
Global exponential stability of primal-dual gradient flow dynamics based on
the proximal augmented Lagrangian: A Lyapunov-based approach

Dongsheng Ding and Mihailo R. Jovanović

Abstract— For a class of nonsmooth composite optimiza-
tion problems with linear equality constraints, we utilize a
Lyapunov-based approach to establish the global exponential
stability of the primal-dual gradient flow dynamics based on
the proximal augmented Lagrangian. The result holds when the
differentiable part of the objective function is strongly convex
with a Lipschitz continuous gradient; the non-differentiable
part is proper, lower semi-continuous, and convex; and the
matrix in the linear constraint is full row rank. Our quadratic
Lyapunov function generalizes recent result from strongly
convex problems with either affine equality or inequality con-
straints to a broader class of composite optimization problems
with nonsmooth regularizers and it provides a worst-case lower
bound of the exponential decay rate. Finally, we use compu-
tational experiments to demonstrate that our convergence rate
estimate is less conservative than the existing alternatives.

I. INTRODUCTION

Primal-dual gradient flow dynamics belong to a class
of Lagrangian-based methods for constrained optimization
problems. Among other applications, such dynamics have
found use in network utility maximization [1], resource
allocation [2], distributed optimization [3], and feedback-
based online optimization [4] problems. Stability conditions
for various forms of the gradient flow dynamics have been
proposed since their introduction in the 1950’s [5].

Lyapunov-based approach has been an effective tool for
studying the stability of primal-dual algorithms starting with
the seminal paper of Arrow, Hurwicz, and Uzawa [5].
They utilized a quadratic Lyapunov function to establish the
global asymptotic stability of the primal-dual dynamics for
strictly convex-concave Lagrangians. This early result was
extended to the problems in which the Lagrangian is either
strictly convex or strictly concave [6]. A simplified Lyapunov
function was also proposed for linearly-convex or linearly-
concave Lagrangians. For a projected variant of the primal-
dual dynamics that could account for inequality constraints,
a Krasovskii-based Lyapunov function was combined with
LaSalle’s invariance principle to show the global asymptotic
stability in [1]. The invariance principle was also special-
ized to discontinuous Carathéodory systems and a quadratic
Lyapunov function was used to show the global asymptotic
stability of projected primal-dual gradient flow dynamics
under globally-strict or locally-strong convexity-concavity
assumptions [7], [8]. Additional information about the utility
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of a Lyapunov-based analysis in optimization can be found
in a recent reference [9].

In [10], the theory of proximal operators was combined
with the augmented Lagrangian approach to solve optimiza-
tion problems in which the objective function can be decom-
posed into the sum of the strongly convex term with a Lip-
schitz continuous gradient and a convex non-differentiable
term. By evaluating the augmented Lagrangian along a cer-
tain manifold, a continuously differentiable function of both
primal and dual variables was obtained. This function was
named the proximal augmented Lagrangian and the theory of
integral quadratic constraints (IQCs) in the frequency domain
was employed to prove the global exponential stability of the
resulting primal-dual dynamics [10]. This method yields an
evolution model with a continuous right-hand-side even for
nonsmooth problems and it avoids the explicit construction
of a Lyapunov function. In [11], a quadratic Lyapunov
function was used to prove similar properties for a narrower
class of problems that involve strongly convex and smooth
objective functions with either affine equality or inequality
constraints. More recently, this Lyapunov-based result was
extended to account for variations in the constraints [12]–
[14]. Finally, in [15] for problems with strongly convex
objective functions, the theory of IQCs was used to prove the
global exponential stability of the equilibrium points of the
differential equations that govern the evolution of proximal
gradient and Douglas-Rachford splitting flows.

Herein, we utilize a Lyapunov-based approach to es-
tablish the global exponential stability of the primal-dual
gradient flow dynamics resulting from the proximal aug-
mented Lagrangian [10]. Instead of utilizing the frequency-
domain condition [10], we employ the theory of IQCs in
the time domain to obtain a quadratic Lyapunov function
that establishes the global exponential stability. One benefit
is that the Lyapunov function allows us to derive a worst-
case lower bound on the exponential decay rate which the
frequency-domain characterization [10] does not provide.
Furthermore, our Lyapunov function employs a more general
parameterization than the one used in [11] or [16] and it
yields less conservative convergence rate estimates. We also
extend the results of [11] from strongly convex problems
with affine equality or inequality constraints to a broader
class of optimization problems with nonsmooth regularizers.
In contrast to [1], [7], [8], [14], [17], our gradient flow
dynamics are projection-free and there are no nonsmooth
terms in the Lyapunov function.

The remainder of the paper is organized as follows. In
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Section II, we provide background material, formulate the
nonsmooth composite optimization problem, and describe
the proximal augmented Lagrangian as well as the result-
ing primal-dual gradient flow dynamics. In Section III, we
construct a quadratic Lyapunov function for verifying the
global exponential stability of the primal-dual dynamics. In
Section IV, we use computational experiments to illustrate
the utility of our results. In Section V, we close the paper
with concluding remarks.

II. PROBLEM FORMULATION AND BACKGROUND

We consider convex composite optimization problems in
which the objective function consists of a continuously
differentiable term f and a non-differentiable term g

minimize
x, z

f(x) + g(z)

subject to Tx − z = 0
(1)

where T ∈ Rm×n is a matrix that relates the optimization
variables x ∈ Rn and z ∈ Rm.

Assumption 1: Problem (1) is feasible and its minimum
is finite.

Assumption 2: The continuously differentiable function
f is mf -strongly convex with an Lf -Lipschitz continuous
gradient and the non-differentiable function g is proper, lower
semi-continuous, and convex.

Assumption 3: The matrix T ∈ Rm×n has a full row rank.

A. Proximal augmented Lagrangian

The proximal operator of the function g is given by [18]

proxµg(v) := argmin
x

(
g(x) +

1

2µ
‖x − v‖2

)
and the associated value function is Moreau envelope,

Mµg(v) := g(proxµg(v)) +
1

2µ
‖proxµg(v) − v‖2

where µ is a positive parameter. The Moreau envelope is
continuously differentiable, even when g is not, and its
gradient is determined by,

∇Mµg(v) =
1

µ

(
v − proxµg(v)

)
.

The augmented Lagrangian of the constrained optimiza-
tion problem (1) is given by

L(x, z; y) = f(x) + g(z) + yT (Tx− z) +
1

2µ
‖Tx− z‖2

where x ∈ Rn and z ∈ Rm are the primal variables, y ∈ Rm
is a dual variable, and µ is a positive parameter. Completion
of squares brings L(x, z; y) into the following form

L(x, z; y) = f(x) + g(z) +
1

2µ
‖z−(Tx+µy)‖2 − µ

2
‖y‖2.

The minimizer of the augmented Lagrangian with respect to
z is

z?µ(x; y) = proxµg(Tx + µy)

where proxµg denotes the proximal operator of the func-
tion g. Restriction of L along the manifold determined by
z?µ(x; y) yields the proximal augmented Lagrangian [10],

Lµ(x; y) := L(x, z?µ(x; y); y)

= f(x) + Mµg(Tx+ µy) − µ

2
‖y‖2

(2)

where Mµg is the Moreau envelope of the function g.
Continuous differentiability of the proximal augmented La-
grangian Lµ(x; y) with respect to both x and y follows from
continuous differentiability of Mµg and Lipschitz continuity
of the gradient of f .

B. Examples

We next provide examples of convex optimization prob-
lems that can be brought into the form (1). For instance, the
problem with linear equality constraints,

minimize
x

f(x)

subject to Tx = b
(3)

where b ∈ Rm is a given vector can be cast as (1) by
choosing g(z) to be an indicator function, g(zi) := {0, zi =
bi; ∞, otherwise}. In this case, the proximal operator is
given by proxµg(vi) = bi, the associated Moreau envelope
is Mµg(vi) = 1

2µ (vi − bi)2, and the gradient of the Moreau
envelope is ∇Mµg(vi) = (vi − bi)/µ.

The problem with linear inequality constraints,

minimize
x

f(x)

subject to Tx ≤ b
(4)

where b ∈ Rm is a given vector can be cast as (1) by
choosing g(z) to be an indicator function, g(zi) := {0, zi ≤
bi; ∞, otherwise}. The proximal operator is proxµg(vi) =
min{vi, bi}, the associated Moreau envelope is Mµg(vi) =
{ 1

2µ (vi− bi)2, vi > bi; 0, otherwise}, and the gradient of the
Moreau envelope is ∇Mµg(vi) = max(0, (vi − bi)/µ).

Unconstrained optimization problems with nonsmooth
regularizers can be also represented by (1). For example,
the logistic regression with elastic net regularization [19]

minimize
x

`(x) + 1
2‖x‖

2 + ‖x‖1 (5)

where the logistic loss `(x) is given by
∑d
i=1(log(1+ea

T
i x)−

yia
T
i x) where ai is the feature vector and yi ∈ {0, 1} is

the corresponding label. Choosing f(x) := `(x) + 1
2‖x‖

2,
g(z) := ‖z‖1, and T := I brings (5) into (1). The
proximal operator is the soft-thresholding proxµg(vi) =
sign(vi) max{|vi| − µ, 0}, the associated Moreau envelope
is the Huber function Mµg(vi) = { 1

2µ v
2
i , |vi| ≤ µ; |vi| −

µ
2 , |vi| ≥ µ}, and the gradient of the Moreau envelope is the
saturation function ∇Mµg(vi) = sign(vi) min (|vi|/µ, 1).

C. Primal-dual gradient flow dynamics

The primal-dual gradient flow dynamics can be used to
compute the saddle points of (2),

ẇ = F (w) (6a)
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where w := [xT yT ]T and

F (w) :=

[
−∇xLµ(x; y)
∇yLµ(x; y)

]
=

[
−(∇f(x) + TT∇Mµg(Tx+ µy))

µ (∇Mµg(Tx+ µy) − y)

]
.

(6b)
Let w̄ := [ x̄T ȳT ]T denote the equilibrium points of (6), i.e.,
the solutions to F (w̄) = 0. Let (x?, z?) and y? be the optimal
primal and dual points. The Lagrangian of the optimization
problem (1) is given by f(x) + g(z) + yT (Tx− z) and the
associated KKT optimality condition are,

0 = ∇f(x?) + TT y?

0 ∈ ∂g(z?) − y?

0 = Tx? − z?
(7)

where ∂g is the subgradient of g. The following lemma
establishes the relation between w̄ and the optimality condi-
tions (7); see [10] for details.

Lemma 1: Let Assumptions 1 and 2 hold. The equilibrium
point w̄ := [ x̄T ȳT ]T of the primal-dual gradient flow
dynamics (6) satisfies optimality conditions (7) with z̄ :=
proxµg(T x̄+ µȳ). Moreover, (x̄, z̄) is the optimal solution
of nonsmooth composite optimization problem (1).

Under Assumptions 1-3, the global exponential stability of
the primal-dual gradient flow dynamics (6) was established
in [10] by employing the theory of IQCs in the frequency
domain. An upper bound on the convergence rate was also
obtained but the explicit form for the quadratic Lyapunov
function was not provided. Recent reference [11] used a
Lyapunov-based approach to show the global exponential
stability for a class of problems with a strongly convex and
smooth objective function f subject to either affine equality
or inequality constraints. In our preliminary work [16], a
similar quadratic Lyapunov function was used to prove
global exponential stability of the primal-dual gradient flow
dynamics (6). In what follows, we employ the theory of IQCs
in the time domain to obtain a quadratic Lyapunov function
that establishes the global exponential stability of (6) and
yields less conservative convergence rate estimates.

III. GLOBAL EXPONENTIAL STABILITY VIA QUADRATIC
LYAPUNOV FUNCTION

In this section, we identify a quadratic Lyapunov function
that can be used to establish the global exponential stability
of the primal-dual gradient flow dynamics (6) for strongly
convex problems (1) with full row rank matrix T and provide
an estimate of the convergence rate.

A. A system-theoretic viewpoint of primal-dual dynamics

Inspired by [20], [21], we view (6) as a feedback intercon-
nection of an LTI system with static nonlinearities; see Fig. 1.
These are determined by the gradient of the smooth part of
the objective function∇f and the proximal operator proxµg .
Structural properties of nonlinear terms that we exploit in our
analysis are specified in Assumption 2.

∆2

∆1

G

∆

u1

u2

ξ1 = x

ξ2 = Tx+ µy

Fig. 1: Block diagram of primal-dual gradient flow dynam-
ics (6): G is an exponentially stable LTI system in (8a) and ∆
is a static nonlinear map that satisfies quadratic constraint (9).

Let u = [uT1 uT2 ]T and ξ = [ ξT1 ξT2 ]T , with

ξ1 := x

ξ2 := Tx+ µy

u1 := ∆1(ξ1) = ∇f(x)−mfx

u2 := ∆2(ξ2) = proxµg(Tx+ µy).

For strongly convex f , the primal-dual dynamics (6) can be
cast as an LTI system G in feedback with a nonlinear block
∆, where

ẇ = Aw + Bu

ξ = Cw, u = ∆(ξ)
(8a)

with

A =

[
−(mfI + 1

µT
TT ) −TT

T 0

]
B =

[
−I 1

µT
T

0 −I

]
, C =

[
I 0
T µI

]
.

(8b)

The input is given by u = ∆(ξ) where ∆(ξ) is a 2 × 2
block-diagonal matrix with the diagonal blocks ∆1(ξ1) and
∆2(ξ2). These nonlinearities satisfy the pointwise quadratic
inequalities [10][

ξi − ξ̄i
ui − ūi

]T [
0 L̂iI

L̂iI −2I

] [
ξi − ξ̄i
ui − ūi

]
≥ 0

where w̄ := [ x̄T ȳT ]T is the equilibrium point of system (8),
ξ̄1 = x̄, ξ̄2 = T x̄ + µȳ, L̂1 := Lf − mf , and L̂2 = 1.
This is because ∆1 is the gradient of the convex function
f(ξ1) − (mf/2)‖ξ1‖2 and, thus, it is Lipschitz continuous
with parameter Lf − mf [20, Proposition 5]; and ∆2 is
given by the proximal operator of the function g and, thus,
it is firmly non-expansive (i.e., Lipschitz continuous with
parameter one) [18]. These quadratic constraints can be
combined into,[

ξ − ξ̄
u − ū

]T [
0 Π0

Π0 −2Λ

]
︸ ︷︷ ︸

Π

[
ξ − ξ̄
u − ū

]
≥ 0 (9)

where

Π0 =

[
λ1L̂1I 0

0 λ2I

]
, Λ =

[
λ1I 0
0 λ2I

]
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and λ1, λ2 are non-negative scalars.

B. Lyapunov-based analysis for global exponential stability

For the primal-dual gradient flow dynamics (6) with equi-
librium point w̄, we propose a quadratic Lyapunov function
candidate

V (w̃) = w̃TP w̃ (10a)

with w̃ := w − w̄ and

P = α

[
I (1/µ)TT

(1/µ)T (1 +mf/µ) I + (1/µ2)TTT

]
(10b)

where α is a positive parameter, mf is the strong convexity
module of the function f , µ is the augmented Lagrangian
parameter, and T is the full rank matrix associated with the
linear equality constraint in (1). The matrix P is positive
definite and, for A in (8b), we have

ATP + PA = −2α

[
mfI 0

0 (1/µ)TTT

]
≺ 0. (11)

Thus, A is a Hurwitz matrix and the LTI system in Fig. 1 is
exponentially stable. Furthermore, the derivative of V along
the solutions of (8a) is determined by

V̇ =

[
w̃
ũ

]T [
ATP + PA PB

BTP 0

] [
w̃
ũ

]
(12a)

where ũ := u− ū, and the substitution of the output equation
ξ = Cw in (8a) to (9) yields the quadratic inequality,[

w̃
ũ

]T [
0 CTΠ0

Π0C −2Λ

] [
w̃
ũ

]
≥ 0. (12b)

The sufficient condition for the global exponential stability
of (8) is obtained by adding (12b) to (12a) and it amounts
to the existence of a positive constant ρ such that[
−(ATP + PA+ 2ρP ) −(PB + CTΠ0)
−(PB + CTΠ0)T 2Λ

]
� 0. (13)

If this condition holds, we have V̇ ≤ −2ρV . Thus,
V (w̃(t)) ≤ V (w̃(0)) e−2ρt and since P � 0,

‖w̃(t)‖ ≤ √κp ‖w̃(0)‖ e−ρt, for all t ≥ 0 (14)

where κp is the condition number of the matrix P . Since
Λ � 0, the remaining task is to verify the existence of the
positive parameters α, µ, λ1, λ2, and ρ such that

−(ATP + PA+ 2ρP )

− 1
2 (PB + CTΠ0) Λ−1(PB + CTΠ0)T � 0

(15)

which follows from the application of the Schur complement
to (13).

We are now ready to prove the global exponential stability
of the primal-dual gradient flow dynamics (6) and provide
estimates of the convergence rate ρ for Lf > mf . Similar
result can be established for Lf = mf .

Theorem 2: Let Assumptions 1-3 hold, let Lf > mf ,
and let σmax(T ) be the largest singular value of the matrix
T . Then, the global exponential stability of the primal-dual
gradient flow dynamics (6) can be established with Lyapunov

function (10) if the augmented Lagrangian parameter satisfies

µ > max

(
Lf−mf

4 ,
σ2
max(T )
8mf

(
1 +

√
1 +

16m2
f

σ2
max(T )

))
. (16)

Proof: If (15) holds for ρ = 0, the continuity of the
left-hand side of (15) with respect to ρ implies the existence
of ρ > 0 such that (15) holds. For ρ = 0, (15) becomes

−(ATP +PA) − 1
2 (PB+CTΠ0) Λ−1(PB+CTΠ0)T � 0

(17)
where ATP +PA is given by (11), and PB +CTΠ0 reads[

(λ1L̂1 − α) I λ2 T
T

−(α/µ)T (µλ2 − α(1 + αmf/µ)) I

]
where L̂1 := Lf −mf > 0. Thus, the matrix M := 1

2 (PB+
CTΠ0) Λ−1(PB + CTΠ0)T is given by

M =

[
M1 MT

0

M0 M2

]
(18)

where

M1 = 1
2

(
(α−λ1L̂1)2

λ1
I + λ2 T

TT
)

M2 = 1
2

(
α2

λ1µ2 TT
T + 1

λ2
(µλ2 − α(1 +

mf

µ ))2 I
)

M0 = 1
2

(
α(α−λ1L̂1)

λ1µ
+ µλ2 − α(1 +

mf

µ )
)
T

and α, λ1, λ2, and µ are positive parameters that have to
be selected such that (17) holds. Setting λ1 := α/L̂1 and
λ2 := (α/µ)(1+mf/µ) yields M0 = 0 and (17) simplifies to[

2αmfI − λ2

2 TTT 0
0 α

µ (2− α
2λ1µ

)TTT

]
� 0

or, equivalently,

4αmf > λ2σ
2
max(T ) and 4µλ1 > α.

Combining these two conditions with the above definitions
of λ1 and λ2 yields (16).

We next utilize the choices of parameters λ1 and λ2 in
Theorem 2 to estimate the convergence rate ρ.

Proposition 3: Let Assumptions 1-3 hold, let Lf > mf ,
and let σmin(T ) and σmax(T ) be the smallest and the
largest singular values of the matrix T . Then, the primal-
dual gradient flow dynamics (6) are globally exponentially
stable with the rate

ρ ≥ ρ0(µ) :=
σ2

min(T )

2(µ + mf + σ2
max(T )/µ)

(19a)

if µ > max (Lf −mf , µ̂), where

µ̂ := inf {µ ∈ [σmax(T ),∞), β(µ) < 2mf} (19b)

β(µ) :=
(mf + µ)σ2

max(T )

2µ2
+

2ρ0(µ)(µ+ 4ρ0(µ))

µ
.

(19c)

Proof: See Appendix A.

In Proposition 3, we show that for given problem pa-
rameters {mf , Lf , σmax(T ), σmin(T )}, if the augmented La-
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grangian parameter µ is properly selected, then primal-dual
gradient flow dynamics (6) converge to the optimal solution
with an exponential rate (see (14)). This holds for any
initial point and the worst-case rate is given by ρ0(µ). This
complements the result of [10, Remark 4] that provides an
upper bound on the rate. In Section IV, for the quadratic
program we demonstrates that our estimated convergence
rate is less conservative that those provided in [11], [16].
This improved rate may provide better convergence estimates
for the discretized implementation of the continuous-time
gradient flow dynamics (6) (see [22, Theorem 1]).

IV. COMPUTATIONAL EXPERIMENTS

We next provide an example to demonstrate the merits of
our approach. Let us consider optimization problem (1) with,

f(x) = 1
2 x

TQx + qTx

g(z) =

{
0, z ≤ b

∞, otherwise

(20)

where x and q are the n-dimensional vectors, Q ∈ Rn×n is a
positive definite matrix, T ∈ Rm×n if a full row rank matrix,
and b ∈ Rm is a given vector. The gradient of the Moreau
envelope is determined by ∇Mµg(vi) = max (0, (vi−bi)/µ)
and (Lf ,mf ) are the largest and the smallest eigenvalues of
the matrix Q, respectively.

We use Matlab ODE solver ode45 to simulate the primal-
dual gradient flow dynamics (6) and set n = m = 10,
q = 10 × randn(n, 1), and Q = HHT + K, where H =
randn(n, n) and K = diag(exp(randn(n, 1))). We choose b
to be a vector of all ones, set T = I , and report results for
(Lf ,mf ) = (1.24, 1.03) in Fig. 2 and Fig. 3.

Fig. 2 demonstrates the exponential convergence of primal
dynamics in (6) with (Lf ,mf ) = (1.24, 1.03) for different
values of µ, where x? is obtained via quadprog. We note
that the convergence rate decreases when µ becomes larger
than 2. For a given value of µ that satisfies Proposition 3, we
use formula (19a) to estimate the lower bound on the conver-
gence rate ρ0. We compare our estimate with [11, Theorem 2]
and [16, Theorem 6]. As shown in Fig. 3, Proposition 3
provides a less conservative estimate of the convergence rate
than the existing methods. Similar observations can be made
for a larger condition number.

The condition number of the matrix Q is denoted by κq :=
Lf/mf . To see effect of the condition number, we fix mf

and increase Lf to generate five instances of problem (20)
with different values of κq . We set µ = 50 and compare
three estimates of the convergence rate ρ in Figure 4. For
this value of µ, our estimates outperform the alternatives for
different condition numbers.

V. CONCLUDING REMARKS

In this paper, we use a Lyapunov-based approach to
establish global exponential stability of the primal-dual gra-
dient flow dynamics resulting from the proximal augmented
Lagrangian framework for nonsmooth composite optimiza-
tion. We provide a worst-case estimate of the exponential

‖x
(t

)
−
x
?
‖

time (seconds)

Fig. 2: Convergence of the primal-dual gradient flow dynam-
ics (6) for problem (20).

ρ
µ

Fig. 3: Convergence rate estimates, as a function of µ,
resulting from (19a) (– –), [16, Theorem 6] (···), and [11,
Theorem 2] (– -) for problem (1) with (20).

decay rate when the differentiable part of the objective
function is strongly convex and its gradient is Lipschitz
continuous. For a quadratic programming problem, compu-
tational experiments are used to show that our estimate of
the convergence rate is less conservative compared to the
existing literature. Our ongoing work focuses on identifying
a quadratic Lyapunov function that can certify the global
exponential stability of a second-order primal-dual method
for nonsmooth composite optimization [23].

APPENDIX

A. Proof of Proposition 3

We show that (15) holds for ρ = ρ0(µ). Substitution of the
expressions for ATP+PA and 1

2 (PB+CTΠ0)Λ−1(BTP+
Π0C) given by (11) and (18) into (15) yields

R =

[
R1 RT0
R0 R2

]
� 0 (21)

where

R1 = 2α(mf − ρ) I − (α−λ1L̂1)2

2λ1
I − λ2

2 TTT

R2 = ( 2α
µ −

α2

2λ1µ2 )TTT − 2ρα((1 +
mf

µ ) I + 1
µ2 TT

T )

− 1
2λ2

(µλ2 − α(1 +
mf

µ ))2 I

R0 = − α
µ (α−λ1L̂1

2λ1
+ 2ρ)T − 1

2 (µλ2 − α(1 +
mf

µ ))T.
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ρ

κq

Fig. 4: Convergence rate estimates, as a function of κq ,
resulting from (19a) (– –), [16, Theorem 6] (···), and [11,
Theorem 2] (– -) for problem (1) with (20).

Here, L̂1 := Lf −mf > 0, and α, λ1, λ2, and µ are positive
parameters that have to be selected such that (15) holds for
ρ = ρ0(µ).

We set λ1 := α/L̂1, λ2 := α(1 + mf/µ)/µ, and
add/subtract 3αTTT /(2µ) to R2 to obtain

R2 = α( 2
µ −

L̂1

2µ2 )TTT − 3α
2µ TT

T +
α
µ TT

T − 2ρα((1 +
mf

µ ) I + 1
µ2 TT

T ) + α
2µ TT

T .

If µ ≥ L̂1, then

α( 2
µ −

L̂1

2µ2 )TTT − 3α
2µ TT

T � 0. (22)

Furthermore, for ρ = ρ0, we have
α
µ TT

T − 2ρα((1 +
mf

µ ) I + 1
µ2 TT

T ) �
α
µ σ

2
min(T ) I − 2ρα(1 +

mf

µ +
σ2
max(T )
µ2 ) I = 0.

(23)

Combining (22) and (23) with the definition of R2 yields
R2 � αTTT /(2µ) and the positive definiteness of R2

follows from the fact that T is a full row rank matrix.

The application of the Schur complement requires R1 −
RT0 R

−1
2 R0 � 0. Using R2 � αTTT /(2µ), we can rewrite

this condition as R1−(2µ/α)RT0 (TTT )−1R0 � 0. For β(µ)
and µ̂ given by (19c) and (19b), respectively, if µ > µ̂, we
have

R1 − (2µ/α)RT0 (TTT )−1R0

� α
(
2mf − (2ρ0 +

σ2
max(T )

2µ (1 +
mf

µ ) +
8ρ20
µ )
)
I

= α
(
2mf − β(µ)

)
I � 0.

We now prove the existence of such µ̂. Since ρ0(µ) is mono-
tonically decreasing for µ ≥ σmax(T ), β(µ) monotonically
decreases to zero on the interval µ ∈ [σmax(T ),∞). There
are two cases:

(i) if β(σmax(T )) > 2mf , then β(µ̄) = 2mf for some
µ̄ ∈ [σmax(T ),∞) and µ̂ = µ̄;

(ii) if β(σmax(T )) ≤ 2mf , then β(µ) < β(σmax(T )) ≤
2mf for all µ ∈ (σmax(T ),∞). Thus, µ̂ = σmax(T ), and the
set in (19b) is nonempty and such µ̂ always exists.
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