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Abstract

We study sequential decision-making problems in which each agent aims to max-
imize the expected total reward while satisfying a constraint on the expected
total utility. We employ the natural policy gradient method to solve the dis-
counted infinite-horizon Constrained Markov Decision Processes (CMDPs) prob-
lem. Specifically, we propose a new Natural Policy Gradient Primal-Dual (NPG-
PD) method for CMDPs which updates the primal variable via natural policy
gradient ascent and the dual variable via projected sub-gradient descent. Even
though the underlying maximization involves a nonconcave objective function and
a nonconvex constraint set under the softmax policy parametrization, we prove that
our method achieves global convergence with sublinear rates regarding both the
optimality gap and the constraint violation. Such a convergence is independent of
the size of the state-action space, i.e., it is dimension-free. Furthermore, for the
general smooth policy class, we establish sublinear rates of convergence regarding
both the optimality gap and the constraint violation, up to a function approximation
error caused by restricted policy parametrization. Finally, we show that two sample-
based NPG-PD algorithms inherit such non-asymptotic convergence properties
and provide finite-sample complexity guarantees. To the best of our knowledge,
our work is the first to establish non-asymptotic convergence guarantees of policy-
based primal-dual methods for solving infinite-horizon discounted CMDPs. We
also provide computational results to demonstrate merits of our approach.

1 Introduction

Reinforcement learning (RL) studies sequential decision-making problems where the agent aims to
maximize its expected total reward by interacting with an unknown environment over time [44]. The
model of Markov Decision Processes (MDPs) is usually used to represent the environment dynam-
ics. However, in many safety-critical applications, e.g., in autonomous driving [19], robotics [35],
cyber-security [58], and financial management [1], the agent is also subject to constraints on its
utilities/costs. This naturally leads to a generalization of the environment dynamics to constrained
MDPs (CMDPs) [4]. Besides maximizing the expected total reward, the agent also has to take into
account the constraint on the expected total utility/cost as an additional learning objective.

Policy gradient (PG) methods [45], including the natural policy gradient (NPG) [21], have enjoyed
substantial empirical success in solving MDPs [39, 24, 31, 40, 44]. PG methods, or more generally
direct policy search methods, have also been used to solve CMDPs [47, 12, 11, 15, 46, 23, 36, 2, 43].
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However, most existing theoretical guarantees are asymptotic in nature and/or only provide local
convergence guarantees to stationary-point policies. Theoretical non-asymptotic global convergence
guarantees are largely absent: for arbitrary initial points, algorithms with a finite number of iterations
and samples converge to an e-optimal solution that enjoys e-optimality gap and e-constraint violation.
It is thus imperative to establish theoretical guarantees for PG methods in solving CMDPs. Our
motivation also comes from recent advances on the global convergence properties of PG methods [18,
56,9, 48, 3, 57].

In this work, we provide a theoretical foundation for the non-asymptotic global convergence of the
NPG method in solving CMDPs and answer the following questions: (i) can we employ NPG methods
for solving CMDPs?; (ii) if and how fast do these methods converge to the globally optimal value
within the underlying constraints?; (iii) what is the effect of the function approximation error caused
by a restricted policy parametrization?; and (iv) what is the sample complexity of NPG methods?

Contribution. Our contribution is four-fold: (i) We propose a simple but effective primal-dual
algorithm — Natural Policy Gradient Primal-Dual (NPG-PD) method — for solving discounted infinite-
horizon CMDPs. We employ natural policy gradient ascent to update the primal variable and projected
sub-gradient descent to update the dual variable; (ii) Even though we show that the maximization
problem has a nonconcave objective function and nonconvex constraint set under the softmax policy
parametrization, we prove that our NPG-PD method achieves global convergence with rate O(1/v/T)
regarding both the optimality gap and the constraint violation, where T is the total number of
iterations. Our convergence guarantees are dimension-free, i.e., the rate is independent of the size
of the state-action space; (iii) For the general smooth policy class, we establish convergence with
rate O(1/+/T) for the optimality gap and O(1/T*/*) for the constraint violation, up to a function
approximation error caused by restricted policy parametrization; and (iv) We show that two sample-
based NPG-PD algorithms that we propose inherit such non-asymptotic convergence properties and
provide the finite-sample complexity guarantees. To the best of our knowledge, our work is the first
to provide non-asymptotic convergence guarantees for solving infinite-horizon discounted CMDPs in
the primal-dual framework.

Related Work. Our work is related to Lagrangian-based CMDP algorithms [4, 12, 11, 15, 46, 23,
37, 36, 53]. However, convergence guarantees of these algorithms are either local (to stationary-point
or locally optimal policies) [11, 15, 46] or asymptotic [12]. When function approximation is used for
policy parametrization, [53] recognized the lack of convexity and showed asymptotic convergence
(to a stationary point) of a method based on successive convex relaxations. In contrast, we establish
global convergence in spite of the lack of convexity. References [36, 37] are closely related to our
work. In [37], the authors provide duality analysis for CMDPs in the policy space and propose a
provably convergent dual descent algorithm by assuming access to a nonconvex optimization oracle.
However, how to obtain the solution to this nonconvex optimization was not analyzed/understood,
and the global convergence of their algorithm was not established. In [36], the authors provide a
primal-dual algorithm but do not offer any theoretical justification. In spite of the lack of convexity,
our work provides global convergence guarantees for a new primal-dual algorithm without using any
optimization oracles. Other related policy optimization methods include CPG [47], CPO [2, 51], and
IPPO [27]. However, theoretical guarantees for these algorithms are still lacking. Recently, optimism
principles have been used for efficient exploration in CMDPs [42, 59, 16, 38, 17, 6]. In comparison,
our work focuses on the optimization landscape within a primal-dual framework.

Our work is also pertinent to recent global convergence results for PG methods. References [18, 32,
33] provide global convergence guarantees for (natural) PG methods for nonconvex linear quadratic
regulator problems in both discrete- and continuous-time. For general MDPs, [56] shows that locally
optimal policies are achievable using PG methods with a simple reward-reshaping. Reference [48]
shows that (natural) PG methods converge to the globally optimal value when overparametrized neural
networks are used. As a variant of natural PG, trust-region policy optimization (TRPO) [39] has also
been shown to converge to the globally optimal policy with overparametrized neural networks [26] and,
in general, with regularized MDPs [41]. References [9, 10] study global optimality and convergence
of PG methods from a policy iteration perspective. Reference [3] provides characterizations of the
global convergence properties of (natural) PG methods regarding computational, approximation, and
sample size issues. Recent advances along this line include references [30, 55, 13, 28]. While all
these references handle a lack of convexity in the objective function, additional effort is required to
deal with nonconvex constraint sets that arise in CMDPs, and our paper addresses this challenge.



2 Constrained Markov Decision Processes

Consider a discounted Constrained Markov Decision Process [4] — CMDP(S, A, P,r, g,b,7, p) —
where S is a finite state space, A is a finite action space, P is a transition probability measure which
specifies the transition probability P(s’| s, a) from state s to the next state s’ under action a € A, r:
S x A —[0,1] is a reward function, g: S x A — [0,1] is a utility function, b is a constraint offset,
v € [0,1) is a discount factor, and p is an initial state distribution over S.

A stochastic policy of an agent is a function 7m: .S — A4, determining a probability simplex A 4
over action space A chosen by the agent based on the current state, e.g., a; ~ 7(-|s;) at time ¢
Let II be a set of all possible policies. A policy m € II, together with initial state distribution p,
induces a distribution over trajectories 7 = {(s¢, at, ¢, 9¢) }$2 o, Where sg ~ p, a; ~ 7(-| s¢) and
St41 ~ P(-]s¢,a¢) forall t > 0.

Given a policy 7, the value functions V,™, V: S — R associated with the reward r or the utility g
are the following expected values of total rewards or utilities received under policy 7, respectively,

oo oo
Vi(s) = E [Z V7 (st, ar) | ™, 80 = 51 and ng(s) =K [Z V'g(st, ar) |7T750 =S
t=0 t=0
where the expectation E is taken over the randomness of the trajectory 7 induced by 7. We further
introduce the state-action value functions Q7 (s, a), Q7 (s,a): S x A — R when the agent starts

from an arbitrary state-action pair (s, a) and follows policy 7, together with their advantage functions
AT AT S X A= R,

Q3(s,a) == E

th o (se,ae) | 7,80 = s,a0 = a} and A7 = Q5 (s,a) — V] (s)
t=0

where symbol o is r or g. Since r,g € [0, 1], it is easy to see that V,"(s), V["(s) € [0,1/(1 —7)].
Their expected values under p are: V,™(p) := Eq,~,[V,7(s0)] and V[ (p) 1= Egsynp [V (50)]-

Having defined policy, value/action-value functions for the discounted CMDP, the agent’s goal is to
find a policy that maximizes the expected reward value subject to a constraint on the expected utility
value,

maximize V™ (p) subjectto V(p) > b 1)

in which we maximize over all policies and we set constraint offset b € (0, 1/(1—+)] to avoid triviality.
For multiple constraints, our formulation (1) and convergence results are readily generalizable.

Via the method of Lagrange multipliers [8], we formulate the problem (1) into the following max-min
. . T,
problem for the associated Lagrangian V" (p),
.. .. A o - _
maximize minimize Vi (p) = V™ (p) + AV (p) —b) ()
where 7 is the primal variable and A is the nonnegative Lagrange multiplier or dual variable. The
associated dual function is defined as V})(p) := maximize, V' *(p).

Instead of the linear program method [4], this work focuses on direct policy search methods for
solving the problem (2). Direct methods are attractive since they can deal with large state-action
spaces via policy parameterization, e.g., neural nets, and they allow us to directly optimize/monitor
the value functions that we are interested in. They are useful especially when we can utilize policy
gradient estimates via simulations of the policy. It is worth mentioning that (1) is a nonconcave
optimization problem as we prove in Lemma 3, and the decision is on an infinite-dimensional policy
space II. These reasons make the problem (1) challenging.

Nevertheless, the problem (1) has nice properties in the policy space once it is strictly feasible. We
adapt the Slater condition in the constrained optimization [8] to assume strict feasibility of (1).
Assumption 1 (Slater Condition). There exists § > 0 and 7 € I such that V[ (p) — b > &.

The Slater condition is mild in practice since we usually have a priori knowledge on a strictly feasible
policy, e.g., the minimal utility is achievable by a particular policy so that the constraint becomes
loose. We will assume this throughout the paper.

Let an optimal primal variable be 7*, i.e., an optimal solution to (1). Let an optimal dual variable
be \* € argmin, 5 ( V3 (p). Use the shorthand notation V™ (p) = Vi*(p) and V)" (p) = V5(p)



whenever it is clear from the context. We now recall the strong duality for CMDPs [4, 36] and we
further prove boundedness of optimal dual variable \* in Corollary 1 in Appendix C.

Lemma 1 (Strong Duality and Boundedness of A\*). Let Assumption I hold. Then, (i) V*(p) =
VE(p); (i) 0 < X < (VF(p) — VI (p)) /€.

Let v(7) = maximize e {V,"(p) |V, (p) > b+ 7} be the value function associated with prob-
lem (1). Using concavity of v(7) given by [36, Proposition 1], we provide a useful bound on the
constraint violation in Lemma 2 and it is proved in Theorem 6 in Appendix C. Take [z]; = max(z, 0).

Lemma 2 (Constraint Violation). Let Assumption 1 hold. For any C > 2)\*, if there exists a policy
7 € Il and 6 > 0 such that V;* (p) — VT (p) + C[b — V] (p)]+ < 0, then [b — V" (p)]+ < 26/C.

Aided by the above properties implied by the Slater condition, this work directly studies the max-min
problem (2) in the primal-dual domain.

3 Policy Parametrization and Natural Policy Gradient Primal-Dual Method

To make problem (1) tractable, we introduce a set of parametrized policies {7y |6 € ©} where ©
is a finite-dimensional parameter space. We reduce the problem (1) into a parametric optimization
problem,

maoxeirgize V™ (p) subject to V™ (p) > b 3)

together with a parametric max-min problem (2) for the Lagrangian V™ ’>‘( 0)s
.. . e . T, A — ) )\ Uyl _ b 4
maximize minimize Vi (p) V' (p) + A (V" (p) — b). 4)

The dual function reads VA (p) := maximizey V;" ¢X(p). The problem (3) is finite-dimensional, but
still nonconcave even if the constraint is absent [3]. We state it formally as follows and prove it in
Appendix A via an easily-constructed CMDP example.

Lemma 3. There is a CMDP such that for the problem (3), V,™ (s) is not concave and the constraint
set {6 € ©| V] (s) > b} is not convex.

The associated Lagrangian V" 9’)‘(,0) is thus nonconcave in 6 and convex in A and the problem (4) is
a nonconcave-convex max-min problem. Many algorithms, e.g., [25, 34, 50], for solving max-min
optimization problems though, strong assumptions on the max-min structure or only stationary-point
convergence guarantees make them not suitable here. In this work, we will exploit our problem
geometry to propose a new method to study the max-min problem (4). Before doing that, we first
introduce two classes of policies that we are interested in.

Softmax Parametrization. A natural class of policies is parametrized by the softmax function,
exp(8s,q)

for all 6 € RISIAL (5)
a’' €A exp(es,a’)

mo(als) = 5

Nice analytical properties of the softmax policy include completeness and differentiability. It can
represent any stochastic policy, and its closure contains all stationary policies. Other reasons for us
to begin with this policy class are: (i) it equips the policy with a rich structure so that the natural
PG update works like the classical multiplicative weights update in the online learning literature,
e.g., [14]; (ii) it has served as lens to interpreting the function approximation error [3]. It is a warm-up
for studying convergence properties of many RL algorithms [9, 3, 30, 13].

General Parametrization. A general class of stochastic policies is given by {mg |# € O} in which
we assume © C R? without providing the structure of my. The parameter space has dimension
d. This policy class covers a more practical setting using function approximation, e.g., (deep)
neural networks [26, 48]. However, when we choose d < |S||A|, the policy class has a limited
expressiveness, and it may not contain all stochastic policies, e.g., being restricted. With this in mind,
it is reasonable for our theory to define global convergence up to some error caused by the restricted
policy class.

Natural Policy Gradient Primal-Dual (NPG-PD) Method. To introduce our method, we first
introduce some useful definitions. The discounted visitation distribution d of a policy 7 and its




expectation over initial distribution p are given by,

dr (s) = ZytP” =s|so) and d%(s) = Eynp[dT (s)] (6)
t=0
where P™(s; = s| sp) is the probability of visiting state s at time ¢ when the agent follows the policy
7 with initial state so. When the parametrized policy 7y is clear from the context, we use V,?(p)
instead of V.7 (p), and similarly for others. When 7y (- | s) is differentiable and it is in the probability
simplex, i.e., mp € A[f‘ for all 4, the policy gradient (PG) of the Lagrangian (4) reads,
1
V(;VLQ’)‘(SO) = ﬁ E,, ~d0 Eq o mo(-]s) [V@ log mp(als) - A%)\(S, a)}

which equals VoV’ (so) + AVaV? (s0) where A7 (s,a) := A% (s, a) + AA%(s, a). The Fisher infor-
mation matrix induced by 7g is F,(6) := E, _ 470 Eq . ry(. | 5) [V logma(a | s) (Vg log mo(a | L
With this notion, we propose a new policy gradient type method — Natural Policy Gradient Primal-Dual
(NPG-PD) method — for the problem (4),

9(t+1) — e(t) +m Fp(a(t))-r . VQVf(t)7>\(t) (p) and A(Hrl) _ rPA (/\(t) — s (‘/gg(t) (p) _ b)) (7)
where AT takes the Moore-Penrose inverse of matrix A, P (z) projects x into the interval A that will
be specified later, and 77; > 0,72 > 0 are constants. This method displays a first-principle design of
primal-dual updates (i) the primal update (**1) performs gradient ascent using the natural policy
gradient: F,(6M)1. VQV( (p), which is the policy gradient of VL(t) (p) in the geometry induced by
Fisher information F; (G(t ); (ii) the dual update MY works as projected sub-gradient descent by
adding up constraint violation b — Vg(t) (p). We use the shorthand Vg(t) (p) instead of qu(t) (p), and
similarly for others. '

In what follows, we first establish global convergence of the NPG-PD method (7) under the softmax
parametrization in Section 4. We move to the general parametrization in Section 5 and show
convergence of a generalized version of (7). In the end, we propose two model-free sample-based
algorithms for implementing (7) and analyze their sample complexities. Before our analysis, it is

useful to recall: V7 (sg) — VI (s0) = ﬁ Bsndr ann(|s) [AT'(s,a)] for any two policies , 7,
and any state s, where the symbol ¢ is r or g. This is from the performance difference lemma [20, 3].

4 Softmax Parametrization: Dimension-free Global Convergence

We now study the NPG-PD method (7) under the softmax parametrization (5). Thanks to the
completeness of the softmax policy class, the strong duality in Lemma 1 holds on the closure of the
softmax policy class. We establish the global convergence with dimension-independent convergence
rates, i.e., dimension-free, while the maximization problem (3) is nonconcave.

We first exploit the softmax policy structure to show that the NPG-PD update (7) enjoys a concise
primal update given as follows. We provide a proof in Appendix B.
Lemma 4. Let A = [0,2/((1 — ¥)&)]. Further let Ag)(s,a) = Agt)(s,a) + )\(t)Agt)(s,a) and
ZW(s) =3 cam®(als)exp (& ,YA%)(S, a)). Using parametrized policy (5), (7) equals to
®
() _ ) 4 om0 (1) (a]5) = ®(a|s) P AL D)
Osa’ = Osa + 725 Ap'(s,a)  or 7 (a|s) = 7 (als) Z<t>() )
and A\HD = PA(AD —py (VD (p) - b)).

Due to the Moore-Penrose inverse of Fisher information, the updates (8) are free of the state
distribution dg(t) that appears in (7) through the policy gradient. The policy update imitates the
multiplicative weights update that is recognized in the online linear optimization [14]. Here, the
linear function is translated as an advantage function of the current policy at each iteration.

Next, we show the global convergence of the algorithm (8) regarding the optimality gap: V.*(p) —
v, (p) and the constraint violation: b — Vg(t) (p). We prove it in Appendix D.

Theorem 1 (Global Convergence: Softmax Parametrization). Let Assumption 1 hold for & > 0. Fix
T >0, pcAg, 0 =0, and \O) = 0. If we choose 1, = 2log |A| and 1y = (1 — ~)/\/T, then



the iterates T generated by the algorithm (8) satisfy,
T—1

L 1 N 1
(Optimality gap) *tz_% (V2 (p) = V(p)) < NG %a)

vy 1/e+48 1
;b v L (-2 VT

What we capture in Theorem 1 is that on the average the reward value function converges to the
global optimal one and the constraint violation decays to zero. Putting it differently, to find an
e-near-optimal value, e.g., e-optimality gap and e-constraint violation, the number of steps is O(1/¢2)
which is independent of the sizes of the state space or the action space. Although the maximization
problem (3) is nonconcave, our bound (\/T, \/T) for the accumulative optimality gap/constraint
violation is better than the classical one (\/T , T3/ 4) [29] and matches the rate [52] for solving online
convex optimization with convex constraint sets.

IN

(Constraint violation) (%9b)

Comparing to the unconstrained setting [3, Section 5.3], our proof needs additional efforts. As
shown in Lemma 6 in Appendix D, the reward value function is coupled with the utility value
function and neither of them enjoy monotonic improvement for the vanilla natural policy gradient
method. Therefore, we must introduce a new line of analysis. We first establish the bounded average
performance in Lemma 7 in Appendix D. It enables us to bound the optimality gap via drift analysis of
the dual update. To deduce the constraint violation, it is tempting to use methods from the constrained
convex optimization, e.g., [29, 52, 49, 54]. However, they are not satisfactory due to slow rate or the
needed extra assumption. Instead, we establish that the constraint violation enjoys the same rate as
the optimality gap under the strong duality in Lemma 2, although our problem (3) is nonconcave. To
the best of our knowledge, this appears to be the first such result for a class of “nonconvex” problems.

Regarding the global convergence, our proof of Theorem 1 holds for arbitrary initializations and we
use 09 = 0, A(9 = 0 just to ease the exposition. We use this simplification in the sequel.

5 General Parametrization: Convergence Rate and Optimality

In this section, we consider a general policy class {mg |§ € ©} in which © C R? is the parameter
space. Let us consider a more general form for the update (7) with A = [0, c0),

e+ = g®) + = w® and AT = Py (A — 1y (VD (p) — b)) (10)
where w(*) /(1 — ~) is either the exact natural policy gradient (NPG) or some (sample-based) ap-
proximation of it. Note that in this general parametrization setting, the strong duality in Lemma 1
does not necessarily hold [36]. Thus, our analysis in Section 4 does not apply. Let us first gener-
alize NPG. For a distribution over state-action pair: v € Agy 4, the compatible function approx-

imation error [21] is given by E¥ (w; 6, \) := Esﬁawy[(A%)‘(s, a) —w - Vglogmg(a|s))?] where
Ai”\(s,a) := AY(s,a) + AAY(s,a), and the minimal error is EY (0, \) := min,, E”(w; 6, \). We
view the natural PG in (7) as a minimizer of E”(w; 6, \) once we take v(s, a) = dj¢(s)mg(a|s),

(1=F,(0)" - VoV (1) € argmin B (w;0,\)

which follows from the first-order optimality condition. If the minimizer has zero compatible function
approximation error, we have already established the global convergence in Theorem 1 for the
softmax parametrization. However, this is not the case for a general policy class, since it may not
include all possible policies, e.g., if we take d < |S|| 4| for the tabular CMDP. The intuition behind
compatibility is that we can use any one of the minimizers of E¥ (w; 8, A) and it does not affect the
convergence properties of algorithm; see discussions in [21, 45, 3]. Note that our compatible function
approximation error defines over the advantage function for the Lagrangian, which is natural and
different from the unconstrained case.

However, v is an unknown state-action measure of a feasible comparison policy 7. To re-
lieve this issue, we introduce an exploratory initial distribution 1 over states and actions.
We define a state-action visitation distribution v of a policy 7 as v} (s,a) = (1 —
YE(s0,a0) ~ vo ZfiofytP“ (st = s,as = a| so, ag) where P™ (s; = s,a; = a| so, ag) is the proba-
bility of visiting state-action (s, a) following policy 7 from initial state-action (sg, ag). We unload



. e
notation v, Y as v if it is clear from the context. We now update w® in (10) in a general manner,

w® e argmin B (w; 00, 00) 1= ]ES)aNV(t)[(Ai(t)’Am(s,a) —w - Vglogmg(a s))Q} (11)

in which we assume that the minimizer is computed exactly.
To establish convergence theory, we adopt the standard smoothness assumption [56, 3].

Assumption 2 (Policy Smoothness). Forall s € S, a € A, logmg(a|s) is a B-smooth of 0, i.e.,
IVologmoals) — Vorlogmo(al )| < eRC

One example that satisfies Assumption 2 is the linear softmax policy [3]. Thus, Assumption 2 strictly
generalizes our previous result for the softmax parametrization (5).

Theorem 2 (Convergence and Optimality: General Parametrization). Let Assumptions 1 and 2
hold with a policy class {mg |0 € ©}. Fix a state distribution p, a state-action distribution vy,
and T > 0. Let the best feasible policy be 7 = mj. Define the induced state-action visitation

measure under ™™ : v*(s,a) = dg* (s)7*(a| s). Suppose the iterates ) and \V) generated by the
method (7) with a general primal update (11), 6 = 0, \(©) = 0, and 1 = 1, = 1/V/T satisfy
EY (00 XY < gy and ||w| < W forall0 < t < T. Then,

T-1

! Cl 1 €approx v*
(Optimality gap) — E VEp) — VO(p) < — e 4 | ||
Tt_o( v () (=7’ VT 1 =7l
Cs 1 4e v* 1/4
C taint violati V(t) < approx
(Constaint violation) EZ . S o pT + T o7 || v |

where Cy := 1+ log|A| + W2 and Cy := /3 + 2)\* + 2log | A| + BW2

We provide a proof for Theorem 2 in Appendix E. The optimality gap and the constraint violation
decays to zero up to the approximation error €,pprox, an upper bound of the compatible error. Such an
error is negligible in the constraint violation due to the factor 1/ T'/4. Theorem 2 generalizes (7) via
compatible function approximation that raises a state-action distribution mismatch. The distribution
mismatch coefficient ||* /vy || , carries exploration duty in the PG methods [9, 3, 41]. This coefficient
can be made finite and small, with an explorative/random enough initial distribution v [3]. When
the error €upprox is zero, the distribution mismatch effect disappears, and Theorem 2 is similar to
Theorem 1. This is the case for the tabular softmax parametrization or the linear MDP case [3]. The
overparametrized neural nets [48] also can lead to small e,pprox. Moreover, instead of ||v* /vy ]|, itis
straightforward to interpret Theorem 2 using the concept of transfer error [3].

Since the strong duality does not necessarily hold, we cannot utilize the previous method to control
the constraint violation. Consequently, there is a slightly slower rate that is similar to [29, 22]. We
exploit the boundedness of value functions and return to the unparametrized problem (1) via the
worst-case analysis. The worst-case gap notwithstanding, we show that the constraint violation enjoys
a sublinear rate, and the function approximation error €,pprox appears as decaying sublinearly.

6 Sample-Based NPG-PD Algorithms

We have assumed access to the exact natural policy gradient in Section 4 or the ability to exactly solve
the minimization of the compatible function approximation error in Section 5. In these connections,
Theorem | and Theorem 2 have established non-asymptotic convergence results. We now leverage our
theoretical results to design sample-based algorithms using only empirical estimates, i.e., model-free.

We build on the general version of the NPG-PD method (10) to propose a sample-based NPG-PD
algorithm with function approximation and A = [0, 00),

m U
e+ — ) mw(t) and \'TD = P, ()\(t (Vg(t)(P) —b)) (12)

where the gradient @*) and the value function ‘A/g(t) (p) are sample-based estimates. We display our
algorithm as Algorithm 1 in Appendix F. At each time ¢, the CMDP environment is executed for K
rounds and it terminates with a probability 1 — ~ at each round. For the population problem (11), we

run SGD K rounds: wi41 = wi — oGy, to estimate o) = K1 Zf: 1 Wk; see [5]. Here, we use



the following GGy, as an estimate of the population gradient VwEl’(t) (w; 8O X1,
G = (wk - Vg log ﬂ(t)(a |s) — E(Lt)(s, a)) - Vg log W(t)(a | s)

where A\(Lt) (s,a) = A(Lt) (s,a)— XA/L(t) (s); A(Lt) (s,a)and X/}L(t) (s) are undiscounted sums in each round.
In addition, we run another K rounds with initial s ~ p to estimate XA/g(t)(s) as an undiscounted
sum in each round and take the average of K rounds to obtain ‘A/g(t) (p). As shown in Appendix F,
Ag)(s, a), I7L(t)(s), and \A/g(t)(p) are unbiased.
To establish the convergence result, we make two assumptions that are standard in the literature [56, 3].
Assumption 3 (Lipschitz Policy). For0 <t < T, the policy ") satisfies ||V log 7 (a| s)|| < L.
Assumption 4 (Bounded Error and Weight). Take w®) = argmin,, o (w; 0O XD, For 0 <
t < T, the iterates generated by Algorithm I satisfy,

E[EY (69, 0D)] < eaproes E[|J8D]2] < W2, and E[JJw®|?] < W

where the expectation is over randomness in ) and \) in Algorithm 1.

Theorem 3 (Sample Complexity: General Parametrization). Let Assumptions 1, 2, 3, and 4 hold
with a policy class {mg | 0 € O}. Fix a state distribution p, a state-action distribution vy, and T > 0.
Let the best feasible policy be m* = m. Define the induced state-action visitation measure under T*:
v*(s,a) = dg* (s)7*(a| 5). Suppose the iterates ™) and \*) are generated by the sample-based
NPG-PD algorithm: Algorithm 1, with 0 =0, A0 =, m=mn = 1/\/T, and « = 1/L,, in
which K rounds of trajectory samples are used at each time t. Then,

T-1

1 C 1 1 v Cs
E |~ E er* - Vr(t) < — = + 71 \3 (\/ea rox 1 i )
T t_o ( (p) (P))‘| —= (1 o 7)3 \/T (1 _ 7)3 Vo PP [T
c, 1 4 vl MY VT
_ (t < 4 o 1/4 5
E -] < gt (rp i) (s i)

where C5 := 2 + log |A| + BW?2, Cy := 2/T+ A + Cs, and Cs := 2v/d (WL, + 1/(1 — 7)).

In Appendix G, we provide a proof for Theorem 3. Theorem 3 describes both the role of function
approximation and the sampling effect. As more samples are used, the optimality gap and the
constraint violation behave similarly as Theorem 2. The constraint violation is less susceptible to
both the function approximation error and the sampling estimation error than the optimality gap.

Moreover, a special case of (12) is a sample-based primal-dual algorithm with softmax parametrization
if we take 0" = g%) and A = [0,2/((1 — v)§)]. We describe our algorithm as Algorithm 2 in
Appendix H and show its sample complexity; a proof is given in Appendix L.

Theorem 4 (Sample Complexity: Softmax Parametrization). Let Assumption 1 hold for £ > 0. Fix a
state distribution p and T > 0. Suppose the iterates 79 and \*) are generated by the sample-based
NPG-PD algorithm: Algorithm 2, with (©) = 0, \(©) = 0, 1, = 2log|A| and 0y = (1 — ) /VT, in
which K rounds of trajectory samples are used at each time t. Then,

5 1 1
(Optzmalzty gap) E Z( (p))‘| < Wﬁ + W
T—
(Constaint violation) E z:: b— V(f) 14_ < t{ﬁ-ﬁ-’yif \/1> + Kf/>

For the softmax parametrization, Theorem 4 shows better dependence on " and K than Theorem 3.
If there is no sampling effect, the convergence rates match those in Theorem 1. It is noted that this
result still has the property of being dimension-free for the optimality gap and the constraint violation.

To verify our convergence theory, we provide computational results by simulating the algorithm (8)
and its sample-based version: Algorithm 2, for a finite CMDP with random initializations. Given
T > 0, the total number of optimization iterations, our stepsizes in theorems become constants, and
multiplying them with positive constants does not affect convergence rates. We generalize the shared
MDP code [9] to CMDPs. We first compare the NPG-PD method (8) with the dualDescent [37] that



2.101
=
.8
5 E
1.40 =
z >
p— -
g R
<
g 0.704 35
o 5
Q
0.00+
0 75 150 225 300 0 75 150 225 300
Iterations Iterations

Figure 1: Comparison of the dualDescent [37] (—-) with the NPG-PD method (8) (—). In this
experiment, we have randomly generated a CMDP with |S| = 20, |A| = 10,y = 0.8, and b = 3, and
chosen: ny =12 = 1.
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Figure 2: Comparison of the dualDescent [37] (——) with the sample-based NPG-PD algorithm:
Algorithm 2, using different sample sizes: K = 20 (-+-), K = 50 (—-—) and K = 100 (—). In this
experiment, we have randomly generated a CMDP with |S| = 20, |A| = 10,y = 0.8, and b = 3, and
chosen: 71 = 12 = 1 for Algorithm 2, and n = 1, K = 100, and L = 10 for the dualDescent.

takes the exact PG method as an RL algorithm. In Figure 1, we see that both optimality gaps decay
to zero quickly and our NPG-PD algorithm displays an outstanding constraint satisfaction. We also
compare them by using only simulated policy gradients with the sample size K. In Figure 2, a key
observation is that our sample-based NPG-PD algorithm performs as the dualDescent for large K.
We point out that the dualDescent needs, roughly L times more computation, than our algorithm
since at each iteration it takes an extra inner-loop of executing an RL algorithm for L steps. In this
sense, our NPG-PD algorithm has better efficiency and is simple to apply without any inner-loop
computation. See Appendix J for more experimental results.

7 Conclusion

In this paper, we have proposed an NPG-PD method for CMDPs with the primal natural policy
gradient ascent and the dual projected sub-gradient descent. Even though the underlying maximiza-
tion problem has a nonconcave objective function and a nonconvex constraint set, we provide a
systematic study of the non-asymptotic convergence properties of this method with either the softmax
parametrization or the general parametrization. We have also proposed two associated sample-based
NPG-PD algorithms and established their finite-sample complexity guarantees. Our work is the first
to offer non-asymptotic convergence guarantees of policy-based primal-dual methods for solving
infinite-horizon discounted CMDPs.

A natural future direction is to investigate how we can achieve a fast rate, e.g., O(1/T), for the
NPG-PD method. The rate could be improved by utilizing the standard variance reduction technique.
Another important direction is to study the generalization of our results to the vanilla primal-dual
method without Fisher preconditioning. Moreover, it is relevant to exploit structure of particular
CMDPs in order to provide improved convergence theory.



Broader Impact

Our development could be added to a growing literature of constrained Markov decision processes
(CMDPs) in a broad area of safe reinforcement learning (safe RL). Not only aiming to maximize
the total reward, but almost all real-world sequential decision-making applications must also take
control of safety regarding cost, utility, error rate, or efficiency, e.g., autonomous driving, medical
test, financial management, and space exploration. Handling these additional safety objectives leads
to constrained decision-making problems. Our research could be used to provide an algorithmic
solution for practitioners to solve such constrained problems with non-asymptotic convergence and
optimality guarantees. Our methodology could be new knowledge for RL researchers on the direct
policy search methods for solving infinite-horizon discounted CMDPs.

The decision-making processes that build on our research could enjoy the flexibility of adding practical
constraints and this would improve a large range of uses, e.g., autonomous systems, healthcare
services, and financial and legal services. We may expect a broad range of societal implications and we
list some of them as follows. The autonomous robotics could be deployed to hazard environments, e.g.,
forest fires or earthquakes, with added safety guarantees. This could accelerate rescuing while saving
robotics. The discovery of medical treatments could be less risky by restraining the side effect. Thus
the bias of treatments could be minimized effectively. The policymaker in government or enterprises
could encourage economic productivity as much as they can but under law/environment/public health
constraints. Overall, one could expect a lot of social welfare improvements supported by the uses of
our research.

However, applying any theory to practice has to care about assumption/model mismatches. For
example, our theory is in favor of well-defined feasible problems. This usually requires domain
knowledge to justify. We would suggest domain experts develop guidelines for assumption/model
validation. We would also encourage further work to establish the generalizability to other settings.
Another issue could be the bias on gender or race. Policy parametrization selected by biased
policymakers may inherit those biases. We would also encourage research to understand and mitigate
the biases.
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Supplementary Materials for “Natural Policy Gradient Primal-Dual Method
for Constrained Markov Decision Processes”

A Proof of Lemma 3

We prove Lemma 3 by providing a concrete CMDP example as shown in Figure 3. States s3, s4, and
S5 are terminal states with zero reward and utility. We consider non-trivial state s; with two actions:
a1 moving ‘up’ and ay going ‘right’, and the associated value functions are given by
Vi(s1) = m(az|s1)m(ar|s2)
Vi(s1) = m(a1]s1) + w(az|s1)m(ar|s2).

(0,0) (0,0)

51 g’l i
"0 0,0)

Figure 3: An example of CMDP in the proof of Lemma 3 where V,™ () is nonconcave and the set
{0 € © |V (s) > b} is not convex. The pair (r, g) alongside the arrow depicts reward r and utility
g of taking an action at certain state.

=

We consider the following two policies 7(1) and () using the softmax parametrization (5),
0 = (log1,logz,logx,log1)
0® = (—logl,—logz,—logz, —log1)
where the parameter takes form of (05, 4,605, a2+ 055,015 052,a,) With z > 0.

First, we show that V™ is not concave. We compute that

7W(ay|s1) = 1_il_$, ™ (ay|s1) = 1—1—%’ M (ay|sy) = 1133
Vv(s;) = (1ix)2, VW (s1) = w

7 (ay | s1) = 1-%5 7 (ay|s1) = 17%(: 7@ (ay | 52) = 141rx
V@ (s;) = <1—1Hv>2, V@ (s) = W

Now, we consider policy (<),
oW + (1-¢)0® = (logl,log (z*71),log (%) ,log1)
for some ¢ € [0, 1], which is defined on the segment between §(1) and §(2). Therefore,

1 2¢—1
W (ar |s1) = 7V (ag|s1) = z 7D(ay |s2) = x

2¢—1

14 z2¢-1° 14 22617 1+ 261
v© — o ’ v (© _ 1+x26_1+(x2<_1)2
P = e ) o Ve e = ey
Whenz =3 and ( = %
1 4
SV () + 5V () = 15 > V) =



which implies that V™ is not concave.
When x = 10 and ¢ = %
1
VO (s1) = V@ (s1) > 0.9 and V3 *)(s1) = 0.75

1
which shows that if we take constraint offset b = 0.9, then Vg(l)(sl) = Vg@)(sl) > b, and Vg(i) (s1) <
b in which the policy 7(z) is infeasible. Therefore, the set {0 | V7(s) > b} is not convex.

B Proof of Lemma 4

The dual update is based on Lemma 1. Since \* < (V*(p) — V,"(p)) /€ with 0 < V%, V7_r <i=

we take projection interval A = [0, ﬁ] such that upper bound ﬁ is such that > 2)\*

(a-)¢ ’v)&
We now verify the primal update. We expand the primal update in (7) into the following form,

pu+D — g 4 anp(e(t))T ) Ver(t) () + nl)\(t)Fp(e(t))T ) VeVg"(t) (). (13)

We now deal with: F,(6®)T . V4V¢" (p) and F,(61))T - VQV;M (p). For the first one, the proof
begins with solutions to the following approximation error minimization problem:

minimize E,.(w) := By dm anmo(als) [(A:e (s,a) —w-Vglogmy(a] s))ﬂ .

w € RISIAI
Using the Moore-Penrose inverse, the optimal solution reads,
W = FyO0)E, g0 e [Vologmalal s) A (s,@)] = (1= )E,(0) - VoV (p)
where F),(6) is the Fisher information matrix induced by mg. One key observation from this solution

is that w is parallel to the natural PG direction F,(0) - VoV,7o*(p).

On the other hand, it is easy to verify that AT¢ is a minimizer of E,(w). The softmax parametriza-
tion (5) implies that
dlogmg(als)

50 = {s=5}{a=d}—m(d|s)) (14)
where I{ E'} is the indicator function of event E being true. Thus, we have
w-Vglogmg(a|s) = wsq — Z ws o mo(a’ | s).
a’ €A

The above equality together with the fact: Y-, . , mo(a | s)AT* (s, a) = 0, shows that E,. (A7) = 0.
However, AT may not be the unique minimizer. We consider the following general form of possible
solutions,

AT 4 u, where u € RISIIAL

For any state s and action a such that s is reachable under p, using (14) yields

u-Vologmg(al|s) = usq — Z Us,arTo(a' | s).
a’ €A
Here, we make use of the following fact: 7y is a stochastic policy with 7y (a | s) > 0 for all actions a

in each state s, so that if a state is reachable under p, then it will also be reachable using 7. Therefore,
we require zero derivative at each reachable state:

u-Vylogmg(als) = 0
for all s, a so that u  is independent of the action and becomes a constant ¢, for each s. Therefore,
the minimizer of E,.(w) is given up to some state-dependent offset,

Fo(0)T- VeV (p) =

e

T 4w (15)
L=y

where u, , = c5 for some ¢, € R for each state s and action a.

We can repeat the above procedure for F,(6))fV, V@(t (p) and show,
T

() VaVirip) = £ e (16)

1—
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where v, , = d; for some d, € R for each state s and action a.
Substituting (15) and (16) into the primal update (13) yields,
o+ _ g L M (Au) 4 A<t>A§t>) o (u 4 A%)
11— U7

exp (225 (A7(s.0) + XO AP (5,0)) +m1 (e, + A d.) )

ZW(s)

where the second equality also utilizes the normalization term Z(*)(s). Finally, we complete the
proof by setting c; = d; = 0.

7 (a|s) = 7 (a|s)

C Supporting Results from Optimization

We collect some optimization results from the literature for readers’ convenience.

It is noted that all these results hold for the parametric setting of (3) and (4) if the parametrized policy
class is complete, e.g., the closure of the softmax policy class (5). To rephrase them for our general
purpose, we recall the maximization problem (1),

maxirﬁize V™ (p) subjectto V(p) > b
e

in which we maximize over all policies and b € (0,1/(1 — ~)) with v € [0,1). Let the optimal
solution be 7* such that

T _ P T T > )
V" (p) = maximize {V,"(p) | V5'(p) = b}

Let the Lagrangian be V" ”\(p) = V7 (p) + AV (p) — b), where A > 0 is the Lagrange multiplier
or dual variable. The associated dual function is defined as

Vi (p) = maximize V" (p) := V7 () + A (V] (p) = b)
and the optimal dual is A\* = argmin, - o V) (p),

Vi (p) = minimize V5(p)

We recall that the problem (1) enjoys strong duality under the Slater condition [36, Proposition 1].
Assumption 5 (Slater condition). There exists £ > 0 and T such that V;r (p)—b=>¢&

We use the shorthand notation V™" (p) = V;*(p) and V)" (p) = V% (p) whenever it is clear from the
context.

Lemma 5 (Strong duality). [36, Proposition 1] If the Slater condition holds, then the strong duality
holds,

Vii(p) = Vi(p)-
It is implied by the strong duality that the optimal solution to the dual problem: minimizey > V7 (p)
is obtained at A*. Denote the set of all optimal dual variables as A*.

Under the Slater condition, a useful property of the dual variable is that the sublevel sets are
bounded [7, Section 8.5]. Although our problem is nonconcave, we customize it as follows.

Theorem 5 (Boundedness of sublevel sets of the dual function). Let the Slater condition hold. Fix
Cx €R. Forany A € {\ > 0|Vj(p) < C,}, it holds that

A< (O VE)).

Proof: If X € {\ > 0|VA(p) < C,}, then,
Cxn > Vi(p) = VI(p) + A (V7 (p) =b) > VT(p) + A¢
where we utilize the Slater point 7 in the last inequality. We complete the proof by noting £ > 0. [

Corollary 1. If we take C\ = V*(p) = V3, then A* = {\ > 0|V} (p) < C\}. Thus, for any
A€ A,

A<

(V7 (o) = Vi (0)

A
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Another useful theorem from the convex optimization [7, Section 3.5] is given as follows. It describes
that the constraint violation b — V7 (p) can be bounded similarly even if we have some weak bound.
We next state and prove it for our problem, which is used in our constraint violation analysis.

Theorem 6. Let the Slater condition hold and \* € A*. Let Cy« > 2)\*. Assume that 7 € 11 satisfies
Vo) = V() + Ca = Vi(p)] | <0

Then,

[bfvf(p)h = on

where [x]+ = max(z,0).

Proof. Let
o(r) = maximize { V(o) | V7 (p) 2 b+ 7).

By the definition of v(7), we have v(0) = V;*(p). We note the proof of [36, Proposition 1] that v(7)

is concave. First, we show that —\* € 9v(0). By the definition of Lagrangian V" *(p) and the
strong duality,

Vi (p) < maximize Vi (p) = VB(p) = Vi(p) = v(0), forallm e IL.

LS "
Hence, for any 7 € {7 € II| V"(p) > b+ 7}, we have
v(0) —TA* > VN (p) — A
= Vi(p) + (V7 (p) =) —TA

g
= Vip) + (Vi (p) —b—7)
= V7(p)

If we maximize the right-hand side of above inequality over 7 € {7 € II| V" (p) > b+ 7}, then
v(0) = TA* > v(7) (17)

which show that —\* € 0v(0).

On the other hand, if we take 7 = 7 := —(b — V7 (p))4., then

Vi(p) < Vi(p) = v(0) < (7). (18)
Combing (17) and (18) yields
Vi (p) = Vii(p) < —TA".
Thus,
(Coe = X)) T = =XN|T]+Cx |7]
= TN+ Cy+ |7A:‘
< Vi(p) = Vi(p) + Ox [7]
By our assumption and 7 = [b — Vf(p)] 4
_ 1) 26
- VT < — < .
{b Y (p)Lr T Oy =X T O

D Proof of Theorem 1

We warm-up with an improvement lemma, stating a difference for two consecutive policies.

Lemma 6 (Non-monotonic Improvement). The iterates ©\*) generated by algorithm (8) satisfy
1—
VD () = VO ) + X0 (VED () = VO () > —TEoulogZz0(s)  (19)
m
(t+1) (t+1)

andEg ., log Z (t)(s) > 0 for any initial state distributions i, where notation dy " means dj,

17



Proof. To prove our main inequality, we first apply the performance difference lemma as follows:

1
Vr(tﬂ)(/i) - Vr(t)(ﬂ) = mEsdet+l),a~7r<t+l)(.‘s) [Agt)(S,a)}
1
= =B, [Z 7r(t+1)(a|s)A£t)(s,a)]
v N a€A
1 7t (a | s)
- (t+1) (t)
= E5~d§;+1> a;ﬂ' (a|s)log( O (als) Z (s))
A®)
- 1 — ]ESNd(f+1) Z 7T(t+1 (t)(s,a)
v ) acA
= m E ~ (D DKL (77(t+1)(a [ s) || 7 (a 5))}
1
77 E d(t+1) IOg Z(t)( )
A (t+1) (s )
T E g | o 7D (a]5) AP (s, a)
1 v Lla € A i
Z 7’]7 ESNstJA) IOg Z(t)(S)
1 -
AW (t+1) (g ()
- Es~dfj“> Z ™ s)Ay7 (s, a)
1 v la € A i
= B log ZM(s) — AW ( Vit (u) = v (u))
1 %

where the first two equalities are clear from definitions, the third equality is due to the multiplicative
weights update in (8), the fourth equality utilizes the Kullback-Leibler divergence or relative entropy

between two distributions p, ¢: Dki(p| q) = Ez ~plog Z E‘z; , we drop a nonnegative term in the

inequality, and the last equality is due to the performance difference lemma again. Finally, we obtain

the desired inequality by noting dffﬂ) > (1 — ) componentwise from (6).
It is easy to show that log Z(*) (s) > 0.

log ZW(s) = log (Z 7®(a|s)exp (177—1'7 (A( )(s,a) + 2D A t)(s a))))

a€cA

S 7 W(als)log (eXp (1 = (A(t (5,a) + AV AW (s,a))))

aEA

_ Z 0 (a (A(t (s,a) + /\(t)Agt)(s,a))

v

aeA
= 1 Zﬂ' (a B(s, )\(t Zw A(t) (s,a)
o aeA a€A

= 0
In the above inequality, we apply the Jensen’s inequality to the concave function log(z). The last

equality is due to
Zﬂ'(t) 5)AW (s, a) Zﬂ' A(t)(s a) = 0.
acA acA

Next, we prove the average difference to the optimal policy.

Lemma 7 (Bounded Average Performance). Let Assumption 1 hold. Fix T > 0, p € Ag, 60 =0,
and /\(0) = 0. Then the iterates w(t) and \*) generated by algorithm (8) satisfy

log |4 1 212
(Vi (p A (VE(p) -V < + + .
T Z Z 2 ) < mT (1=9)T  (1-79)

18



Proof. Since p is fixed, we unload notation dg* as d*. We first apply the performance difference
lemma as follows:

Vi) = V) = B [Z w*<a|s>A£“<s7a>]

7t (g s
_ %Esw [Z *(als)log (WZW(S))]

a€A

A .
g Eqax [Z ™ (a|s)Aét)(s,a)]

a€A

= —Eeesr [P (7*(al ) 170(a]9)) = D (@l 9) 7 (al 5))

1 A0

+ —EonarlogZW(s) = =—Eonar | > 7 (a]5)AP (s, 0)
m 1—~ T

1

- E]ESNd* [DKL (77*(“ |5) [ 7" (al 3)> — Dxr (W*(a |5) | 7"+ (a| s))}
1
+EES~d* logZ(t)(s) —A\® (Vq*(p) _ Vq(t)(m)

(20)
where the second equality is due to the multiplicative weights update in (8), the third equality utilizes
the Kullback—Leibler divergence or relative entropy between two distributions p, ¢: Dxp(p || q) :=

Ey~plogt Exg , and the last equality is due to the performance difference lemma again.

According to Lemma 6, if we choose ;1 = d*, then,
1 —
VD (@) — vO@) 4 A® (V;tH)(d*) - v;ﬂ(d*)) > TR, log Z®(s). (1)
m

Therefore we have
— Z (V* V. (p ))

= 7717T Z Es g+ [DKL (7‘(*(0, Bl ﬂ(t)(a | s)) — Dyt (ﬂ.*(a Bl 7T(t+1)(a | s))}
t=0

1 T—1 9 1 T— " ,
mT Z Eona-log 20 (s) - ZOA ) ( — v >(p))
T— 1

A
Tﬂ
M
=
2
%

[ (7 (als) ||w<f><a|s>)—DKL (7 (al )= (als))]

2 (W) - vo)
t=0
F o LAY (V) - voa) - Z*“ (Vo) = Vi)
t=0
1

meESNd*DKL( “al9) 7 (al9) +

T-1
-7 _ 3 A0 (Vs o) = V()
t=0 )

where in the second inequality we take telescoping sums for the first two sums and drop all non-
positive terms: Dy (7*(a|s) | 7T (a|s)), V9 (d*); we utilize the following result with y = d*

« 2
)+

IA
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to the third sum,

T-1
1 A®) (Vg(tﬂ)(ﬂ) _ Vg(t) (M))
t=(1) — 1 T-1
-7 Z (A(t+1ﬂ/;,(t+1)(u) - ,\<t>vg(t>(ﬂ)) + 7 Z ()\(t) _ /\(t+1)) v ()
t=0 =
1 1 L=t
< ?)\(T)Vg(T)(M) + T Z ’)\(t) _ )\(t+1)’ Vg(t+1)(ﬂf)
t=0
212
= T2

where in the first inequality we take telescoping sums for the first sum and drop a non-positive term,
and in the second inequality we utilize the fact: [A(7)| < % and |A®) — A(HD| < T2 due to the

dual update in (8) and the non-expansiveness of projection, and the inequality Vg(t) () < ﬁ due to
the bounded value.

Finally, we use the fact that: Dk (p|| ¢) < log|A|, where p, ¢ € A 4 and ¢ is the unifom distribution,
v (ar) < 1=, and V;* (p) > b to complete the proof. O

We now prove our main statement in Theorem 1. We recall a key inequality from Lemma 7,

T—1 T—1
1 . 1 *
=2 (V) = V) + 2 XA (V) = V()
t=0 t=0 (23)
log |A| 1 212
< ~.
mT — (1=7)T  (1-9)?®
Bounding the optimality gap. By the dual update in (8),
T-—1
0< (M = Y ((Aum)z _ (Aa))z)
i :
= X (P02 =m0 - 0)" - 00
.
< > ((W ~m(V{ () =) - (AW) (24)
tZOTfl T-1
= 2 > A=V (p) +n3 > (VP (p) =)
t=0 t=0
= T
< 9 O (v*(p) — y® _mt

where the last inequality is due to the feasibility of the optimal policy 7*: V*(p) > b, and
|Vg(t) (p) —b < ﬁ The above inequality further implies,

T—1
1
_— (t) *( ) 1 ®) < 2
T;A () =V20) = 5575

We substitute the above inequality into (23) and use the fact that: Dgy. (p| ¢) < log|A|, where
p,q € A4 and ¢ is the uniform distribution to show the optimality gap bound, where we take

m = 2log|A| and ne = %

20



Bounding the constraint violation. By the dual update in (8), for any A € [0, ﬁ} ,

NG A2 < ‘)\(t) — (Vg(t)(p) _ b) B )\‘2
O A" 2 (VO () ) (MO = 2) 403 (V0 p) 1)’
o (1) (0 -3)+ 2

where the first inequality is due to the non-expansiveness of projection operator P, and the last
inequality is due to (Vg(t) (p) —b)% < ﬁ Summing it up from ¢ = 0 to t = 7" — 1 and dividing
it by T yield

1 1 2 2 772
<7A<T>7A2<7’A<0>7A‘ _ 2 O —p) (AD —\) 4 T
< 7l P =7 Tt_zoofg 2 )( )*(1_7)2’

which further implies,
T-1
1 72
ST (V) —b) (A —2) < ‘)\(0 )\‘ T
TZ(H (r) )( )_2772T 2(1— )2
t=0
We now add the above inequality into (23) and note V*(p) > b,
N
* t t
TZ@' MWM+fZ@fwwD
t=0
“log 4 1 2n2 ‘ 2 2
< O
- omT Q= 9PT  (1-9)° 2772T 2(1 —n)?

We take \ = when Z o (b— v (p )) > 0; otherwise A = 0. Thus,

_ = Z V(t Z V(t)
+
log | A] 1 2772 o
< + + + + .
mT (I—=72T  (1—7)? 21— 7)2€2T 2(1— )2

It should be mentioned that there exists a policy «’ such that V™ (p) = % t—O V(t)( ) and

Vg”,(p) =7 f—O V(f) (p). This holds in the following way (see [4, Chapter 10]). We recall

that Vr(t)( ) and Vg( )( ) are linear functions in the occupancy measure induced by policy 7(*) and
transition P(s’| s, a). By the convexity of the set of occupancy measures, an average of T occupancy

measures is still an occupancy measure that produces a policy 7’ with value VT”/ and Vq”/.

)

Therefore,

! 2 !
Vi) = V() + e [0 = V()]
<3M|u e 29<>+ 1
0
< = R S S —
mT (1=72T  (1-7) 2m2(1 = 7)282T ~ 2(1—v)
We note that ﬁ > 2)*. According to Lemma 2, we obtain

+ + +
mT (1=T  (1=7)?  2pl-7)Er  2(1-7)

which shows the constraint violation bound by noting 7 Z (b - Vg(t (p)) =b— Vg”/ (p) and

taking n; = 2log |A| and 72 = \;%

E Proof of Theorem 2

We first characterize the effect of the compatible function approximation error on the convergence.
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Lemma 8. Ler Assumption 1 and Assumption 2 hold for a policy class {my |6 € ©}. Fix a feasible
comparison policy be m, a state distribution p, and T' > 0. Define the induced state-action visitation
measure under w: v(s,a) = dj(s)m(a|s). Suppose the iterates 7" and X generated by the
algorithm (10), ©) = 0, X =0, n; = 1, = 1/V/T satisfy

T-1

— Z EY(w®;00 \®) < &, 0 and 0P| < W forall0 <t <T.

T =

Then,
T-1

1 C 1 1
otimali Z VT v® < 1 /e
( P””lalll} gap) T ( r (p) r (p)) — (1 7)3 /*T 1 v Eupprox (253)

t=0

2 D, = a—prrtaoger
(25b)

(Constraint violation)

where Cy := 1+ log |A| + BW?2 and Cy := /3 + 2\* + 2log [A| + SW2

Proof. By Assumption 2, application of Taylor’s theorem to log 7(*) (a | 5) yields
" (a]s)
T+ (a ] 5)

where (1) — (1) = ﬁw(t). We unload d7 as d since 7 and p are fixed. Therefore,
Es~d (Dxi(n(-]s) 7D (-]5)) = Drw(x(- | s) [ 7+ (-] 5)))

log + Vologm®(a|s) (9(t+1) _ g(t)) < §||9(t+1) W2

(a] s
T als
= ~EendBann 9108 G T
2
> MEeiBana o [VologrO(alut]  pr P

= nlEswdEaNﬂ(~|s) |:V6 IOgﬂ- )(a|s) w7(“t):|
+771A(t)Es~d]EaN7T(' |s) |:VQ log ﬂ'(t) ((1 | 5) ] - ﬂ 7)2 || ||2
= nlESNdanﬂ(~|s)A7(«t)(Sva) + nl)\(t)]Eswd]EaN‘n' 9)A ( )

4 MEan B (.| o) [Vglogw (a| )(w,@Hmwg)) (A<t>(s )+ A A (s, a))}
nt

~oaa—
m(1 =) (V7 () = VO(p)) + m(1 = )AO (V7 (o) = VO (p)

2
m\/ESNdEM(M [(Ve log 7)(a5) w® — A (s, a)) }

(t)||2

Y

2
N 2
_ 571/1/
2(1 —~)?
where in the second equality we decompose w® = w!? + /\(t)w Y for a given A, 1n the last
inequality we apply the performance difference lemma, the Jensen’s inequality, and ||w® || < W.
Using notation of E” (w®); ), \(V)) and rearranging it yield,

V7 (p) — Vi (p)

= 1% (1E8~d (Dre(a(-15) 17O (| )) = Dic((- | ) [ 7D s>>)>

i \/Ev(w<t);0<t AD) + B3 21 7>3W2 - ® (V;(p) - Vg(t)(p))
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Therefore

P2 (w0 - 0)

T-1
S T anZ( M(DKL 7(-|5) [ 70| 9)) = Diw(a(-]5) 7] 5))) )
T:( T—1
+TT Z\/ w(®); 00, \0) + fo—— ( 7) w2 - % S (Vi) -V ()
= t=0
log\A| 1 9 2
T * T3V + AoV + ooy

where in the last mequahty we take telescoping sum of the first sum and drop a non-positive term; we
apply the Jensen’s inequality to 1/« for the second sum and use the error bounds, and the last sum is
due to,

T-1
0 < ()\(T))2 _ (()\(t+1))2 . (}\(t))z)

t=0
T-1

= > <(maX<0,A< )V ) 1) <A<t>>2>
= 2

= ((A(t) (VO (p) ~ b)) (A(”)Q) (26)
t=0_* -

= 27722)\@)(() Vg(t)(p)) +77§ (Vg(t)(p) b)2

= .
t T t 5
< 23 30 (V0 -V00) + 7oy

where the last inequality is due to the feasibility of the comparison policy 7: V;"(p) > b, and
|Vg(t)( ) — b] < 7= The above inequality further implies,

t ™ t n
Bt < gt

Now, we obtain the first bound by taking n; = ﬁ and 7 = % and some simplification.

We next prove the second bound. By the dual update in (10), we have A¢+1D) — \(®) > _p, (Vg(t) (p) —
b). Notice AT) > 0. Therefore,

1 T—1 1 T—1 1
b — v® < AGHD) ) — =\,
T;( D(p) s %T;( )=z

It comes down to establishing a bound on A\(7). Similar to (26), by the dual update in (10) with
A =0, 00),

T
s s B )
- T-1
= 2 Z)\(t) V(t ) + 2 Z V(t
— =

T-1 0 2T
2y Y A (V;’(p) - Vg(”(p)) +
t=0

(1—7)?

IN

23



where the last inequality is due to the feasibility of the optimal policy 7”: V(p) > b, and
|Vg(t) (p) —b < ﬁ Thus,

N2 T—1 . . n%T
()" < 2772;)A<>(Vg”(p) - V() + TR

Viewing the above bound, we return back to
T-1
1 s
72 A (Vo) - v ()
t=0

g 2 (et (D19 150 19) = DianC19) |10 )
t=0

T-1 T—1
1 Ui 1 x
T S VB (®:0,00) + 52(17i)W2 -z> (14 (p) — V,® (p))
1 |A7| =y ! M1
0g ~ m 2 ¥+
(A=)l 1=y Voo © 52(1 S g

where in the last inequality we take telescoping sum in the first sum and drop a non-positive term; we
apply the Jensen’s inequality to /z for the second sum and use the error bounds, and the last sum is

due to
Vir(p) V() + (VT (p) — V5 (p)
1
> * [ ——
2 Vi) -1 =
= Vilp) - 1—4 1
= maximize V7 (p) + A* (Vg"(p) —b) — ﬁ
1

> Vo) + X (V0 (p) = b) - T— -

A 4+1
> My 2T
= Vi) = 1= S

where in the second equality we apply the strong duality in Lemma 1, the first and last inequalities

are due to the boundedness of |V,"(p) — V.X(p)| < ﬁ and |Vg(t)(p) b < ﬁ

Therefore,

€. * 2
Lo % 2772T< log|A] \/ €approx LomBWE +1> L mT
2

T L—y)mT = 1-v = 20-7)3  1-v (1—7)2

L andn, = ﬁ and some simplification. O

which leads to the desired bound by taking 7; = N

In Lemma 8, the compatible function approximation error shows up as an additive term in the upper
bound for the optimality gap (25a) or the constraint violation (25b).

We now prove Theorem 2. It follows from the proof of Lemma 8 with an application of the inequality,

v VO ). p(t) 3 (8) v
E (w ,9 ,)\ ) S W

ol

where the last inequality is due to ) (s,a) > (1 — v)v(s, a).

v @) gt) (1) €approx v*
EY (w07, X)) < €approx < 1—~ o
00 -7

Vo

oo

F Sample-Based NPG-PD Algorithm with Function Approximation

We describe a sample-based NPG-PD algorithm with function approximation in Algorithm 1. We
note the computational complexity of Algorithm 1: each round has expected length 2/(1 — ) so
the expected number of total samples is 4K7"/(1 — +); the total number of gradient computations
Ve logm® (a|s)is 2K T; the total number of scalar multiplies, divides, and additions is O(dKT +

KT/(1=7)).
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Algorithm 1 Sample-based NPG-PD Algorithm with Function Approximation

1: Initialization: Learning rates 77; and 72, SGD learning rate o, number of SGD iterations K, and

2: fort=0,...,7T—1do
3: Initialize §(©) = 0, A(9) =0, wy = 0.
4. fork=0,1,..., K—1 do
5: Draw (s,a) ~ v,
6 Execute policy 7(*) starting from (s, a) with a termination probability 1 — v and estimate,

R K'—1

Q(Lt)(s,a) = Z (r(sk,ak) + )\(t)g(sk,ak)> where so = s,a9 = a, K’ ~ Geo(1—7).

k=0
7: Start from s, execute policy 7(*) with a termination probability 1 — ~ and estimate,
V(s Z ( Sy ag) + A® (sk,ak)) where sg = s, K’ ~ Geo(1 — 7).
8: A\(Lt)(s, a) = @g)(s, a) — VL(t)(s)
9: SGD update wg11 = wr — a Gy, where
Gp =2 (wk -Vologrm®(als) — A\g)(s, a)) Vologm®(als).
10:  end for
11:  Seta® = L Zk_lwk
12:  Initialize V( )( ) =0.
13: fork_O,l,...7 —1 do
14: Draw s ~ p and draw a ~ 7 (- | s).
15: Execute policy 7(*) starting from s with a termination probability 1 — ~ and estimate,
K'—1
Vg(t) (s) = Z 9(sk,ax) where sog = s,a0 = a, K’ ~ Geo(1 — 7).
k=0
16:  Update V" (p) = V" (p) + £V (s).
17:  end for
18:  Natural policy gradient primal-dual update
g+l = o) 4y p®
NG - 7)[0,00) ()\(t) — 1 (ﬁg(t)(p) . b) ) )

19: end for

simulation access to CMDP(S, A, P,r, g, b,, p) under initial state-action distribution vy.
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We provide several unbiased estimates that are useful in our convergence proof.

K'—1
E[Vg(t)(s)} = E| ) glswan) 0,50 =5
k=0
= E ZH{K’—IszO}g(sk,ak)w(t),so:s]
k=0

= Z E [EK/ [{K'—1>Fk >0} g(si,ar) | 0P, 50 = s}
0

>
I

I
M8

E [’Ykg(sm a) [0, 5o = 8}

e
Il

0

lz V*g(sk,ar) [0, 50 = S]

k=0

( )(s)

where we apply the Monotone Convergence Theorem and the Dominated Convergence Theorem for
the third equality and the fifth equality to swap the expectation and the infinite sum, and in the fourth
equality we use Ex/ [I{K' —1 >k >0} =1 — P (K’ < k) = " since K’ follows a geometric
distribution Geo(1 — ).

I
=

<

By a similar agument as above,

K'—1
E{Ag)(s,a)} = E Z ( skyar) + \Yg(sp, ak)) 10 5o =s,a0 =a
K’—l

E | (s ar) 09,50 =s,a0=a
k=0

K'—1

+AOE Z g(sk,yar) |09 50 = 5,00 = a
k=0
= ElZH{K'—l>k>0}r(sk,ak)|9(t),so:s,ao:a]
k=0

+2\OF lz K —1>k>0}g(sk,ar) |(9(t),80 =s,a9 = a]
k=0

= ZE[EK/[]I{K'flZkZ0}]r(sk,ak)|9(t),sozs,aoza}
k=0
+A® Z E {IEK/ [{K'—1>k >0} g(sk,ar) | 0P, 50 = s,a0 = a}
k=0

= Z [Wrsk,ak)w sozs,aoza}

B
(=)

+)\t)z ['ygsk,ak)wt) S0 = s, aofa}

= Z skakﬁ()so—sao—a]

+AOE lz Y* (s, ar) |09, 50 = 5,a0 = a]
k=0
= Q"(sa) +2Q(s,0)
(t)(
L

S, @).
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Therefore,
E[AP(s,a)] = E[QV(s0)] —E[V76)] = @P(s,0) = V{(s) = AP (s,0).

We also provide a bound on the variance of IA/g(t) (s).

~ ~ 2
var [7,009)] = E|(790) - v"(5)) e<f>,50=s}

- 2
E (ZkK:ol 9(sk, ax) — Vg(t)(s)> \9(”750 =35

B [B | (S8 atona) - 00) | 1
Ex: [(K')? |K/}

1
(=72

where the first inequality is due to 0 < g(zy,ar) < 1 and Vg(t) (s) > 0 and the last equality is clear
from K’ ~ Geo(1 — 7).

IN

G Proof of Theorem 3

We split the proof into two parts. We state the roadmap here for readers’ convenience. In the first
part, we establish the following two bounds for the optimality gap and the constraint violation,

1= log | A] 1 =
E|= (VT* p _Vr(t) p) < + E[ Ev (m®; 60 A(®)
Tz:: (®) ) (L=y)mT (l—v)TtZ::0 \/ ( )
M e 212
+8 w2 +
2(1—7)? (1—79)?
27
and
=
E[LS 0 - V)| <
t=0 +
log | A T-1 o D). 01 BW?2 A an3T
mLT QTDT ((1—%)’|)7I1‘T + (1—1'\/)T Zt:OIE [\/E (w(t),g(t)’)\(t))} + 2](11B—fy)3 + 1—-’:yl) + (1Z2,y)2-
(28)
In the second part, we are seeking to control the error E [E¥ (@®); 0, A())],
2
Vd
Ur o~ 1 1/* 2 (\/a WLTr + ﬁ + WLﬂ—)
E [E (@0; 60, A(t))} < 5 || et = . (29)

Finally, we combine two parts to complete the proof by taking 7, = % and 1 = % and noting

E[\/Eu*(@(t);e(m ,\<t>)} < \E [ (@0;00,A0)].

Let us begin with the first part. By Assumption 2, application of Taylor’s theorem to log 7(*) (a | 5)

yields
7 (a]s) B
AR (t) (t+1) _ p(t) Frpt+1) _ pt)2
7+ (a5 + Vologm(als) (‘9 0 ) < 2||9 ol
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where ¢+ — () = %zﬁ(t). We unload dg* as d* since 7 and p are fixed. Therefore,
Eqnar (Dxu(m*(-|s) | 70 (- 5)) = Do (m*(- | s) [ 7V (-] 5)))

™ (a|s)
S)log ﬂ-(t—‘rl)( | )

> nlEswd*EaNﬂ.*(_ | s) |:V0 log 7T(t) (a | S) ﬁ}(t):| — B
= nl]Es ~ d*EaNﬂ—*(. | s) [Vg 10g W(t) (a | 5) @gt)}

FMAYE, g Ean e [vg log 7 (a| 5) @M

= *Es,\,d*EaNﬂ.*( |

sl

77% ()12
—ﬁm”w [
= nl]Eswd*EaNﬂ*(‘|s)A7(~t)(Sva) + nlA(t)Eswd*]Ean*(~|S)A_E]t)(saa)
+ Byt Ea e [ Volog 7 (a] 5) (@0 X0 ) — (A0 (5,0) 42D AP (5,0) )|

2
_57771” o2
2(1—~)?

m(1 =) (VH0) = VO (p)) + m1 =D (Vi (p) = VO ()

2
—m\/ESNd*EM*«s) [(ve logw(®)(a|s) D) — A (5,a)) ]

s
2(1—n)?
where in the second equality we decompose w*) = @,

Y

) )\(t)w( ) for a given A®), in the last

inequality we apply the performance difference lemma, the Jensen’s inequality, and ||@(")| < w.
Using notation of E*” (@®); ™), A(*)) and rearranging it yields
V(o) = Vi (p)

< L (1&% (D 1) 17O |5)) = D) [ 7+ | S>>))

IT—9\m
1 — M —~
— A EV (®. 91 \®) N w2z —\® * _y®
+177\/ (@000, 0) + 5T — ) (Vo) = V()
Therefore,
1T—l
— *(p) — 17 ()
T;(w (0) = V()
B 1 T-1
< Tt 2 (B (D (191700 |9) ~ Daalw (|9 71 5)))
t=0
T—1
1 N UlﬂW 1
[ — v () 9) \(®) ()
g V@000 gy ZA (v 0 = v"0)
log |A 1 it BN
S o o VP @0
t=0
i T—-1
nlBW2 1 *
ores i I ACRLAR)
t=0

(30)
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where in the last inequality we take telescoping sum of the first sum and drop a non-positive term.
Taking expectation over randomness in () and A(*) yields

T-1
%Z (W(P) Vr(”(p))] < ﬂlig% +E l 1 —V)T Z \/EV w(0;6¢) )‘(t))]

L M _ ll Z A\ (V* Vg(t)(,o))

E

2(1 — T
(€29
By the dual update in (12),
T-1
0 < ()\(T)) _ <(/\(t+1))2 _ ()\(t))z)
t=0
T-1 R )
= 3 (e (00 7000 -0~ 00)
i )
< 3 (-0 - b)) <A<t>>2)
=0l
= 2 > AO(b- ) + 03 Z
t=0
T-1
< 2 Z A® (Vg*(p) — v ) + 2, Z NG (V;” e (p))

+ 15 Z V(t

(32
where the last inequality is due to the feasibility of the policy 7*: V(p) > b. Since Vg(t) (p) is
a population quantity and ‘A/g(t)(p) is an estimate that is independent of \() given #(*=1 \(*) is
independent of Vg(t)( ) — ‘A/g(t)( ) at time ¢ and thus E [/\(t) (Vg(t) (p) — ‘A/g(t) (p))] = 0 due to the fact
IE[‘A/;t)(p)] = Vg( )( ) (see Appendix F). Therefore,

12 ) (Vato v“())]

IN
=

o > (V0 ()~ b)?

e K+l
21— ) <1+ K )

where in the second inequality we drop a non-positive term and use the fact (see Appendix F),
{7t _ t
E[V20)] = v

and
E {(%”(P)f] _ %E [(vg(t)(s))z} + %E [V;t)(S)}E[V;”(s)}
_ % var [V0(s)| + (E {V(”(S)W) * Kg_inz
= % Var [‘A/g(t)(s)] + (Vg(t)(S))2> + Kg_'ly)Q

IN

where the first equality is due to line 16 of Algorithm 1; the last inequality is due to Var [Vg( )( )] <

= v {57 (see Appendix F) and 0 < Vg(t)( ) < ﬁ

We now return to (31) and apply 1 + % < 4 to obtain (27).
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On the other hand, by the dual update in (12), we have A1) — X(® > —p, (V) (p) — b). Therefore,

1 T-—1 1 T-—1 1 T-—1 .
Z0-VOE) < |20 -V0e)| + 7Y (V00 - v00)
t=0 t=0 i t=0
PRI ()\(““1) _ A(t)) n lTZ_l (‘7(0([,) _ V(t)(p))
I T = ! !
= . -
1 1 -
NG () — y®
A+ T; (V) = v9(p).
By E[V;" (p)] = V4" (p) (see Appendix F),
E|. 3 b—v® < Lgho 33
T2 0=V < mEP)] (33)
t=0 +
Also, by (32),
5 T—1 —1 .
E [(MT)) } < 2mpE [ 3N (Vg*(p) —Vg(t)(p)> + 2mpE |3 A0 (Vg(t)(p) - v_;t)(p))]
t:’]“(ll R t=0
+mE | > (VD (p) - b)?
t=0
T—1
. 43T
t=0

where we use arguments similar to those right below (32): E[)\(t) (Vg(t)(p) _ ‘7g(t) ()] = 0 and
2o, 2T an2T
Eln3 tzo(Vg(t)(P) —b)?] < (1”4)2 (2+ %) < (1Z7)2.

It should be noticed that V> (p) = Vo (p). Viewing the bound in (30), we return back to

% § A (Vo) = V()

1 T-1
e S (Baa (D (1) 7O |5)) = D () [ 70| )
(1—7)771TtT=01( o ( - )
1 . v (5. o) (¢ mpw?
i 2 V@00 + g
T-1
2 (V) VW)
t=0

log | A] 1 = — n BW?2 A +1
+ Ev (w®; 00 \1B) + +
(1=y)mT (1 ’Y)T;)\/ ( ) 21=9)  1-nv

where in the last inequality we take telescoping sum in the first sum and drop off a non-positive term;
the last sum is due to

Vi (p) = Vi(p)+ (VT (p) = ViA(p)

1
> V*p) — ——
= Vip) - =
= Vh(p) — ﬁ 1
= maximize V,"(p) + \* (V] (p) = b) — Fp—
1
V(o) + X (VD (p) = b) = T—

L=n
A +1
Vr(t)p 4 -
()~

v

v
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where in the second equality we apply the strong duahty in Lemma 1, the ﬁrst and last inequalities are
due to the boundedness of |V, ( )=V (p)l < 1 and |Vgt)( )—b| < j In the above context,
we abuse notation V,*(p) a bit: V*(p) is descnbed by Lemma 1.

Notice (IE [)\(T)] )2 <E [()\(T))Q] Therefore,

LE[MT)} <
T ~
1 lo, |A| T—1 vx (N R BWQ )\* 1 4 2T
M\/zngT((l_i)mT + iy ST [\/E (wu),a(t),m))} RPN >+ angt

which leads to the desired bound (28) via (33).

The second part seeks to upper bound the expecation of E*" (w(*); §() \(*)),
E [EV* (@®;6®), )\(t))]

< E||% B @000, 2]

< LE[|Z] B @0;60,00)]

= == (E [E”(”(G“ )}+E[E””(zﬁt) oD\ )}—E{Eﬁ“’(e(”,A(“)D
< 2 |21 (o B [ @000, 0] & [0 00, 30

To upper bound E [E”(f)( o) 9t )\(t))} -E [ v 9®), )\(t))} we analyze the SGD update in

line 9 of Algorithm 1. The SGD update performs minimizing the objective B (w; 0®), X)) with
an unbiased estimate of the gradient V,, B (wy,; 60, A®),

E [Gk | wk]
= 2E(50)~ 0 Kwk Velogm®(a|s) — A\(lf)(87 a)) g logm®(a s)}
= 2E(50)~ 00 Kwk - Velogm®(a| E[A(Lt) (s,a)|s aD Vologn®(a| s)}

= 2B | (W Vologn(als) - AL (5,0)) Vo log =) (al 5)|
= VB (w00, A®)

where the last equality is due to the fact that: ﬁg) (s, a) is an unbiased estimate of Ag) (s,a)inline 8
of Algorithm 1.

By the fast SGD result [5, Theorem 1] with o = and Assumption 3,

2 (aﬁ + WLﬂ)Q
K

E [ E" (@00, \O) — g (9®), A(t))} <
where ¢ is an uniform bound on the minimum variance,

-
Esa)~wv {Gf) (Git)> ] < o? Vquym

(w®;60,X0)
¢ = (w®-Vylogr(als) — A (s.)) Vologn(als).

We complete the second part by noting o < L Hw 2 || +i5 = WLy + 1=

H Sample-Based NPG-PD Algorithm with Softmax Parametrization

We describe a sample-based NPG-PD algorithm with softmax parametrization in Algorithm 2.
Regarding the computational complexity of Algorithm 2: each round has expected length 2/(1 — )
so the expected number of total samples is 2(2|.S| + |S||A|) KT /(1 — 7); the total number of scalar
multiplies, divides, and additions is O(|S||A|KT + KT /(1 — 7)).
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Algorithm 2 Sample-Based NPG-PD Algorithm with Softmax Parametrization

1: Initialization: Learning rates 7; and 72, number of rounds K, and simulation access to

CMDP(S’ A7 P’ 7"’ g7 b’ /7/7 p)'

2: fort=0,...,T—1do

3:  Initialize 09 = 0, A(O) = 0, wy = 0.
4:  Initialize VL(t)(s) =0Oforall s € S and Qg')(s, a) =0forall (s,a) € S x A.
5 fork=0,1,..., K—1 do
6: Starting from each s € S, execute policy 7(*) with a termination probability 1 — ~ and
estimate,
R K'—1
VL(t)(s) = Z (r(sk, ar) + \Bg(sp, ak)) where 5o = s, K' ~ Geo(1 — 7).
k=0
7: Starting from each (s,a) € S x A, execute policy 7(*) with a termination probability 1 — ~
and estimate,
N K'—1
Q(Lt)(s,a) = Z (r(sk,ak) + )\(t)g(sk,ak)> where sg = s,a9 = a, K’ ~ Geo(1—7).
k=0
8: Update IA/L(t)(s) = 17L(t)(5) + %ﬁét)(s) forall s € S.
9: Update @g)(s, a) = A(Lt)(s, a) + %@g)(s, a) forall (s,a) € S x A.
10:  endfor R R
11:  Estimate A(Lt) = (Lt) = VL(t).
12:  Initialize V" (p) = 0.
13: fork=0,1,..., K—1 do
14: Draw s ~ p and draw a ~ 7 (- | s).
15: Execute policy 7 starting from s with a termination probability 1 —  and compute the
estimate,
R K'—1
Vg(t)(s) = Z g(sk,ar) where sg = s,a9 = a, K’ ~ Geo(1 — 7).
k=0
16:  Update V," (p) = V7 (p) + £V (s).
17:  end for
18:  Natural policy gradient primal-dual update
Nt
P+l = ) 4 %A(L)
(t+1) (t) () (34)
A = Po.a/a-»9) (A =2 (Vg (p) = b) ) :
19: end for
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Similar to Appendix F, we have unbiased estimates,
E [?L(t)(s)] = VL(t)(s) and E [@\(Lt)(s,a)] = (Lt)(s,a) and E [‘A/g(t)(s)] = V®(s)

and a variance bound,

IN

Var [?g(ﬂ(s)}

I Proof of Theorem 4

The proof idea is similar to Theorem 1, we repeat it for readers’ convenience.

We highlight some different steps here. The proof is based on similar results as Lemma 6 and
Lemma 7 in which essentially we replace the population quantities by the empirical ones estimated
by Algorithm 2. It is noted that the trajectory samplings in Algorithm 2 are independent at different
times ¢ and all estimates are unbiased. By Lemma 6 and Lemma 7,

1 T-1 1 T-1
Bz (Vi) = V)| +E| 7 > A (Vo) - v;t><p>)] s
t= t=
log | A| 1 212

< + .
mT  (1=9)°T  (1-7)?
Bounding the optimality gap. By the dual update in (34),

T-1
0 < ()\(T))Q _ Z ((}\(t+1))2 _ ()\(t))2)
= 2
= 3 (P 0 — w0 - ) - 0y
= 2
< Y (- @00 -n)" - 00p)
t:OTfl T-1
= 2 Y A=V (p)) + 02 > (VP (p) - b)?
t=0 t=0
T-1 T—1
< 2 Y A (Vo) = V() + 20 YA (VO () = V0 (0)
t=0 t=0

T—1
+15 Y (Ve (p) —b)°
t=0
(36)
where the last inequality is due to the feasibility of the policy 7*: V*(p) > b. Since Vg(t) (p) is
a population quantity and YA/g(t)(p) is an estimate that is independent of \() given #(*=1, \(®) is
independent of Vg(t) (p) — ‘A/g(t) (p) at time ¢ and thus E[A( (Vg(t) (p) — ‘A/g(t) (p))] = 0 due to the fact
IE[‘A/g(t)(p)] = Vg(t)(p) (see Appendix H). Therefore,
=
- ® (v*(p) — V)
72 (Veto) -V, <p))]

T-1

BN (WO (p) — b)?

0
"2 K+1
P I (s I
2(1—v)2< TR )

where in the second inequality we drop a non-positive term and use the fact (see Appendix F),
(¢ _ t
E[VO()] = V()

—-E

IN
=
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and

IA

K- " K-
where the first equality is due to line 16 of Algorithm 2; the last inequality is due to Var [Vg( )( )] <

a= v E (see Appendix F) and 0 < Vg( )( ) < ﬁ
To finish this part, we now return to (35) with 77; = 2log|A| and 1, = 1%7

T—1
1 log |A| 1 2m2 M2 M2
E|= * _yv® < .
T;(V’”(p) " (p))] =TT TP A= A=  20-1PK

Bounding the constraint violation. By the dual update in (34), for any A € [0, ﬁ] ,
E [|/\(t+1) _ )\|2]

_ E:’PA()\(t) (700 b)) - ()ﬂ

< E ‘/\(t)—w (Vg(t) b) )\”
= B[] - e (70 8) 0] + (7 )

E ‘/\(t) A } 2 E [(V(t)( )—b) (MO =A)] + 2,
— 21 —

(1=7)?  K(1-7v)?
where the first 1nequa11ty is due to the non-expansiveness of P and the last inequality is due to
E[(V;t)( ) —b)?] < = 7)2 + K(l ~yz- Summing it up from ¢ = 0 to ¢ = T' — 1 and dividing it by
T yield

0

IN

IN

'E {|A<T) - Aﬂ

2

IN

l]E U)\(O) _ )\‘2] _ @TEIE K‘A/(t)(p) _ b) ()\(t) _ )\)} L 213 . i
T T P g (1—~)2 K1 —7)2

which further implies,

T-1
E ;;}(Vg@)(p)—b) (O -A)| < %%E “Am) _Aﬂ - ?27)2 . 2K(17;2_ -

where we use E[V(t)( )] = V" (p) and A® is independent of V") (p) given (=1, We now add
the above inequality into (35) and note V" (p) > b,
= L 11
o [15  -i] 22[156 - v
5 (0 - v Y (- v
log |A 1 2
< logl4| S . ‘
mT (L=72T  (1-7) 20T

+ AE

2
A0 _ )\‘ "2 "2 _
a2 TR -

We take \ = ﬁ when Z?;é (b— Vg(t)( )) > 0; otherwise A = 0. Thus,
1 Il
* . (t) _ (t
=V - X0 SNl
= +

log |4] N 1 2772 N Lo 12
- oomT (=97 (1-9)3 2772(1—7)2§2T (1=9)?2  2K(1-—7)?*

2
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Similar to the proof of Theorem 1, there exists a policy 7’ such that V7' (p) = & 27} V.9 (p) and
Vgﬂ,(p) =1 tT:_(l) Vg(t) (p). Therefore,

’ 2 ’
E V(o) = V7 ()] + =B [0 = V7 (0)]
(o) = VI (0] + o b - VW)
log | 4] 1 202 1 Lo m
—omT (=T (1=-9)%  2m(1—9)?8T  (1-7v)>  2K(1-7)*
According to Theorem 6 in Appendix C, we obtain

' §log | Al 3 2n26 1 n2§ n2€
E{b— vy (p)}+ < T (177)T+ +

+ +

(1=7)% 2 =T (1-v) 2K(1-9)
which shows the constraint violation bound by noting 7 ZtT:_é (b— Vg(t) (p)) =b— Vg“/ (p) and
taking n; = 2log |A| and 72 = %

J Experimental Results

In this section, we provide additional experimental results to support our convergence theory. Our
CMDP simulation is based on the shared MDP code [9]. We generate CMDPs with random transitions,
uniform rewards, and utilities in [0, 1]. We simulate our algorithms with random initializations. Given
T > 0, the total number of optimization iterations, our stepsizes in theorems become constants and
multiplying them with positive constants does not affect convergence rates.

2.70
= 0.50
2
=t
=
2.601 =]
o g 0.33
&1 -
= g
(o] o]
r 2.501 2 017
=)
o
Q
2.401 0.00
0 2500 5000 7500 10000 0 2500 5000 7500 10000
Iterations Iterations

Figure 4: Convergence of the NPG-PD method (10). In this experiment, we have randomly generated
a CMDP with |S| = 20, |A| = 10,y = 0.8, and b = 3, and chosen: 1; = 12 = 0.1 and d = 150.

We show simulation results for algorithms with the general smooth parametrization. We consider a
class of linear softmax policies,

exp(e i ¢s,a)
2areaexp(0- dgar)
where ¢, € R? is the feature map with ||¢sq]| < B. We compute Vglogmg(a|s) = ¢s.q —
Eo/ mmo(- | 5)[s,ar] i= 55,(1 and the compatible function approximation error,

~ 2
E”(w,@,)\) = Es,awl/ |:<A297A(57a) —w- d)sv“) :| .

In this experiment, we take d canonical bases in R? as our feature maps. Since d < |S||A|, they can’t
capture the advantage function and will introduce function approximation errors. In Figure 4, we only
show the convergence of the reward value function to a stationary value that could be sub-optimal due
to the function approximation error. By contrast, the constraint violation converges to zero sublinearly.
It verifies Theorem 2 that the function approximation error does not dominate the constraint violation.

me(als) =

Last but not least, we show the objective and the constraint violation for running the sample-based
NPG-PD algorithm (10): Algorithm 1, using two different sample sizes. We see that both reward
value functions converge, and both constraint violations decrease to be negative. The large sample
size of K = 200 performs better, especially for the constraint violation. It confirms Theorem 3 that
the constraint violation is insusceptible to the function approximation error.
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Figure 5: Convergence of the sample-based NPG-PD algorithm (10): Algorithm 1, using different
sample sizes: K = 100 (--) and K = 200 (—). In this experiment, we have randomly generated a
CMDP with |S| = 20, |A| = 10, v = 0.8, and b = 3. We have chosen parameters for Algorithm 1:
n =mn2 =0.1,a = 0.1, and d = 150.
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