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Abstract— We employ the proximal augmented Lagrangian
method to solve a class of convex resource allocation problems
over a connected undirected network of n agents. The agents
are coupled by a linear resource equality constraint and their
states are confined to a nonnegative orthant. By introducing
the indicator function associated with a nonnegative orthant,
we bring the problem into a composite form with a non-
smooth objective and linear equality constraints. A primal-
dual Laplacian gradient flow dynamics based on the proximal
augmented Lagrangian is proposed to solve the problem in a
distributed way. These dynamics conserve the sum of the agent
states and the corresponding equilibrium points are the Karush-
Kuhn-Tucker points of the original problem. We combine a
Lyapunov-based argument with LaSalle’s invariance principle
to establish global asymptotic stability and use an economic
dispatch case study to demonstrate the effectiveness of the
proposed algorithm.

I. INTRODUCTION

The resource allocation problem considers how to allocate
the resource to individuals by minimizing the cost of the
allocation. It arises in many areas, including communica-
tion networks, power grids, and production management in
economics [1]. Due to the emergence of the next-generation
communication networks and the cyber-physical systems, the
resource allocation problem seeks to allocate the given re-
source in a distributed way, using local information exchange
in a network. Particular instances of resource allocation are
given by the network utility maximization [2]–[5] and the
economic dispatch problems [6]–[10].

A class of resource allocation problems can be formulated
as follows

minimize
x

f(x)

subject to 1Tx − b = 0

xi ∈ Ωi, i = 1, . . . , n

(1)

where f(x) =
∑n
i=1 fi(xi) is a separable convex objective

function, x = [x1 · · · xn ]T ∈ Rn is the optimization
variable, 1 is the vector of all-ones, b ∈ R is the given
resource, and Ωi is a convex set. All xi’s are coupled by the
resource equality constraint and each xi has a set constraint.

Distributed resource allocation problems have attracted
significant attention in recent years. In this setup, each node
i in a network has a local objective function fi and a
decision variable xi. The nodes can exchange information
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with their neighbors with the goal of computing solution
of the resource allocation problem in a distributed manner.
Many distributed algorithms have been proposed for (1) or
have been applied to (1) as a case study. Two main classes
include the consensus-based algorithms and the primal-dual
dynamics. Some recent works in the first class include [7]–
[11], where consensus algorithms were incorporated into the
centralized gradient descent to enable distributed computa-
tion. In [8], a robust distributed algorithm was presented for
the problem with box constraints. In [9], two distributed
projected algorithms were proposed. While [8] and [9] do
not require any special initialization, algorithms in [7], [10],
[11] do need particular initialization. For (1) without the set
constraint, the exponential convergence of consensus-based
algorithms was established in [9]–[11].

The second class is based on primal-dual dynamics [12]–
[15], where the set constraint can be inequality constraints.
In [12], [13], for a non-smooth augmented Lagrangian, it was
shown that its primal-dual dynamics can converge exponen-
tially for (1) with either the resource equality constraint or
the set constraint. In [14], [15], global asymptotic stability
of the projected primal-dual dynamics was established by
utilizing local convexity-concavity of the saddle function.
The asymptotic convergence of the primal-dual dynamics
was further discussed in [16]–[18]. Although the primal-dual
dynamics are asymptotically stable, the set constraint may
cause the difficulty in establishing the exponential conver-
gence and the resource allocation constraint can impede the
distributed implementation.

Motivated by the above results, we are interested in
developing a distributed primal-dual algorithm to solve (1)
with non-negative constraints. To deal with such constraints,
we utilize the proximal augmented Lagrangian method [19]
which yields a non-smooth composite optimization problem
with linear equality constraints. For this class of problems,
the gradient flow dynamics associated with the proximal
Lagrangian are not convenient for distributed implementa-
tion. Instead, we propose a primal-dual Laplacian gradi-
ent flow dynamics to compute the solution via in-network
optimization and prove that these dynamics converge to
the optima globally and asymptotically. Finally, we use the
economic dispatch problem to illustrate the performance of
the proposed algorithm.

Our presentation is organized as follows. In Section II,
we formulate the problem and provide background on the
proximal augmented Lagrangian method. In Section III, we
propose primal-dual Laplacian gradient flow dynamics for
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in-network resource allocation and combine a Lyapunov-
based argument with LaSalle’s invariance principle to es-
tablish global asymptotic stability. In Section IV, we use
computational experiments on an economic dispatch problem
to demonstrate merits and effectiveness of our approach.
We conclude the paper and highlight future directions in
Section V.

II. PROBLEM FORMULATION AND BACKGROUND

In this section, we formulate the resource allocation prob-
lem as a non-smooth composite optimization problem and
introduce the proximal augmented Lagrangian.

We consider the resource allocation problem,

minimize
x

f(x)

subject to 1Tx − b = 0

x ≥ 0

(2)

where f is a convex objective function, x ∈ Rn is the
optimization variable, and b is the given resource. For b >
0, optimization problem (2) is feasible. By introducing an
auxiliary variable z := [ z1 · · · zn ]T , (2) can be cast as a non-
smooth composite optimization with equality constraints,

minimize
x, z

f(x) + g(z)

subject to 1Tx − b = 0

x− z = 0

(3)

where g(z) =
∑n
i=1 gi(zi) and each gi is an indicator

function of the non-negative orthant,

gi(zi) :=

{
0, zi ≥ 0

∞, otherwise.
(4)

Since the objective function in (3) is non-differentiable,
the existing results (e.g., [13]) cannot be employed directly to
establish exponential convergence. The proximal augmented
Lagrangian method was recently proposed in [19] to deal
with non-smooth composite optimization problems. The pro-
posed approach exploits the proximal operator associated
with the non-smooth part of the objective function to elimi-
nate the auxiliary variable z from the augmented Lagrangian.

The proximal operator associated with the function g is
the minimizer of the following optimization problem

proxµg(v) := argmin
z

g(z) +
1

2µ
‖z − v‖2.

Here, v is a given vector, µ is a positive parameter, and the
associated value function specifies the Moreau envelope,

Mµg(v) = g(proxµg(v)) +
1

2µ
‖proxµg(v) − v‖2.

Notably, the Moreau envelope is continuously differentiable,
even when g is not, and its gradient is determined by

∇Mµg(v) =
1

µ

(
v − proxµg(v)

)
.

For the indicator function of the non-negative orthant (4), we

have

proxµg(vi) = [vi]+ =

{
vi, vi ≥ 0

0, vi < 0

Mµg(vi) = 1
2µ [vi]

2
−,

∇Mµg(vi) = 1
µ [vi]−.

The Lagrangian associated with (3) is given by

L(x, z;λ, y) = f(x) + g(z) + λ(1Tx−b) + yT (x−z) (5)

where λ ∈ R and y ∈ Rn are the Lagrange multipliers. The
augmented Lagrangian contains additional terms that intro-
duce quadratic penalties on the violation of linear constraints,

Lµ(x, z;λ, y) = L(x, z;λ, y) +
1
2µ ((1Tx− b)2 + ‖x− z‖2)

(6)

where µ is a positive parameter.
Without loss of generality, we have selected the same

penalty on the violation of both linear constraints in (3).
The completion of squares can be used to rewrite Lµ as

Lµ(x, z;λ, y) = f(x) + λ(1Tx− b) + 1
2µ (1Tx− b)2 +

g(z) + 1
2µ ‖z − (x+ µy)‖2 − µ

2 ‖y‖
2

(7)
and the explicit minimizer of (7) with respect to z is given by

z?µ(x, y) = proxµg(x + µy).

As demonstrated in [19], the proximal augmented La-
grangian is obtained by restricting the augmented Lagrangian
on the manifold that results from explicit minimization of Lµ
over z. This eliminates the non-smooth term from Lµ and
casts it in terms of the Moreau envelope,

Lµ(x;λ, y) = f(x) + λ(1Tx− b) + 1
2µ (1Tx− b)2 +

Mµg(x+ µy) − µ
2 ‖y‖

2

(8)
The Arrow-Hurwicz-Uzawa gradient flow dynamics based

on proximal augmented Lagrangian (8) is given by

ẋ = −∇Lµ(x;λ, y)

λ̇ = +∇Lµ(x;λ, y)

ẏ = +∇Lµ(x;λ, y)

or, equivalently,

ẋ = −(∇f(x) +∇Mµg(x+ µy) + 1λ+ 1
µ1(1Tx− b))

λ̇ = 1Tx− b
ẏ = µ (∇Mµg(x+ µy) − y).

(9)
In [19], global asymptotic stability of the gradient flow dy-

namics for problems of the form (3), but without the resource
allocation constraint, was established. The above gradient
flow dynamics accounts for this constraint; however, due to
the appearance of 1Tx, the update of xi in (9) requires global
information which impedes distributed implementation. In
what follows, we modify (9) in order to solve the resource
allocation problem (2) over a connected undirected network
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and establish global asymptotic stability of the resulting
primal-dual Laplacian gradient flow dynamics.

III. PRIMAL-DUAL LAPLACIAN GRADIENT FLOW
DYNAMICS

In this section, we propose a modification of the Arrow-
Hurwicz-Uzawa gradient flow dynamics that satisfies the
resource allocation constraint for all times. We show that the
equilibrium points of the resulting Laplacian gradient flow
dynamics correspond to the KKT points in (3) and prove
global asymptotic stability.

It is easy to show that the following primal-dual Laplacian
gradient flow dynamics

ẋ = −L (∇f(x) + ∇Mµg(x+ µy))

ẏ = µ (∇Mµg(x+ µy) − y)
(10)

satisfies 1Tx(t) − b = 0 for all t ≥ 0 if 1Tx(0) − b = 0.
This is because 1T ẋ = 0 implies that 1Tx(t) is a conserved
quantity of (10). Furthermore, since f(x) and ∇Mµg(x+µy)
are sums of n individual functions, primal-dual Laplacian
gradient flow dynamics (10) is a distributed algorithm.

The set of KKT points for (3) is given by

Ω? =

{
(x, z, λ, y)

∣∣∣∣∣∇f(x) + 1λ+ y = 0, x− z = 0

y ∈ ∂g(z), 1Tx− b = 0

}
where ∂g(z) is the sub-gradient set of g at z. On the other
hand, if 1Tx(0)−b = 0, the equilibrium points (x̄, ȳ) of (10)
are given by

Ω̄ =

{
(x, y)

∣∣∣∣∣L (∇f(x) +∇Mµg(x+ µy)) = 0

∇Mµg(x+ µy)− y = 0, 1Tx− b = 0

}
The following lemma establishes correspondence between

the sets Ω? and Ω̄.

Lemma 1: For any (x̄, ȳ) ∈ Ω̄, there exists z? and λ? such
that (x̄, z?, λ?, ȳ) ∈ Ω?. Similarly, for any (x?, z?, λ?, y?) ∈
Ω?, (x?, λ?) ∈ Ω̄.

Proof: For any (x̄, ȳ) ∈ Ω̄, ∇f(x̄) +∇Mµg(x̄+µȳ) is
in the null space of the Laplacian L and ∇Mµg(x̄+µȳ) = ȳ.
Thus, there is a non-zero λ such that ∇f(x̄) + ȳ + λ1 = 0.
Furthermore,

∇Mµg(x̄+ µȳ) =
1

µ

(
x̄+ µȳ − proxµg(x̄+ µȳ)

)
= ȳ

implies x̄ = proxµg(x̄ + µȳ) = z̄ and, consequently,
ȳ = −(∇f(x̄) + λ1) ∈ ∂g(x̄). Finally, since the equality
constraint 1T x̄ = b is, by construction, satisfied for all times,
by selecting x? = z? = x̄, λ? = λ, and y? = ȳ, we conclude
that (x?, z?, λ?, y?) ∈ Ω?.

Conversely, for any (x?, z?, λ?, y?) ∈ Ω?, we have
L(∇f(x?) + y?) = 0, 1Tx? = b, and y? ∈ ∂g(x?).
Furthemore, since x? = z? = proxµg(x

? + µy?), from the
definition of the gradient of the Moreau envelope, we have
∇Mµg(x

? + µy?) = y?. By selecting x̄ = x?, ȳ = y?, we
conclude that (x̄, ȳ) ∈ Ω̄.

In what follows, we conduct stability analysis of primal-
dual Laplacian gradient flow dynamics (10) with the initial
condition 1Tx(0) = b. This is done for objective functions f
in (2) that are strongly convex and have Lipschitz continuous
gradients.

Assumption 1: The objective function f in (2) is strongly
convex and its gradient is Lipschitz continuous.

A. Transformed primal-dual Laplacian gradient flow dynam-
ics

The eigenvalue decomposition of the graph Laplacian L
of a connected undirected network is given by

L = V ΛV T =
[
U 1

n1
] [Λ0 0

0 0

] [
UT
1
n1

T

]
= UΛ0U

T

where Λ0 is a diagonal matrix of non-zero eigenvalues of
L and the matrix U ∈ Rn×(n−1) and satisfies the following
properties:
(i) UTU = I;

(ii) UUT = I − 1
n11

T ;
(iii) 1TU = 0 and UT1 = 0.
We introduce an affine coordinate transformation

x = Uξ + 1θ (11)

where ξ ∈ Rn−1 and θ = 1
n1

Tx(0). From the above
properties of U , we have ξ = UTx, and (10) can be
transformed into the following form

ξ̇ = −Λ0U
T (∇f(x) +∇Mµg(x+ µy) )

ẏ = µ (∇Mµg(x+ µy) − y)
(12)

where ξ(0) ∈ Rn−1 and y(0) ∈ Rn are arbitrary initial
conditions.

B. Global asymptotic stability

We first state a lemma about proximal operators which is
used in the proof of Theorem 3.

Lemma 2: Let g : Rn → R be a proper, lower semicon-
tinuous, convex function and let proxµg : Rn → Rn be the
corresponding proximal operator. Then, for any a, b ∈ Rn,
we can write

proxµg(a) − proxµg(b) = D(a− b) (13)

where D is a symmetric matrix satisfying 0 � D � I .

Proof: See [19, Lemma 2].

We next establish global asymptotic stability of trans-
formed primal-dual Laplacian gradient flow dynamics (12).

Theorem 3: Let Assumption 1 hold. Then, (12) is globally
asymptotically stable.

Proof: Let (ξ̃, ỹ) denote perturbations around the equi-
librium points (ξ̄, ȳ) of (12). Then,

˙̃
ξ = −Λ0U

T (∇f(x)−∇f(x̄) + 1
µ m̃ )

˙̃y = m̃− µỹ
(14)
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where m̃ = µ(∇Mµg(x+µy)−∇Mµg(x̄+µȳ)), x = Uξ+
1θ, and x̄ = Uξ̄ + 1θ.

Derivative of the Lyapunov function candidate

V (ξ̃, ỹ) =
1

2
ξ̃TΛ−1

0 ξ̃ +
1

2
‖ỹ‖2

along the solutions of (14) is determined by

V̇ = ξ̃TΛ−1
0

˙̃
ξ + ỹT ˙̃y

= −ξ̃TUT (∇f(Uξ + 1θ)−∇f(Uξ̄ + 1θ))− 1
µ ξ̃

TUT m̃

+ ỹT m̃ − µ‖ỹ‖2

From Lemma 2, we have m̃ = (I − D)(Uξ̃ + µỹ), where
0 � D � I , and

V̇ = −ξ̃TUT (∇f(Uξ + 1θ)−∇f(Uξ̄ + 1θ))

− 1
µ ξ̃

TUT (I −D)Uξ̃ − µỹTDỹ.
(15)

Strong convexity of f implies V̇ ≤ 0. Furthermore, V̇ = 0
is equivalent to Uξ̃ = 0 and Dỹ = 0.

We next show that the largest invariant set of V̇ = 0
is contained in Ω̄. First, from x̃ = Uξ̃, we have x = x̄.
Second, from the property of the matrix D in Lemma 2,
we have proxµg(x̄ + µy) = proxµg(x̄ + µȳ). Third, x̄ =
proxµg(x̄+µȳ) implies 1

µ (x̄+µy−proxµg(x̄+µy))−y =
∇Mµg(x̄ + µy) − y = 0. Thus, (x, y) satisfies the second
and third conditions in Ω̄.

Furthermore, since L(∇f(x̄) + ∇Mµg(x̄ + µy)) =
L(∇Mµg(x̄ + µy) −∇Mµg(x̄ + µȳ)) = L(I −D)ỹ = Lỹ,
substitution of Uξ̃ = 0, Dỹ = 0, and x̃ = 0 into (14) implies
that the stationary point for ỹ is ỹ = c1 where c is a non-zero
scalar. Therefore, we have L(∇f(x̄) +∇Mµg(x̄+µy)) = 0
and the first condition in Ω̄ holds for (x, y).

By combing the above expressions, we conclude that
(x, y) = (x̄, y) is in Ω̄. Thus, since V is radially unbounded
LaSalle’s invariance principle implies that (12) is globally
asymptotically stable.

IV. AN EXAMPLE: ECONOMIC DISPATCH PROBLEM

In this section, we provide an example of the economic
dispatch problem to illustrate the performance of the pro-
posed primal-dual Laplacian gradient flow dynamics.

An IEEE 118-bus benchmark problem [20] has 54 gen-
erators and each generator has a quadratic cost function,
fi(xi) = ai + bixi + cix

2
i , where xi is the power injection

at bus i, ai ∈ [6.78, 74.33], bi ∈ [8.3391, 37.6968], and ci ∈
[0.0024, 0.0697]. The load is b = 4200. The communication
network has a ring topology with several additional edges
(1, 11), (11, 21), (21, 31), (31, 41), and (41, 51). To show the
robustness to the fluctuations in electricity price, at t = 2000
we increase the parameters in the objective function by 20%.

We use ODE45 in MATLAB to simulate primal-dual Lapla-
cian gradient flow dynamics (10), with n = 54 and µ = 0.15.
In all simulations, the relative and absolute error tolerances
are set to 10−10 and 10−15, respectively, the initial condition

for each generator is set to xi(0) = 4200/54, and y(0) = 0.
The simulation results are shown in Figs. 1 and 2. Fig-

ures 1a and 2a demonstrate that all power injections xi stay
in the feasible region and converge to the optimal solution
computed by CVX [21]. The following relative error√

‖x− x̄‖2 + ‖y − ȳ‖2
‖x(0)− x̄‖2 + ‖y(0)− ȳ‖2

is used to show the exponential convergence in right plots in
Figs. 1 and 2, where vertical axis is shown in the logarithmic
scale. In both cases, logarithmic relative errors decrease
linearly except for the time instant at which the objective
function has been perturbed.

V. CONCLUDING REMARKS

In this paper, we employ the proximal augmented La-
grangian method to solve a class of convex resource allo-
cation problems over a connected undirected network with
n agents. We show that the resource allocation problem
can be formulated as a composite optimization problem. To
perform in-network computations, we propose a primal-dual
Laplacian gradient flow dynamics based on the proximal
augmented Lagrangian. We demonstrate that the equilibrium
points correspond to KKT points of the original problem. A
Lyapunov-based argument is used to establish global asymp-
totic stability and demonstrate that the proposed gradient
flow dynamics globally converge to the optimal solution.
Finally, we apply the proposed algorithm to an economic
dispatch problem to illustrates its effectiveness.

Several future directions are of interest. First, as indicated
in our simulations, the proposed gradient flow dynamics
appear to be exponentially converging. The exponential con-
vergence of the primal-dual Laplacian gradient flow dynam-
ics is an open problem that requires further investigation.
Second, the robustness of the proposed algorithm to various
uncertainty sources is worth exploring. Third, to deal with
a broader class of problems, it is of interest to extend the
proposed gradient flow dynamics to more general constraints.
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