use the merit function em-
ployed in [20], [21] to assess algorithm progress.

Our paper is organized as follows. In Section II, we formu-
late the problem and provide background. In Section III, we
derive the proximal augmented Lagrangian, the associated
second order updates, and show fast asymptotic convergence
rates. In Section IV, we provide a globally convergent
algorithm. In Section V, we illustrate our approach with a
LASSO problem and in Section VI we conclude the paper.
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II. PROBLEM FORMULATION AND BACKGROUND

We consider the problem of minimizing the sum of two
functions over an optimization variable x ∈ Rn,

minimize
x

f(x) + g(Tx) (1)

where T ∈ Rm×n has full row rank. We assume that the
function f is strongly convex, twice continuously differen-
tiable, that its gradient∇f is Lipschitz continuous, and that g
is convex, proper and lower semicontinuous. We now provide
backround material and overview existing approaches.

A. Generalization of the gradient and Jacobian

The B-subdifferential set of a function g: Rm → R at
a point x̄ generalizes the notion of a gradient to functions
which are nondifferentiable outside of a set Cg . Each element
in the subdifferential set ∂Bg(x̄) is the limit point of a
sequence of gradients {∇g(xk)} evaluated at a sequence of
points {xk} ⊂ Cg whose limit is x̄,

∂Bg(x̄) := {Jg | ∃{xk} ⊂ Cg, {xk} → x̄, {∇g(xk)} → Jg} .

The Clarke subgradient of g: Rm → R is the convex hull
of the B-subdifferential set [22], ∂Cg(x̄) := conv(∂Bg(x̄)).
When g is a convex function, the Clarke subgradient is equal
to the subdifferential set ∂g(x̄) which defines the supporting
hyperplanes of g at x̄. For a function G: Rm → Rn, the
generalization of the Jacobian at a point x̄ is given by
JG =

[
J1 . . . Jn

]T
where each Ji ∈ ∂CGi(x̄) is a

member of the Clarke subgradient of the ith component of
G evaluated at x̄.

The mapping G: Rm → Rn is semismooth at x̄ if for any
sequence xk → x̄, the sequence of generalized Jacobians
JGk
∈ ∂CG(xk) provide a first order approximation of G,

‖G(xk) − G(x̄) + JGk
(x̄ − xk)‖ = o(‖xk − x̄‖).

The function G is strongly semismooth if this approximation
satisfies the condition,

‖G(xk) − G(x̄) + JGk
(x̄ − xk)‖ = O(‖xk − x̄‖2),

where o(·) and O(·) denote, for some positive ψ(k), that
φ(k) = o(ψ(k)) if φ(k)/ψ(k) → 0 and φ(k) = O(ψ(k)) if
|φ(k)| ≤ Lψ(k) for some constant L.

B. Proximal operators

The proximal operator of the function g is given by,

proxµg(v) := argmin
z

g(z) + 1/(2µ) ‖z − v‖2 (2a)

where µ is a positive parameter. It is Lipschitz contin-
uous with parameter 1, differentiable almost everywhere,
and firmly non-expansive [3]. Tthe proximal operators of
many regularization functions are strongly semismooth, e.g.,
piecewise affine mappings such as the soft-thresholding
operator, projection onto polyhedral sets, and projection onto
symmetric cones. The value function associated with (2a)
specifies the Moreau envelope of g,

Mµg(v) := inf
z
g(z) + 1/(2µ) ‖z − v‖2. (2b)

The Moreau envelope is continuously differentiable, even
when g is not, and its gradient is given by

∇Mµg(v) = (1/µ)
(
v − proxµg(v)

)
. (2c)

For example, the proximal operator associated with the `1
norm, g(z) =

∑
|zi|, is determined by soft-thresholding,

Sµ(v) := sign(v) max{|v|−µ, 0}, the associated Moreau en-
velope is the Huber function, Mµg(v) =

∑
i{v2i /(2µ), |vi| ≤

µ; |vi| − µ/2, |vi| ≥ µ} and its gradient is the saturation
function, ∇Mµg(v) = max{−1,min{v/µ, 1}}.

C. First order methods

When T = I or is diagonal, the proximal gradient method
generalizes gradient descent for (1) [3], [4]. When g = 0,
it simplifies to gradient descent and when g is the indicator
function of a convex set, it simplifies to projected gradient.
For the `1-regularized least-squares (LASSO) problem,

minimize
x

(1/2) ‖Ax − b‖2 + γ ‖x‖1 (3)

the proximal gradient method is given by the Iterative Soft-
Thresholding Algorithm (ISTA). Acceleration techniques can
also be used to improve the convergence rate [4].

By introducing an auxiliary optimization variable z, opti-
mization problem (1) can be rewritten as

minimize
x, z

f(x) + g(z)

subject to Tx − z = 0.
(4)

This reformulation is convenient for constrained optimization
algorithms based on the augmented Lagrangian,

Lµ(x, z; y) :=f(x) + g(z) + yT (Tx−z) + 1/(2µ) ‖Tx−z‖2,

where y is the Lagrange multiplier and µ is a positive
parameter. Relative to the standard Lagrangian, Lµ contains
an additional quadratic penalty on the linear constraint in (4).

The alternating direction method of multipliers (ADMM)
is appealing for (4) because it leads to tractable subprob-
lems [5], but it is strongly influenced by µ. The standard
method of multipliers (MM) [23], [24] is more robust and
has effective µ-update rules, but requires joint minimization
of Lµ over x and z. This nondifferentiable optimization
problem has been recently cast in a differentiable form [6].

D. Second order methods

The potentially slow convergence of first order methods to
high-accuracy solutions motivates the development of second
order methods. A generalization of Newton’s method, devel-
oped in [7]–[10], derives a search direction via a regularized
quadratic subproblem. When g is the `1 norm, this amounts
to solving a LASSO problem. In [16]–[18], the authors intro-
duce the once-continuously differentiable Forward-Backward
Envelope (FBE) and employ an approximate generalized
Hessian to obtain second order updates for (1) when T = I .
Second order methods have also been developed to find
the saddle point of the augmented Lagrangian [19]–[21],
but assume twice differentiability and Lipschitz continuous
gradients/Hessians and thus cannot be applied to (4).
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In this paper, we employ a generalized Hessian to form
second order updates to the proximal augmented Lagrangian
and employ a merit function to assess progress towards the
solution of (4).

III. A SECOND ORDER PRIMAL-DUAL METHOD

We now derive the proximal augmented Lagrangian, the
associated generalized second order updates, and show that
they lead to fast local convergence.

A. Proximal augmented Lagrangian

Following [6], completion of squares can be used to write

Lµ(x, z; y) = f(x) + g(z) + 1/(2µ)‖z − (Tx+ µy)‖2
− (µ/2)‖y‖2.

Minimization of the augmented Lagrangian over z yields an
explicit expression in terms of the proximal operator,

argmin
z

Lµ(x, z; y) = z?µ(x, y) = proxµg(Tx + µy),

(5)
and substitution of (5) into the augmented Lagrangian pro-
vides an expression for Lµ in terms of the Moreau envelope,

Lµ(x; y) := Lµ(x, z?µ(x, y); y)

= f(x) +Mµg(Tx+ µy)− (µ/2)‖y‖2.
(6)

This expression, the proximal augmented Lagrangian, col-
lapses Lµ(x, z; y) onto the manifold resulting from the
explicit minimization over z. Continuity of the gradient of the
Moreau envelope (2c) guarantees continuous differentiability
of the proximal augmented Lagrangian Lµ(x; y),

∇Lµ(x; y) =

[
∇f(x) + TT∇Mµg(Tx+ µy)
µ∇Mµg(Tx+ µy) − µy

]
(7)

and ensures that when x? minimizes Lµ(x; y) over x,
(x?, z?µ(x?, y)) minimizes Lµ(x, z; y) over (x, z), i.e.,

argmin
x, z

Lµ(x, z; yk) = argmin
x

Lµ(x, z?µ(x, yk); yk)

which facilitates MM. Instead of fixing y and minimizing
Lµ(x; y) over x, the Arrow-Hurwicz-Uzawa method can be
used to jointly update both variables [6] using the gradi-
ent (7). In this paper, we form second order updates to both x
and y to achieve fast convergence to high accuracy solutions.

B. Second order updates

We use the Clarke subgradient set of the proximal opera-
tor, P := ∂C proxµg(Tx+ µy), to define

∂2PLµ=

[
H + (1/µ)TT (I − P )T TT (I − P )

(I − P )T −µP

]
, (8)

the set of generalized Hessians of Lµ(x; y) where H =
∇2f(x) and P ∈ P. Our generalization of the Hessian is
inspired by [16]. In contrast to that work, however, we do
not discard higher-order terms in forming (8).

When g is (block) separable, the matrix P is (block)
diagonal and, since the proximal operator is firmly nonex-
pansive, 0 � P � I . We introduce the composite variable,

w := [xT yT ]T , use Lµ(x; y) interchangeably with Lµ(w),
and suppress the dependance of P on w to reduce clutter.

We use (8) to obtain an update w̃ to the stationarity
condition ∇Lµ(w) = 0 around the current iterate wk,

∂2PLµ(wk) w̃k = −∇Lµ(wk). (9)

We next show that this update is well-defined.
Lemma 1: The generalized Hessian (8) of the proximal

augmented Lagrangian is invertible for any choice of P ∈ P
and it has n positive and m negative eigenvalues.

Proof: By the Haynsworth inertia additivity for-
mula [25], the inertia of matrix (8) is determined by the
sum of the inertias of matrices,

H + (1/µ)TT (I − P )T (10a)

and

−µP − (I − P )T
(
H + (1/µ)TT (I − P )T

)−1
TT (I−P ).

(10b)
Since proxµg is firmly nonexpansive, both P and I−P are
positive semidefinite. The strong convexity of f implies that
H and therefore (10a) are positive definite. Matrix (10b) is
negative definite because the kernels of P and I − P have
no nontrivial intersection and T has full row rank.

Remark 1: The KKT conditions for problem (4) are,

0 = ∇f(x) + TT y, 0 = Tx − z, 0 3 ∂g(z) − y

Substituting z?µ(x; y) makes the last two conditions redun-
dant and renders (9) equivalent to a first order correction to
the first and third condition. By premultiplying with,

Π :=

[
I − (1/µ)TT

0 I

]
(11)

the second order update (9) can be expressed as,[
H TT

(I − P )T −µP

][
x̃k

ỹk

]
= −

[
∇f(xk) + TT yk

rk

]
(12)

where rk := Txk−z?µ(xk; yk) = Txk−proxµg(Tx
k+µy)

is the primal residual of (4).
C. Efficient computation of the Newton direction

We next demonstrate that the solution to (12) can be
efficiently computed when T = I and P is a sparse diagonal
matrix whose entries are either 0 or 1. For example, when
g(z) = γ‖z‖1, larger values of γ are more likely to yield
sparse P . The extension to P with entries between 0 and 1
or a general diagonal T follow from similar arguments.

We write the system of equations (12) as,[
H I

I − P −µP

] [
x̃
ỹ

]
=

[
ϑ
θ

]
, (13)

permute it according to the entries of P which are 1 and 0,
respectively, and partition H , P , and I − P conformably

H =

[
H11 H12

HT
12 H22

]
, P =

[
I 0
0 0

]
.

We use v1 (v2) to denote the subvector of v corresponding
to the entries of P which are equal to 1 (0). Here, v is used
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to denote either the primal variable x or the dual variable y.
Note that (I −P )v = 0 when v2 = 0 , and Pv = 0 when

v1 = 0. As a result, the bottom row of (13) is −µỹ1 = θ1
and x̃2 = θ2. Substituting x̃2 and ỹ1 into (13) yields,

H11x̃1 = ϑ1 + H12x̃2 + ỹ1 (14)

which must be solved via a matrix inversion. The rest
can be computed using only matrix-vector products, ỹ2 =
− (ϑ2 +H21x̃1 +H22x̃2) . The major computational burden
in solving (12) thus lies in (14) and is more efficient when P
is sparse. For example, in `1 regularized or box-constrained
problems, P is sparser when the weight on the `1 norm is
larger or the box constraints are tighter.

D. Asymptotic rate of convergence

The invertibility of the generalized Hessian ∂2PLµ allows
us to establish local convergence rates for the second order
update (12) when proxµg is (strongly) semismooth.

Proposition 2: Let the proximal operator associated with
the regularization function g in (4) be (strongly) semismooth,
and let w̃k be defined by (9). Then, for any P ∈ P, there is a
neighborhood of the optimal solution w? in which the second
order iterates wk+1 = wk + w̃k converge (quadratically)
superlinearly to w?.

Proof: Lemma 1 establishes that ∂2P Lµ is nonsingular
for any P ∈ P. The gradient of the proximal augmented
Lagrangian,∇Lµ, is Lipschitz continous because∇f and the
proxµg are Lipschitz continuous. Nonsingularity of ∂2PLµ,
Lipschitz continuity of ∇Lµ, and (strong) semismoothness
of the proximal operator establish (quadratic) superlinear
convergence of the iterates by [14, Theorem 3.2].

IV. A PRIMAL-DUAL ALGORITHM

Proposition 2 establishes fast local convergence of the
second order iterates to the saddle point of Lµ. To establish
global convergence, it is necessary to limit the stepsize αk
in wk+1 = wk + αkw̃

k. This is difficult for saddle point
problems because standard notions, such as sufficient descent
of Lµ, cannot be employed to assess progress of the iterates.

We employ the primal-dual augmented Lagrangian in-
troduced in [19] as a merit function to evaluate progress
towards the saddle point. Drawing upon recent advancements
for constrained optimization [19]–[21], we show global con-
vergence under a boundedness assumption on the sequence
of gradients. This assumption is standard for augmented
Lagrangian based methods [21], [24].

A. Merit function

The primal-dual augmented Lagrangian,

Vµ(x, z; y, λ) :=Lµ(x, z;λ)+1/(2µ) ‖Tx− z + µ(λ− y)‖2

was introduced in [19], where λ is an estimate of the optimal
Lagrange multiplier y?. It can be shown that the optimal
primal-dual pair (x?, z?; y?) of optimization problem (4)
is a stationary point of Vµ(x, z; y, y?) [19, Theorem 3.1].
Furthermore, Vµ is convex with respect to (x, z; y) and, for
any fixed λ, there is a unique global minimizer.

In contrast to [19], we study problems in which a com-
ponent of the objective function is not differentiable. The
Moreau envelope associated with the non-differentiable com-
ponent g allows us to eliminate the dependence of the primal-
dual augmented Lagrangian Vµ on z,

ẑ?µ(x; y, λ) = prox(µ/2)g(Tx + (µ/2)(2λ − y))

and to express Vµ as a continuously differentiable function,

Vµ(x; y, λ) = f(x) + M(µ/2)g(Tx + (µ/2)(2λ − y))

+ (µ/4) ‖y‖2 − (µ/2) ‖λ‖2.
(15)

For notational convenience, we suppress the dependence on
λ and write Vµ(w) when λ is fixed.

In [19], the authors obtain a search direction using the
Hessian of the merit function, ∇2Vµ. Instead of implement-
ing the analogous update using generalized Hessian ∂2PVµ
of semismooth ∇Vµ, we take advantage of the efficient
inversion of ∂2PLµ to define the update

∂2PLµ(w) w̃ = − blkdiag(I,−I)∇V2µ(w) (16)

where the multiplication by blkdiag(I,−I) is used to ensure
descent in the dual direction and V2µ is employed because
ẑ?µ is given by the proximal operator associated with µ/2.
When λ = y, (16) is equivalent to second order update (9).

Lemma 3: Let w̃ solve the system of equations obtained
by premultiplying (16) by the matrix Π given by (11),[

H TT

(I − P )T −µP

]
w̃ = −

[
∇f(x) + TT y
s + 2µ (λ − y)

]
(17)

where H := ∇2f(x) � 0 and s := Tx −
proxµg(Tx+ µ(2λ− y)) . Then, for any σ ∈ (0, 1],

d := (1 − σ) w̃ − σ∇V2µ(w) (18)

is a descent direction of the merit function V2µ(w) for the
fixed Lagrange multiplier estimate λ.

Proof: The gradient ∇V2µ(w) of the primal-dual aug-
mented Lagrangian with penalty parameter 2µ is,

∇V2µ(w) =

[
∇f(x) + (1/µ)TT (s+ µ(2λ− y))

−(s+ 2µ(λ− y))

]
.

(19)
Using (17), ∇V2µ(w) can be expressed as,[

−(Hx̃+ ỹ)− (1/µ)TT (I − P )T x̃+ TTP ỹ
(I − P )T x̃ − µP ỹ

]
.

Thus, the inner product,

〈∇V2µ(w), w̃〉 = −x̃T (H+ (1/µ)TT (I − P )T )x̃−µỹTP ỹ

is negative semidefinite, and

〈∇V2µ(w), d〉 = (1− σ) 〈∇V2µ(w), w̃〉 − σ‖∇V2µ‖2

is negative definite when ∇V2µ is nonzero.

B. Algorithm

We now develop a customized algorithm that alternates
between minimizing the merit function Vµ(w, λ) over w and
updating λ. Inspired by [26], we ensure sufficient progress
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Algorithm 1 Second order primal-dual algorithm

input: Initial point x0, y0, and parameters η ∈ (0, 1),
β ∈ (0, 1), τa, τb ∈ (0, 1), εk ≥ 0 such that {εk} → 0.
initialize: Set λ0 = y0.

Step 1: If ‖sk‖ ≤ η‖sk−1‖ (20)

go to Step 2a. If not, go to Step 2b.
Step 2a: Set µk+1 = τaµk, λk+1 = yk

Step 2b: Set µk+1 = τbµk, λk+1 = λk

Step 3: Using a backtracking line search, perform a
sequence of inner iterations to choose wk+1 until

‖∇V2µk+1
(wk+1, λk+1)‖ ≤ εk (21)

where search direction d is obtained using (17)–(18) with

σ = 0

〈
w̃k,∇V2µk+1

(wk)
〉

‖∇V2µk+1
(wk)‖2

≤ −β, (22a)

σ ∈ (0, 1] otherwise. (22b)

with damped second order updates. Note that

r := Tx − proxµg(Tx + µy) ,
s := Tx − proxµg(Tx + µ (2λ − y))

appear in the proof and that r is the primal residual of (4).
Theorem 4: Let the sequence {∇f(xk)} resulting from

Algorithm 1 be bounded. Then, the sequence of iterates{
wk
}

converges to the optimal primal-dual point of prob-
lem (4) and the Lagrange multiplier estimates {λk} converge
to the optimal Lagrange multiplier.

Proof: Since V2µ(w, λ) is convex in w for any fixed
λ, condition (21) in Algorithm 1 will be satisfied after finite
number of iterations. Combining (21) and (19) shows that
sk + 2µk(λk−yk)→ 0 and ∇f(xk) + 1

µk T
T (sk +µ(2λk−

yk)) → 0. Together, these statements imply that the dual
residual ∇f(xk) + TT yk of (4) converges to zero.

To show that the primal residual rk converges to zero,
we first show that sk → 0. If Step 2a in Algorithm 1 is
executed infinitely often, sk → 0 since it satisfies (20) at
every iteration and η ∈ (0, 1). If Step 2a is executed finitely
often, there is k0 after which λk = λk0 . By adding and
subtracting 2µk∇f(xk) + TT sk + 4µkTT (λk0 − yk) and
rearranging terms, we can write

TT sk = 2µk(∇f(xk) + 1
µk T

T (sk + µk(2λk0 − yk)))

− 2µk∇f(xk) − TT (sk + 2µk(λk0 − yk))

− 2µkTTλk0 .

Taking the norm of each side and applying the triangle
inequality, (21) and (19) yield

‖TT sk‖ ≤ 2µkεk+2µk‖∇f(xk)‖+‖TT ‖εk+2µk‖TTλk0‖.

This inequality implies that TT sk → 0 because ∇f(xk) is
bounded, εk → 0, and µk → 0. Since T has full row rank,
TT has full column rank and it follows that sk → 0.

Substituting sk → 0 and ∇f(xk) + TT yk → 0 into the
first row of (19) and applying (21) implies λk → yk. Thus,
sk → rk, implying that the iterates asymptotically drive the

γ = 0.15γmax γ = 0.85γmax

‖x
−
x
?
‖

iteration iteration

‖x
−
x
?
‖

time (s) time (s)

Fig. 1: Number of iterations and solve time required to
compute solution to LASSO for two values of γ using ISTA,
FISTA, and our algorithm (2ndMM).
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(s
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Percent of γmax

Fig. 2: Time to compute LASSO using ISTA, FISTA, and
our algorithm (2ndMM) for different values of sparsity-
promoting parameter γ.

primal residual rk to zero, thereby completing the proof.

V. COMPUTATIONAL EXPERIMENTS

The LASSO problem (3) regularizes a least squares objec-
tive with a γ-weighted `1 penalty. The proximal operator of
g is given by soft-thresholding Sγµ, the Moreau envelope
is the Huber function, and its gradient is the saturation
function. Thus, P ∈ P is diagonal and Pii is 0 when
xi + µyi ∈ (−γµ, γµ), 1 outside the interval, and between
0 and 1 on the boundary. Larger values of γ induce sparser
solutions for which one can expect a sparser sequence of
iterates. Note that we require strong convexity, i.e. ATA � 0.

In Fig. 1, we show the distance of the iterates from the
optimal for ISTA, FISTA, and our algorithm for a represen-
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γ = 0.15γmax γ = 0.85γmax
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Fig. 3: Comparison of our algorithm (2ndMM) with state-of-
the-art methods for LASSO problems with problem dimen-
sion varying from n = 100 to 2000.

tative LASSO problem where ATA has condition number
3.26 × 104. We plot distance from the optimal point as a
function of both iteration number and clock time. Although
our method always requires much fewer iterations, it is most
effective when γ is large and thus the search direction is
cheap to compute; see Section III-C for details. In Fig. 2, we
show the computation speed for n = 1000 as γ ranges from
0 to γmax where γmax = ‖AT b‖∞ induces a zero solution.
All numerical experiments consist of 20 averaged trials.

In Fig. 3, we compare the performance of our algorithm
with the LASSO function in Matlab (a coordinate descent
method [27]), SpaRSA [28], an interior point method [29],
and YALL1 [30]. Problem instances were randomly gen-
erated with A ∈ Rm×n, n ranging from 100 to 2000,
m = 3n, and γ = 0.15γmax and 0.85γmax. Our algorithm
is competitive with these state-of-the-art methods, and is the
fastest for larger values of γ when the second order search
direction (17) is cheaper to compute.

VI. CONCLUDING REMARKS

We have developed a second order primal-dual algorithm
for nonsmooth convex composite optimization problems.
After introducing an auxiliary variable, we transform the
associated augmented Lagrangian into the once continuously
differentiable proximal augmented Lagrangian and form sec-
ond order primal and dual updates using the generalized
Hessian. These updates can be efficiently computed when the
emphasis on the nonsmooth term is large. We establish global
convergence using the primal-dual augmented Lagrangian
as a merit function. Finally, an `1 regularized least squares
example demonstrates the competitive performance of our
algorithm relative to the available state-of-the-art alternatives.
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