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Abstract— The primal-dual gradient flow dynamics based on
the proximal augmented Lagrangian were introduced in [1]
to solve nonsmooth composite optimization problems with a
linear equality constraint. We use a Lyapunov-based approach
to demonstrate global exponential stability of the underlying
dynamics when the differentiable part of the objective function
is strongly convex and its gradient is Lipschitz continuous.
This also allows us to determine a bound on the stepsize that
guarantees linear convergence of the discretized algorithm.

Index Terms— Convex optimization, global exponential sta-
bility, Lyapunov functions, non-smooth optimization, primal-
dual gradient flow dynamics, proximal augmented Lagrangian.

I. INTRODUCTION

Primal-dual gradient flow dynamics belong to a class
of Lagrangian-based methods for constrained optimization
problems. Among other applications, such dynamics have
found use in network utility maximization [2], resource
allocation [3], and distributed optimization [4] problems.
Stability conditions for various forms of the gradient flow
dynamics have been proposed since their introduction in the
1950’s [5].

For strictly convex-concave Lagrangians, the authors of [5]
analyzed the global asymptotic stability of the primal-dual
dynamics. Recently, this result was extended to cases in
which the Lagrangian is either strictly convex or strictly con-
cave [6]. A relaxed condition was also proposed for linearly-
convex or linearly-concave Lagrangians. The invariance prin-
ciple was also employed to prove global asymptotic stability
of a projected variant of the primal-dual dynamics that could
handle inequality constraints [2]. In [7], [8], the invariance
principle was specialized to discontinuous Caratheodory sys-
tems, and was used to show global asymptotic stability of
projected primal-dual gradient flow dynamics under globally-
strict or locally-strong convexity-concavity assumptions.

Recently, focus has shifted to establishing conditions for
the exponential stability of primal-dual gradient flow dynam-
ics. The authors of [9] proposed a nonsmooth Lyapunov
function to demonstrate the global exponential stability of
discontinuous primal-dual gradient flow dynamics under
mild convexity and regularity conditions. In [1], the theory of
Integral Quadratic Constraints (IQCs) was employed to prove
global exponential stability of the primal-dual dynamics for
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composite optimization problems that involve strongly con-
vex smooth components with Lipschitz continuous gradients.
This method avoids the explicit construction of Lyapunov
functions and restricts the choice of the augmented La-
grangian parameter in algorithmic design. In [10], a similar
result was presented using a quadratic Lyapunov function for
a narrower class of problems that involve strongly convex
and smooth objective functions with either affine equality or
inequality constraints. For equality constrained optimization
problems, the primal-dual dynamics were shown to be strictly
contractive using a Riemannian metric in [11].

Herein, we use a Lyapunov-based approach to establish
the global exponential stability of the primal-dual gradient
flow dynamics resulting from the proximal augmented La-
grangian. This method was proposed in [1] to solve nons-
mooth composite optimization problems with a linear equal-
ity constraint. When the objective function is strongly convex
and its gradient is Lipschitz continuous, we build on [10] to
provide explicit construction of Lyapunov functions for the
primal-dual dynamics resulting from the proximal augmented
Lagrangian. We also provide an estimate for the exponential
decay rate. In contrast to [2], [7]–[9], our gradient flow
dynamics are projection-free and we do not involve nons-
mooth terms in constructing Lyapunov functions. Moreover,
we guarantee linear convergence of the discretized dynamics
by providing an upper bound for stepsize selection.

This work builds on recent references [1], [10] and utilizes
a Lyapunov-based approach to demonstrate global exponen-
tial stability of the primal-dual gradient flow dynamics based
on the proximal augmented Lagrangian. In [1], the global
exponential stability of such dynamics was established us-
ing frequency-domain equivalent of the condition developed
in [12, Theorem 3] but no Lyapunov function was provided.
Our paper complements these earlier results and provides a
quadratic Lyapunov function that certifies global exponential
stability. This extends recent result [10] from strongly convex
optimization problems with either affine equality or inequal-
ity constraints to a broader class of composite optimization
problems with nonsmooth regularizers.

The remainder of the paper is organized as follows. In
Section II, we describe the proximal augmented Lagrangian
and the resulting primal-dual gradient flow dynamics. In
Section III, we propose a Lyapunov function to establish
the global exponential stability of the primal-dual dynamics.
We also consider the discretized dynamics and provide an
upper bound for stepsize selection. In Section IV, we use
computational experiments to illustrate our findings. We
close the paper in Section V with concluding remarks.
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II. PROBLEM FORMULATION AND BACKGROUND

We consider the nonsmooth convex optimization problem

minimize
x, z

f(x) + g(z)

subject to Tx − z = 0
(1)

where the objective function consists of a continuously
differentiable term f and a non-differentiable term g, and
T ∈ Rm×n is a matrix that relates the optimization variables
x ∈ Rn and z ∈ Rm. We assume that the problem (1) is
feasible and that its minimum is finite.

Assumption 1: Let f be an mf -strongly convex contin-
uously differentiable function with an Lf -Lipschitz con-
tinuous gradient ∇f and let g be a proper, lower semi-
continuous, and convex non-differentiable function.

Assumption 2: Let T ∈ Rm×n be a full row rank matrix
with l0I � TTT � u0I .

The augmented Lagrangian of (1) is given by

L(x, z; y) = f(x) + g(z) + yT (Tx− z) +
1

2µ
‖Tx− z‖2

where x ∈ Rn and z ∈ Rm are primal variables, y ∈ Rm is
a dual variable, and µ is a positive parameter. The minimizer
of the augmented Lagrangian with respect to z is

z?µ(x; y) = proxµg(Tx + µy)

where proxµg denotes the proximal operator of the func-
tion g. Restriction of L along the manifold determined by
z?µ(x; y) yields the proximal augmented Lagrangian [1],

Lµ(x; y) := L(x, z?µ(x; y); y)

= f(x) + Mµg(Tx+ µy)− µ

2
‖y‖2

(2)

where Mµg is the Moreau envelope of the function g,

Mµg(v) := g(proxµg(v)) +
1

2µ
‖proxµg(v) − v‖2.

The Moreau envelope is continuously differentiable, even
when g is not, and its gradient is determined by [13],

∇Mµg(v) =
1

µ

(
v − proxµg(v)

)
.

This implies continuous differentiability, with respect to both
x and y, of the proximal augmented Lagrangian [1].

For example, when g(z) = ‖z‖1, the proximal operator
is the soft-thresholding proxµg(vi) = sign(vi) max{|vi| −
µ, 0}, the associated Moreau envelope is the Huber function
Mµg(vi) = { 1

2µ v
2
i , |vi| ≤ µ; |vi| − µ

2 , |vi| ≥ µ}, and the
gradient of the Moreau envelope is the saturation function,
∇Mµg(vi) = sign(vi) min (|vi|/µ, 1).

The primal-dual gradient flow dynamics can be used to
compute the saddle points of (2),

ẇ = F (w) (3)

where w := [xT yT ]T and

F (w) :=

[
−∇xLµ(x; y)
∇yLµ(x; y)

]
=

[
−(∇f(x) + TT∇Mµg(Tx+ µy))

µ (∇Mµg(Tx+ µy) − y)

]
.

Let w̄ := [ x̄T ȳT ]T denote the equilibrium point of primal-
dual dynamics (3), i.e., the solution to F (w̄) = 0. The
following lemma characterizes the relation between w̄ and
the KKT optimality conditions for (1) and it is borrowed
from [1].

Lemma 1: Let Assumption 1 hold. The equilibrium point
w̄ of primal-dual gradient flow dynamics (3) satisfies
the KKT condition of problem (1). Moreover, (x̄, z̄) =
(x̄,proxµg(T x̄+ µȳ)) is the optimal solution of (1).

Under Assumptions 1 and 2, the global exponential sta-
bility of the primal-dual gradient flow dynamics (3) was
established in [1] using the theory of IQCs in the frequency
domain. The convergence rate estimates were also provided.
The recent reference [10] used a Lyapunov-based approach to
show the global exponential stability for a class of problems
with a strongly convex and smooth objective function f
subject to either affine equality or inequality constraints. In
this paper, we provide a quadratic Lyapunov function that can
be used to prove global exponential stability of the primal-
dual gradient flow dynamics (3).

III. GLOBAL EXPONENTIAL STABILITY

Herein, we employ the Lyapunov-based approach to es-
tablish the global exponential stability of primal-dual gra-
dient flow dynamics (3). We propose a quadratic Lyapunov
function and identify conditions under which its derivative
is upper bounded by a negative definite quadratic form.

We first state two technical lemmas that are useful for
proving the main result.

Lemma 2: Let Assumption 1 hold. Then, for any x, x̄ ∈
Rn, there exists a symmetric matrix Dx,x̄ satisfying 0 �
Dx,x̄ � I such that proxµg(x)−proxµg(x̄) = Dx,x̄(x−x̄).

Proof: See [14, Lemma 5].
Lemma 3: Let Assumption 1 hold. Then, for any x, x̄ ∈

Rn there exists a symmetric matrix Bx,x̄ satisfying mfI �
Bx,x̄ � LfI such that ∇f(x)−∇f(x̄) = Bx,x̄ (x− x̄).

Proof: See [14, Lemma 6].
Using Lemmas 2 and 3, we rewrite the primal-dual gradi-

ent flow dynamics (3),

˙̃w = F (w) − F (w̄) = Gw̃ w̃ (4a)

where w̃ := w − w̄ and the dependence of the matrix

Gw̃ =

[
−B − 1

µT
T (I −D)T −TT (I −D)

(I −D)T −µD

]
(4b)

on w̃ originates from the dependence of B and D on x
and x̄. For notational convenience, we have suppressed the
dependence of matrices B and D on the operating point. We
will do the same in the rest of the paper for the matrix G.
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We propose a quadratic Lyapunov function candidate for
system (4),

V (w̃) = w̃TP w̃ (5a)

with
P :=

[
αI TT

T αI + βTTT

]
. (5b)

When Assumption 2 holds, a simple sufficient condition for
P � 0 is given by

α >
√
u0, β ≥ 0. (6)

We next show how to choose parameters α and β so that the
Lyapunov function candidate V satisfies

V̇ (w̃) = w̃T (GTP + PG) w̃ ≤ −ρ V (w̃) (7)

which establishes a sufficient condition for global exponen-
tial stability of nonlinear dynamics (4) at a convergence rate
ρ > 0.

Let

Q := −(GTP + PG + ρP ) =

[
Q1 QT0
Q0 Q2

]
(8)

where the conformable partitioning of Q follows the parti-
tioning of matrices G and P . Here,

Q0 := TQ4 +Q5

Q1 := 2αB + 2(α/µ− 1)TT (I −D)T − αρI

Q2 := Q3 − αρI − βρTTT

where the matrices Q3, Q4, and Q5 are given by

Q3 := TTT (I −D) + (I −D)TTT + µ(αI + βTTT )D

+ µD(αI + βTTT )

Q4 := B + (1/µ− β)TT (I −D)T − ρI

Q5 := µDT.

If parameters α, β, and ρ are chosen such that Q � 0, then
inequality (7) will clearly be satisfied.

Lemma 4: Let Assumption 2 hold. If β ∈ [0, 1/µ] and
α ≥ u0(1− µβ)/µ, then

Q3 �
µβ + 3

2
TTT . (9)

Proof: See Appendix A.
Lemma 5: Let Assumptions 1 and 2 hold. If β ∈ [0, 1/µ]

and
α > max

(
u0(1− µβ)/µ, h0(β, µ)

)
(10)

then Q � 0 with

ρ =
l0 (1 + βµ)

2 (α + βu0)
. (11)

The positive function h0(β, µ) is defined in Appendix B.
Proof: See Appendix C.

We now combine Lemma 5 with condition (6) to prove
the main result.

Theorem 6: Let Assumptions 1 and 2 hold. If β ∈ [0, 1/µ]
and

α > max
(√
u0, u0(1− µβ)/µ, h0(β, µ)

)
(12)

then the primal-dual gradient flow dynamics (3) are globally
exponentially stable with a rate no smaller than ρ given
by (11). The definition of the positive function h0(β, µ) is
given in Appendix B.

Proof: Under Assumptions 1 and 2, condition (12) is
obtained by combining condition (6) with conditions on α
and β from Lemmas 4 and 5. Now Q � 0 and (7) imply

V̇ (w̃) ≤ −ρ V (w̃).

Since P � 0, V (w̃) = w̃TPw̃ is indeed a Lyapunov function
of primal-dual gradient flow dynamics (3) that certifies the
global exponential stability with the rate no smaller than ρ
given by (11).

Remark 1: Note that the conditions in Theorem 6 are
sufficient. The convergence rate provided in Eq. (11) iden-
tifies the smallest value for a given parameter set {µ, α, β}.
While this rate can be maximized over various parameter
values, establishing an explicit form for its maximum value
is challenging. Depending on the choice of µ, we consider
two extreme cases:

• When β = 1/µ, the convergence rate ρ simplifies to

ρ =
µl0

(µα + u0)

where α > max
(√
u0, h0(1/µ, µ)

)
.

• When β = 0, the convergence rate ρ becomes

ρ =
l0

2α

where α > max
(√
u0, u0/µ, h0(0, µ)

)
.

Remark 2: For strongly convex optimization problem
with linear equality constraints

minimize
x

f(x)

subject to Tx − b = 0
(13)

less conservative conditions for global exponential stability
can be derived. Problem (13) can be brought to (1) by
defining

g(z) =

{
0 z = b
∞ otherwise.

The proximal operator is given by proxµg(v) = b and, thus,
D = 0 in Lemma 2. Under this restriction, the Lyapunov
function candidate (5) for system (4) yields Q3 = 2TTT .
Assumption 2 implies Q3 � 0, and Lemma 5 can be
simplified: if β ≥ 0 and α > h′0(β, µ), then Q � 0 with

ρ =
l0

α+ βu0
(14)

where the positive function h′0(β, µ) is defined in Ap-
pendix B. Using similar argument to Theorem 6, we conclude
that the primal-dual gradient flow dynamics (3) are globally
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exponentially stable with a rate no smaller than ρ given
by (14) if α > max

(√
u0, h

′
0(β, µ)

)
.

Remark 3: The forward Euler discretization of the con-
tinuous gradient flow dynamics (3) with stepsize δ > 0 is
given by

wk+1 = wk + δ F (wk) (15)

where k is the iteration index. Since F is Lipschitz continu-
ous, we can use [15, Theorem 1] to determine a range for the
stepsize δ ∈ (0, δ0) that warrants linear convergence. Based
on [15, Theorem 1], since δ0 is obtained from solving

δν2κp − ρe−ρδ = 0

then the discretized primal-dual gradient flow dynamics (15)
satisfies

‖wk − w̄‖ ≤ √κp rk ‖w0 − w̄‖ (16)

where w̄ is the equilibrium point of (15),

r =
δ2ν2κp

2
+ e−ρδ (17)

and ρ is the decay rate estimated by (11). The Lipschitz
constant of F is given by [15],

ν = Lf + 2λmax + 2µ +
λ2

max

µ

where λmax is the largest eigenvalue of TTT . The condition
number of P can be calculated from

κp = (α + γ̄)/(α +
¯
γ) (18)

where

γ̄ = max
i

βλi +
√
β2λ2

i + 4λi
2

¯
γ = min

i

βλi −
√
β2λ2

i + 4λi
2

and λi is the ith eigenvalues of TTT .

IV. COMPUTATIONAL EXPERIMENTS

In this section, we provide examples to demonstrate the
convergence of the primal-dual gradient flow dynamics (3)
and the discretized algorithm (15).

A. Quadratic optimization problem

Consider a quadratic optimization problem [16],

minimize
x, z

f(x) + g(z)

subject to Tx − z = 0.
(19)

Here, f(x) = (1/2)xTAx+aTx, x and a are n-dimensional
vectors, A ∈ Rn×n is a positive definite matrix, T ∈ Rm×n,
and g is the indicator function given by g(z) = {0, z ≤ b;
∞, otherwise} with b ∈ Rm. We choose Lf and mf to be
the largest and the smallest eigenvalue of A and note that the
gradient of the Moreau envelope is given by ∇Mµg(vi) =
max(0, (vi − bi)/µ).

We use Matlab ODE solver ode45 to simulate the
continuous-time primal-dual gradient flow dynamics (3).
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Fig. 1: Problem instance with Lf = 54.17 and mf = 1.95.
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Fig. 2: Problem instance with Lf = 1.24 and mf = 1.03.

This example is also used to show the linear convergence of
the discretized algorithm (15) in [15]. We generate problem
instances as follows: we set n = m = 10, a = 10 ×
randn(n, 1), and A = HHT + K, where H = randn(n, n)
and K = diag(exp(randn(n, 1))). We choose b to be a vector
with all ones, and set T = I . We report one problem instance
with Lf = 54.17 and mf = 1.95 and demonstrate the linear
convergence for different µ in Fig. 1.

For comparison, we test some well-conditioned problem
instances. We generate problem data in a similar manner
except that we rescale the singular values of A to obtain a
well-conditioned problem. For Lf = 1.24 and mf = 1.03,
we demonstrate the linear convergence for different values
of µ in Fig. 2.

As shown in Fig. 1, the convergence rate improves when
we increase µ. However, in Fig. 2 when µ is increased
beyond 1, the convergence becomes slow. For a given µ > 0,
we can use results of Theorem 6 to estimate the convergence
rate ρ. For instance, when µ = 1, for Lf = 1.24 and
mf = 1.03, we can use (11) to compute rate ρ as a function
of α and β. The estimated rate ρ is given as its peak 0.13.
Thus, practical rate should be larger than 0.13 and it is about
0.58 as shown in Fig. 2.
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Fig. 3: Objective function for a problem instance.

B. Elastic net logistic regression

Consider the logistic regression with elastic net regular-
ization [17],

minimize
x

`(x) + (1/2)λ2‖x‖2 + λ1‖x‖1 (20)

where x ∈ Rn, λ1, λ2 > 0 and the logistic loss `(x) is∑d
i=1−yiaTi x+log(1+ea

T
i x) where the elements of the vec-

tors ai are i.i.d. with N (0, 1), and labels yi ∈ {0, 1} are gen-
erated by the logistic model: P (Yi = 1) = 1/(1 + e−a

T
i x

0
i ),

where x0
i are realizations of i.i.d. with N (0, 1/100). If we

denote T = I , f(x) = `(x) + (1/2)λ2‖x‖2, and g(z) =
λ1‖z‖1, this problem takes the form of (1). We can estimate
parameters mf = λ2 and Lf = λ2 +

∑d
i=1 ‖ai‖2, and we

choose µ = Lf −mf .
We use the discretized algorithm (15) to solve this problem

with different step sizes. We report one instance here. We
can estimate the step size upper bound δ0 using Remark 3.
In this estimation, we assume β = 0 and calculate the κp
and ρ from (18) and (11) respectively. The step size upper
bound is 2.1 × 10−8. Another approach was taken in [15,
Theorem 3] which leads to δ0 = 4.0×10−5. The criterion for
designing the stepsize discussed in Remark 3 is conservative
and may lead to slow convergence. Figure 3 illustrates the
convergence of the algorithm for three different stepsizes
and compares them to proximal gradient algorithm [13]. The
black line corresponds to the stepsize designed based on [15,
Theorem 3] which outperforms our design criteria for this
particular example. Our ongoing efforts are directed towards
providing less conservative Lyapunov-based characterization
for global exponential stability of primal-dual gradient flow
dynamics.

V. CONCLUDING REMARKS

In this paper, we use a Lyapunov-based approach to
establish global exponential stability of the primal-dual gra-
dient flow dynamics resulting from the proximal augmented
Lagrangian. We provide an estimate of the exponential rate
of decay and, for the discretized implementation of the
continuous-time dynamics, we derive an upper bound for
stepsize that guarantees linear convergence. Computational
experiments are used to verify our theoretical findings.

APPENDIX

A. Proof of Lemma 4

The proof idea comes from [10, Lemma 6]. From
Lemma 2, we notice that 0 � D � I and it has the
eigenvalue value decomposition: D = UΣUT , where Σ is
a diagonal matrix with diagonals σi ∈ [0, 1] and U is an
unitary matrix. If we denote Γ := UTTTTU , we have

Q̄3 := UTQ3U = 2Γ + 2µαΣ + (µβ − 1)(ΓΣ + ΣΓ).

We treat Q̄3(Σ) as a function of Σ and
it is a convex combination of elements in
{Q̄3(R), R is a diagonal matrix and diagonals are ri =
0 or 1}. Therefore, it is sufficient to show that

Q̄3(R) � µβ + 3

2
Γ (21)

holds for any R with ri = 0 or 1.
When R = I or 0, it is easy to check the above formula

using the conditions of Lemma 4. Since there exists a
permutation that sorts the non-zero entries of R, without loss
of generality, we can assume that R is given by r1 = · · · =
rk = 1 and rk+1 = · · · = rn = 0, with 0 < k < n.

Let
Γ =

[
Γ1 ΓT0
Γ0 Γ2

]
, Γ1 ∈ Rk×k

we have

Q̄3(R) =

[
2µαI + 2µβΓ1 (µβ + 1)ΓT0

(µβ + 1)Γ0 2Γ2

]
.

For any µ > 0, if we choose 0 ≤ β ≤ 1
µ and α ≥

u0

µ (1− µβ), we have

Q̄3(R) �
[

2Γ1 (µβ + 1)ΓT0
(µβ + 1)Γ0 2Γ2

]
(22a)

� µβ+3
2 Γ (22b)

where the inequality (22a) follows from ‖Γ1‖ ≤ ‖Γ‖ ≤ u0

and α ≥ u0

µ (1− µβ), and the inequality (22b) follows from
Γ � 0 and 0 ≤ β ≤ 1

µ . This completes the proof.

B. Functions h0 and h′0 in Lemma 5 and Theorem 6

h0(β, µ) =
L2

f

2mf
+ 1

2mf

∑4
i=1 hi(α;β, µ)

∣∣∣
α=αm

h1(α;β, µ) = 2Lf (u0

µ (1− µβ) + l0(1+µβ)
2(α+βu0) )

+ (u0

µ (1− µβ) + l0(1+µβ)
2(α+βu0) )2

h2(α;β, µ) = 2µu0

l0
(Lf + u0

µ (1− µβ) + l0(1+µβ)
2(α+βu0) )

h3(α;β, µ) = µ2u0

l0
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h4(α;β, µ) = 2u0 + l0(1+µβ)
2

h′0(β, µ) =
L2

f

2mf
+ 1

2mf

∑
i=1,4 h

′
i(α;β, µ)

∣∣∣
α=
√
u0

h′1(α;β, µ) = 2Lf (u0

µ |1− µβ| + l0
α+βu0

)

+ (u0

µ |1 − µβ| + l0
α+βu0

)2

h′4(α;β, µ) = 2u0 + l0

where µ > 0 is the augmented Lagrangian parameter, mf

and Lf are defined in Assumption 1, l0 and u0 are defined
in Assumption 2, and αm = min (u0(1− µβ)/µ,

√
u0).

C. Proof of Lemma 5

We use the Schur complement condition [18] to show
positive semidefiniteness of Q by checking: (i) Q2 � 0; (ii)
Q1 −QT0 Q−1

2 Q0 � 0.

(i) Using Lemma 4 and Assumption 2, we have

Q2 − TTT � µβ+1
2 TTT − ρ(αI + βTTT )

� (µβ+1
2 l0 − ρ(α+ βu0))I.

With the choice of ρ in (11), we have Q2 � TTT � 0.

(ii) Using the above lower bound for Q2, we have

QT0 Q
−1
2 Q0 � QT0 (TTT )−1Q0

� QT4 Q4 + 2‖QT4 TT (TTT )−1Q5‖I
+ ‖QT5 (TTT )−1Q5‖I

(23)
where TT (TTT )−1T � I and the triangle inequality yields
the second inequality.

Next, we further bound the three terms in the upper bound
of QT0 Q

−1
2 Q0 in (23). We apply the triangle inequality, sub-

multiplicativity of spectral norm, and bounds in Lemma 3
and Assumption 2 on each of the three terms to get the
following results:

QT4 Q4 � LfB + h1(α;β, µ)I

2‖QT4 TT (TTT )−1Q5‖I � h2(α;β, µ)I

‖QT5 (TTT )−1Q5‖I � h3(α;β, µ)I.
(24)

Here, h1(α;β, µ), h2(α;β, µ), and h3(α;β, µ) are given
in Appendix B.

On the other hand, notice that 0 � T (I −D)TT � u0I ,
we put a lower bound on Q1 as follows

Q1 � 2αB − 2u0I − αρI

= 2αB − h4(α;β, µ).
(25)

Then, we use upper bounds in (24) for QT0 Q
−1
2 Q0 and

lower bound in (25) for Q1 to bound the Schur complement

Q1−QT0 Q−1
2 Q0 � (2α−Lf )B−

∑4
i=1 hi(α;β, µ)I (26)

When 0 ≤ β ≤ 1
µ , the last term

∑4
i=1 hi(α;β, µ) is a

strictly decreasing function of α and it is positive. To lower

bound (26) above zero, we further require

Q1 − QT0 Q
−1
2 Q0 � 2αmfI − L2

fI

−
∑4
i=1 hi(α;β, µ)I

∣∣∣
α=αm

(27)

where the last evaluation is because of the lower bounds of
α from Lemma 4 and (6). The positive semi-definiteness of
the lower bound in (27) gives α ≥ h0(β, µ). This completes
the verification of condition (ii).

Finally, due to Assumption 2, we can combine results in
Lemma 4 to get the condition (10).
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