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Abstract— We utilize the frequency response analysis of
the linearized Navier-Stokes equations to quantify amplifi-
cation of exogenous disturbances in a hypersonic flow over
a compression ramp. Using the spatial structure of the
dominant response to time-periodic inputs, we explain the
origin of steady reattachment streaks. Our analysis of the
laminar shock/boundary layer interaction reveals that the
streaks arise from a preferential amplification of upstream
counter-rotating vortical perturbations with a specific span-
wise wavelength. These streaks are associated with heat flux
striations at the wall near flow reattachment and they can
trigger transition to turbulence. The streak wavelength pre-
dicted by our analysis compares favorably with observations
from two different hypersonic compression ramp experiments.
Furthermore, we utilize the dominant response to analyze
the physical effects in the linearized dynamical system re-
sponsible for amplification of disturbances. We show that
flow compressibility that arises from base flow deceleration
contributes to the amplification of streamwise velocity and
that the baroclinic effects are responsible for the production
of streamwise vorticity. Both these effects contribute to the
appearance of temperature streaks observed in experiments
and are critically important for the development of control-
oriented models for transition to turbulence in hypersonic
flows.

I. Introduction
Hypersonic flows over complex surfaces are governed

by the compressible Navier-Stokes (NS) equations. At
these conditions, where the fluid flows at least five times
faster than the speed of sound, aerodynamic heating of
the vehicle surface becomes a major concern: it is about
five times larger in turbulent than in laminar flow [1]
and can lead to structural failure. The dynamics at such
extreme flow conditions are poorly understood and devel-
opment of control-oriented models is critically important
for vehicle performance and survivability. In this paper,
we analyze dynamical properties of the compressible
NS equations in the presence of spatially distributed
and temporally varying external disturbances. These
disturbances are considered as inputs, while various
combinations of velocities, temperature, and pressure are
considered as outputs. In principle, input-output analysis
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using the non-linear models based on the compressible
NS equations can be carried out. However, the imple-
mentation involves large number of degrees of freedom
and prohibitively expensive direct numerical simulations.
Furthermore, it is difficult to obtain useful results in
such a generality. Thus, in the present work, we conduct
input-output analysis of the compressible linearized NS
equations.

To demonstrate the usefulness of input-output frame-
work, we consider the hypersonic flow over a compression
ramp as a canonical flow configuration over a control
surface. At such high speeds, this inevitably results
in shock/boundary layer interaction (SBLI) [2] that
involves separation and reattachment of flow close to the
surface (the boundary layer) and discontinuity associated
with a shock system. Even though the compression
ramp geometry is homogeneous in the spanwise direction,
experiments [3] show that the flow over it exhibits three-
dimensionality in the form of streamwise streaks near
reattachment. The streaks are associated with persistent
large local peaks of heat transfer; they can destabilize
the boundary layer and cause transition to turbulence [2],
[3].

Recently, there has been an increased interest in
experimental investigation of hypersonic compression
ramp flows [3], [4]. Techniques such as temperature
sensitive paint (TSP) and infrared (IR) imaging were
employed to study the formation of streamwise streaks
and reattachment heat flux patterns. Previous studies [2],
[4], [5] indicated that these streaks might originate from
upstream perturbations to the SBLI setup. However,
developing physical insights responsible for the devel-
opment of these three-dimensional structures by relying
solely on the experimental and numerical observations
can be misleading [6]. In this context, we demonstrate
how physical mechanisms responsible for the develop-
ment of these streaks can be discovered by examining the
input-output dynamics of the linearized NS equations.

The linearized NS equations have been widely used
for carrying out the modal and non-modal stability
analysis of idealized low-speed setups involving parallel
(spatially inhomogeneous in one direction) and non-
parallel (spatially inhomogeneous in multiple direction)
flows [7]. In particular, an input-output framework that
evaluates the response (outputs) of a the linearized NS
equations to external perturbation sources (inputs) has
been successfully employed to quantify the amplification
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and study transition mechanisms in low speed chan-
nels [8], [9], boundary layers [10]–[12], and jets [13].
However, applications to the high-speed flows in absence
of any simplifying geometrical and physical assumptions
is still an open challenge. In this paper, we utilize
the I/O analysis to demonstrate that the hypersonic
shock/boundary layer interaction over a compression
ramp strongly amplifies low-frequency upstream dis-
turbances with a specific spanwise length scale. The
dominant I/O pair resulting from our analysis is used
to explain the emergence of reattachment streaks and to
compare our results with experiments.

Our presentation is organized as follows. In Section II,
we present the linearized model and provide a brief
summary of the I/O formulation. Section III provides
details about the flow geometry and computational
setup. In Section IV, we evaluate the frequency response
of 2D laminar hypersonic base flow on a compression
ramp to 3D upstream disturbances and illustrate that
the dominant output field appears in the form of steady
streamwise streaks near reattachment. In Section V, we
examine the physical mechanisms responsible for streak
amplification by analyzing the spatial structure of the
dominant response. This is used to identify amplification
mechanisms active in the different regions of the flow field
and demonstrate the utility of the input-output analysis
in analyzing complex flow phenomenon. We conclude our
presentation in Section VI.

II. Linearized model for compressible flows
The compressible NS equations for perfect gas in

conservative form are given by
∂U

∂t
+

∂Fj

∂xj
= 0, (1)

where Fj(U) is the flux vector and U =
(
ρ, ρu, E

)
is the vector of conserved variables representing mass,
three components of momentum, and total energy per
unit volume of the gas [14]. We decompose the state
vector U(x, t) into a steady base component U(x) and a
time-varying perturbation component U′(x, t), U(x, t) =
U(x) +U′(x, t). The evolution of small perturbations is
then governed by the linearized flow equations,

∂

∂t
U′(x, t) = A(U)U′(x, t), (2)

where A(U) represents the compressible NS operator
resulting from linearization of (1) around the base flow
U. We assume that (ρu)′ satisfies homogeneous Dirichlet
boundary conditions while ρ′ and E′ satisfy homogeneous
Neumann boundary conditions at the wall. Along the
rest of the boundaries, all the perturbations are assumed
to satisfy homogeneous Dirichlet boundary conditions.
A second order central finite volume discretization (as
described in [15]) is used to obtain the finite dimensional
approximation of Eq. (2),

d

dt
q = Aq, (3)

which describes the dynamics of the spatially discretized
perturbation vector q. In general, for a finite volume
discretization with nel cells, the discrete state q ∈
R5nel×1 and system matrix A ∈ R5nel×5nel.

In this paper, we are interested in quantifying the
amplification of exogenous disturbances in boundary
layer flows [7], [9]. To accomplish this objective, we
augment the evolution model (3) with external excitation
sources

d

dt
q = Aq + Bd,

ϕ = Cq,
(4)

where d is a spatially distributed and temporally varying
disturbance source (input) and ϕ = (ρ′,u′, T ′) is the
quantity of interest (output), where T ′ denotes temper-
ature perturbations. In Eq. (4) the matrix B specifies
how the input enters into the state equation, while the
matrix C extracts the output from the state q.

In boundary layer flows, the linearized flow system
is globally stable. Thus, for a time-periodic input with
frequency ω, d(t) = d̂(ω)eiωt, the steady-state output of
a stable system (4) is given by ϕ(t) = ϕ̂(ω)eiωt, where
ϕ̂(ω) = H(iω)d̂(ω) and H(iω) is the frequency response

H(iω) = C(iωI − A)−1B. (5)

At any ω, the singular value decomposition of H(iω)
can be used to quantify amplification of time-periodic
inputs [7], [8],

H(iω) = Φ(iω)Σ(iω)D∗(iω). (6)

Here, (·)∗ denotes the complex-conjugate transpose, Φ

and D are unitary matrices, and Σ is the rectangular di-
agonal matrix of the singular values σi(ω). The columns
di of the matrix D represent the input forcing directions
that are mapped through the frequency response H
to the corresponding columns ϕi of the matrix Φ;
for d̂ = di, the output ϕ̂ is in the direction ϕi and
the amplification is determined by the corresponding
singular value σi. For a given temporal frequency ω,

G(ω) := σ1(ω) =
∥H(iω)d1(ω)∥E

∥d1(ω)∥E
=

∥ϕ1(ω)∥E
∥d1(ω)∥E

,

(7)
denotes the largest induced gain with respect to Chu’s
compressible energy norm [16] which is defined as,

∥ · ∥2E =

∫
Ω

ρ̄

2
|u′|2 + p̄

2ρ̄2
ρ′2 +

ρ̄Cv

2T̄
T ′2 dΩ, (8)

where (p̄, ρ̄, T̄ ) denote the base flow pressure, density
and temperature, and Cv is the specific heat at constant
volume in the domain Ω. Consistent with this energy
norm, we evaluate the eigenvalue decomposition of the
self-adjoint system H†H using a parallel implementation
of the power method [17] to obtain the spatial structure
of the dominant I/O pair (d1(ω),ϕ1(ω)) and gain G.
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TABLE I
Free-stream conditions for experiments [4] and [3]

ReL p∞ T∞ U∞ ρ∞
3.7× 105 355 Pa 55 K 1190 m/s 0.022 Kg/m3

2.0× 105 164 Pa 55 K 1188 m/s 0.010 Kg/m3

III. Flow over a hypersonic compression ramp
Streamwise streaks in wall temperature are often

observed in compression ramp experiments. Although
their appearance is typically attributed to amplification
that arises near reattachment from centrifugal [4] effects,
quantifying amplification in the presence of a recircula-
tion bubble is an open challenge. Herein, we employ the
I/O framework to study the amplification of infinitesimal
spanwise periodic upstream disturbances in hypersonic
compression ramp flow and explain origin of the heat
streaks at reattachment.

Recently, [3] and [4] reported multiple hypersonic
compression ramp experiments in two different facilities
with matched free-stream Mach and Reynolds num-
bers. Temperature sensitive paint (TSP) and infrared
thermography measurements of reattachment heat-flux
wall patterns revealed quantitatively similar streaks. The
effects of free-stream Reynolds number Re and leading
edge radius on the spanwise wavelength λz of the streaks
were also reported. Our objective is to identify the
streak wavelength λz that is selected by the linearized
compressible NS equations in the shock/boundary layer
interaction.

We consider the experiments performed in the UT-1M
Ludwig tube [4] at Mach 8. As illustrated in figure 1(a),
the geometry consists of an L = 50mm isothermal flat
plate with a sharp leading edge and wall temperature
Tw = 293K, followed by an inclined ramp at 15◦. The
streamwise domain extends from x/L = 0 to x/L = 1.65.
Table I summarizes the two free-stream conditions which
determine the 2D base flows considered in our study.
For the first free-stream condition, figure 1(b) provides
comparison of the experimental schlieren image with
the 2D base flow density gradient magnitude field that
we computed using the finite volume compressible flow
solver US3D [14]. Our 2D simulations correctly capture
the presence of both the separation and reattachment
shocks.

The Stanton number St is a non-dimensional parame-
ter that determines the wall heat-transfer coefficient [4].
In experiments, the Stanton number can be inferred
from TSP and infrared thermography measurements.
Figure 1(c) compares experimental values of St to
those predicted by our 2D simulations at different grid
resolutions. We see that the computed flow captures the
heat flux trends correctly except near the separation
and the post-reattachment regions. In experiments, these
regions display significant spanwise variation in St and
they are marked by the grey band in figure 1(c).

Since the flow is globally stable with respect to 3D per-
turbations [15], we conjecture that spanwise variations
arise from non-modal amplification of 3D perturbations
around the 2D base flow. To verify our hypothesis, we
employ global I/O analysis to quantify the amplification
of exogenous disturbances and uncover mechanisms that
can trigger the early stages of transition in a hypersonic
compression ramp flow.

IV. Frequency response analysis
We utilize frequency response analysis to investigate

the amplification of infinitesimal upstream perturbations
in a hypersonic compression ramp flow. This choice is
motivated by the experimental studies [3], [4] where vari-
ation in the properties of the incoming boundary layer
were found to have profound effects on the downstream
streaks. We model these upstream disturbances by re-
stricting the inputs to the domain prior to separation
(i.e., xs/L < 0.5). This is implemented by selecting the
matrix B := Iny×ny ⊗ Λnx×nx, where Λ is a diagonal
matrix with tanh[(x − xs)/Lϵ] along the diagonal (ϵ =
1e−6). Furthermore, we choose the perturbation field in
the entire domain as the output, ϕ = q, by setting
C = I. The I/O analysis is conducted on a grid with
412 cells in the streamwise and 249 cells in the wall-
normal direction (labeled as G3 in figure 1(c)). Numerical
sponge boundary conditions [15] (to no reflection from
the inflow and outflow) are applied near the leading edge
(x/L < 0.02) and the outflow (x/L > 1.6).

The left plot in figure 2 shows the input-output
amplification G(ω), defined in Eq. (7), in a flow with
high Reynolds number (ReL = 3.7 × 105) for different
spanwise wavelengths λz. Here, λz := λ∗

z/δsep and
ω := ω∗δsep/U∞ denote the non-dimensional spanwise
wavelength and temporal frequency, respectively, λ∗

z and
ω∗ are the corresponding quantities in physical units,
whereas δsep represents the displacement boundary layer
thickness at separation. We observe the low-pass feature
of the amplification curve: G achieves its largest value at
ω = 0, it decreases slowly for low frequencies, and it ex-
periences a rapid decay after the roll-off frequency (ω ≈
0.01). The visualization of the dominant input-output
directions d1 and ϕ1 in figures 2(a) and 2(b) reveals that
the flat region of the amplification curve corresponds to
incoming streamwise vortical disturbances (as inputs)
that generate streak-like downstream perturbations (as
outputs). In contrast, figure 2(c) demonstrates that, at
high temporal frequency (ω = 0.1), dominant input-
output pairs exhibit streamwise periodicity and take
the form of oblique waves. It should be noted that
the low-pass frequency response features as well as the
resulting changes in the response shape (from streaks to
oblique waves) were also observed in canonical channel
and boundary layer flows [8], [12].

The impact of the spanwise wavelengths λz on the
amplification G for steady perturbations (i.e., at ω = 0)
is shown in figure 3(a). For both Reynolds numbers, the
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Fig. 1. (a) Flow geometry and 2D steady streamwise velocity at ReL = 3.7 × 105; (b) comparison to experimental schlieren; and (c)
variation of Stanton number (St) with x/L. Curves G1-G4 denote computational grids at varying resolution (nξ×nη), with G1 (577×349),
G2 (495 × 300), G3 (412 × 249), and G4 (330 × 200) where nξ and nη denote the number of streamwise and wall normal grid cells,
respectively. The shaded grey region denotes envelope of spanwise variation of St measured in experiments.

Fig. 2. Left: the ω-dependence of the largest induced gain with respect to the compressible energy norm, G(ω), for unsteady inputs with
the spanwise wavelengths λz = {1, 3, 6, 10}. Right: isosurfaces of streamwise vorticity corresponding to the input d1 and temperature
corresponding to the output ϕ1 for (a) ω = 0; (b) ω = 0.02; and (c) ω = 0.1 for λz = 3.

amplification curve achieves its maximum for a particular
value of λz. This indicates that SBLI preferentially am-
plifies upstream perturbations with a specific spanwise
wavelength. The experimental estimates of λz resulting
from the observed spanwise modulations in the TSP
images in figure 3(b) agree well with the predictions of
our I/O analysis. This shows that the compression ramp
flow strongly amplifies steady upstream disturbances
with a preferential spanwise length scale.

V. Amplification of steady reattachment streaks:
physical mechanism

As demonstrated in the previous section, the hyper-
sonic flow over a compression ramp selectively amplifies
small upstream perturbations of a specific spanwise
wavelength. In order to gain insights into the structure of
the most amplified perturbations we analyze the velocity
and vorticity components (u′

s, ω
′
s). These components of

the dominant output ϕ1 quantify the kinetic energy of
the spanwise periodic streamwise vortices along the base
flow streamlines [6]. We utilize the (s, n, z) coordinate
system which is locally aligned with the streamlines of
the base flow

(
ūs, 0, 0

)
to simplify our analysis. Here,

s denotes direction along streamlines and n denotes
direction normal to it. This is shown in figure 4, where we
also show the wall-aligned coordinate system, with ξ and
η denoting the directions parallel and normal to the wall,

respectively. In the flow with ReL = 3.7×105, figure 4(b)
illustrates the output components corresponding to λz =
3 near reattachment in the (η, z) plane. We note that the
most amplified perturbations are given by alternating
regions of high and low velocities with counter rotating
vortices between them and that u′

s and ω′
s are 90◦ out

of phase in the spanwise direction.
To investigate the physical mechanisms responsible

for the amplification of 3D reattachment streaks we
analyze the dominant terms in the system matrix A.
In particular, we examine the spatial structure of the
streamwise vorticity, velocity, and temperature com-
ponents associated with the dominant output ϕ1 and
identify amplification mechanisms that result from the
interactions of 3D flow perturbations with 2D base flow
gradients.

A. Spatial evolution of streamwise vorticity

In order to quantify the development of streaks, we
consider the spatial evolution of streamwise vorticity ω′

s.
After comparing relative magnitude of various terms and
dropping terms (see [6] for details) with small magnitude
we obtain,

ūs∂sω
′
s ≈ ∂nρ̄

ρ̄2
iβp′ (9)
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Fig. 3. (a) The λz-dependence of the amplification map G for steady inputs (i.e., ω = 0); and (b) comparison of experiments and
dominant output ϕ1 at reattachment. The vertical dashed line in (b) denotes the approximate reattachment line in experiments and 2D
simulations.

Fig. 4. (a) Schematic of the different coordinate systems for analyzing the perturbation evolution; and (b) color plots of streamwise
velocity u′

s and contour lines of streamwise vorticity ω′
s at streamwise location x/L = 1.4 (post-reattachment) corresponding to the

dominant output ϕ1 at λz = 3. Solid lines denote positive values and dashed lines denote negative values of ω′
s.

Fig. 5. (a) Illustration of the baroclinic term ∇ρ̄ × ∇p′ for the
dominant output with λz = 3; and (b) corresponding quantities
near the reattachment plane at x/L = 1.36.

The term on the left quantifies evolution of ω′
s as

we go along the base streamlines. The right-hand side
appears due to the baroclinic effect, which arises from
misalignment of pressure and density gradients and
accounts for differential acceleration caused by variable
inertia [18].

We illustrate the linear baroclinic mechanism in fig-
ure 5(a) by showing three quantities: (i) the base flow
density ρ̄ in the (x, y) plane using an orange colormap;
(ii) the spanwise gradient of the pressure perturbations p′
in the (y, z) plane near reattachment using the red-white-
blue colormap; and (iii) the isosurfaces of streamwise vor-
ticity ω′

s using a grey-black colormap. Since the linearized

baroclinic torque that is active in the steady response
is associated with ∇ρ̄ × ∇p′, we focus on examining
the gradients of ρ̄ and p′ shown in figure 5(b). Near
reattachment, the density gradient is aligned with the
wall-normal direction η. This is because the ρ̄ colormap
becomes darker as we move away from the wall in the
direction of increasing η. At the same x location, the
gradient of p′ is orthogonal to the (x, y) plane; it achieves
its largest value midway between the blue and the red
lobes and it points in the direction from the center of
the blue to the center of red lobes. As illustrated in
figures 5(a) and (b), the resulting linearized baroclinic
torque ∇ρ̄×∇p′ aligns with the streamwise vorticity ω′

s,
thereby leading to its production.

B. Spatial evolution of streamwise velocity and temper-
ature

Recent experimental [19] and numerical studies [20]
demonstrated that streamwise velocity perturbations
contribute most to the kinetic energy in SBLI. The
spatial evolution of streamwise velocity u′

s is governed
by,

ūs ∂su
′
s ≈ −∂sūs u

′
s (10)

This equation demonstrates that the growth of u′
s

appears because of the streamwise deceleration of the
base flow (where ∂sūs < 0). This is a unique feature of
compressible flows and demonstrates the utility of the
I/O approach in identifying new physical phenomenon
present in complex fluid flows.
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C. Spatial evolution of temperature perturbations
To understand the formation of heat streaks near

reattachment, we consider the spatial amplification of
temperature perturbations T ′ as they are transported
by the base flow. For the most amplified output pertur-
bations, we retain the terms with significant contribution
to the inviscid transport equation for T ′2,

ūs ∂s(T
′2/2) ≈ − ∂sT̄ (u′

sT
′) − ∂nT̄ (u′

nT
′)

− (γ − 1) (∇ · ū)T ′2.
(11)

The first term on the right-hand-side leads to production
of temperature perturbations due to streamwise gradi-
ent ∂sT̄ near reattachment, whereas the second term
accounts for the transport from ω′

s due to the wall-
normal thermal base flow gradients in the boundary
layer. Therefore, both u′

s and ω′
s contribute to production

of T ′ at reattachment. The third term quantifies the base
flow dilatation in the reattachment shock where ∇ · ū
takes large negative values. All of these three physical
effects significantly contribute to the amplification of T ′

near reattachment.
VI. Concluding remarks

We have employed an input-output analysis to in-
vestigate the dynamics of compressible linearized NS
equations and to study amplification of disturbances in
compressible boundary layer flows. Our approach utilizes
global linearized dynamics to study the growth of flow
perturbations and identify the spatial structure of the
dominant response.

In an effort to explain the heat streaks observed in the
hypersonic flows, we have examined the experimentally
observed reattachment streaks in shock/boundary layer
interaction on Mach 8 flow over 15◦ compression ramp.
The I/O analysis predicts large amplification of incoming
steady streamwise vortical disturbances with a specific
spanwise length scale. The dominant output takes the
form of steady streamwise streaks near reattachment.

We have also uncovered physical mechanisms respon-
sible for amplification of steady reattachment streaks by
evaluating the dominant terms in the system matrix.
Physically, this quantifies the contribution of the base
flow gradients to the production of the perturbation
quantities. Using our approach we demonstrate that the
appearance of the temperature streaks near reattach-
ment is triggered by the compressible flow effects asso-
ciated with streamwise deceleration in the recirculation
bubble and the baroclinic effects near reattachment.

The I/O approach provides a useful computational
framework to quantify the growth of external perturba-
tions in complex high-speed flows. Improved understand-
ing of amplification mechanisms can provide important
physical insights about transition to turbulence. We
expect that our work will motivate additional studies
that explore nonlinear aspects of transition and pave the
way for the development of predictive transition models
and effective flow control strategies.
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