2022 American Control Conference (ACC)
Atlanta, USA, June 8-10, 2022

A weakly nonlinear analysis of transition in a hypersonic flow

Anubhav Dwivedi and Mihailo R. Jovanovié

Abstract— We study responses of compressible Navier-Stokes
equations to unsteady exogenous disturbances in a hypersonic
flow over a double-wedge geometry. Our analysis of the laminar
shock-boundary layer interaction reveals strong amplification
of upstream disturbances with non-zero temporal frequency.
We utilize a weakly nonlinear framework to investigate the
early stages of tranmsition to turbulence in the presence of
such unsteady disturbances. We demonstrate that quadratic
interactions of harmonic perturbations induce steady three-
dimensional spanwise-periodic streaks. These streaks are am-
plified by the flow separation and serve as a precursor to
transition further downstream. Our examination of the spatial
structure of the streaks demonstrates that they can be reliably
reproduced via a reduced-order dynamical representation. The
low-dimensional models, such as those discovered in the present
study, are critically important for the development of control-
oriented models for transition to turbulence in hypersonic flows.

I. INTRODUCTION

Hypersonic flows over complex geometries are governed
by compressible Navier-Stokes (NS) equations. Such flows
move at speeds that are at least five times faster than the
speed of sound and aerodynamic heating of the vehicle
surface becomes a major concern: it is about five times
larger in turbulent than in laminar flow [1] and it can
lead to structural failure. Control-oriented modeling of flow
transition is critical for vehicle performance and survivability.
Since the dynamics at such extreme flow conditions are
poorly understood, in this paper we analyze the dynamical
properties of the compressible NS equations with spatially
distributed and temporally varying external disturbances.

In realistic flow conditions, such as those encountered
in wind tunnel experiments, the unsteady fluctuations in
the free stream are a dominant source of external excita-
tion [2]. Herein, we utilize the input-output framework to
characterize the role of unsteady disturbances in initiating
transition over a double-wedge geometry (which represents
a canonical hypersonic flow configuration over a control
surface). At hypersonic speeds, the flow over this geometry
exhibits shock/boundary layer interaction (SBLI) [3] that
involves separation and reattachment of flow close to the
surface as well as a discontinuity associated with the shock
system. Data from wind-tunnel experiments [4]-[6] reveal
that the flow away from the wedge remains two-dimensional.
However, the flow close to the wedge surface shows the
presence of steady three-dimensional modification of the
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mean flow in the form of streaks [4], [7] that trigger transition
to turbulence [8]. Thus, we investigate the development of
steady 3D features around a 2D base flow over a double-
wedge in the presence of unsteady external disturbances.

An input-output framework that evaluates the response
(outputs) of the linearized NS equations to external sources
(inputs) has been successfully employed to quantify the
amplification and study the early stages of transition in low-
speed channels [9], [10], boundary layers [11], [12], and
jets [13]. Recent researched examined the input-output dy-
namics of the compressible linearized NS equations to show
that hypersonic flows are extremely sensitive to upstream
steady vortical disturbances [6], [14], [15]. The resulting flow
response takes the form of 3D streaks [5], [16]. However,
recent numerical experiments with SBLI suggest that even
in the presence of unsteady excitation, the 2D flow develops
streaks that breakdown to turbulence [17], [18]. To evaluate
the development of steady streaks from small unsteady
disturbances, we examine nonlinear development of the dom-
inant response obtained identified by input-output analysis
of the linearized NS equations. In particular, we utilize a
weakly nonlinear framework to quantify the interaction of
small perturbations responsible for early stages of transition.

Our presentation is organized as follows. In section II, we
provide details about the flow geometry and computational
setup. In section III, we present the linearized model and
briefly summarize the input-output formulation. Next, we
evaluate responses of the compressible Navier-Stokes equa-
tions linearized around laminar hypersonic base flow to time-
harmonic three-dimensional disturbances. Section IV inves-
tigates nonlinear interactions of the dominant unsteady re-
sponse of the linearized flow equations and demonstrates that
the resulting interactions lead to the development of steady
three-dimensional streaks. A weakly nonlinear framework is
then employed to develop a reduced-order representation of
the streaks in terms of the dominant input-output modes.
Finally, we conclude our presentation in section V.

II. A HYPERSONIC DOUBLE-WEDGE FLOW

We consider a canonical hypersonic configuration involv-
ing a Mach 5 flow over a double-wedge. Figure 1 (a) shows
the geometry and flow conditions that correspond to the
experiments of [19]. We use the finite-volume compressible
flow solver US3D [20] to solve the compressible NS equa-
tions in conservative form. The two-dimensional flow over
double-wedge is computed using a computational grid with
249 cells in the wall-normal and 535 cells in the streamwise
direction. Further details on the numerical approach can be
found in our previous work [21].
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Fig. 1.

Figure 1 (b) shows the flow features on the double-
wedge with contours of density gradient magnitude |V p|.
The boundary layer thickness ¢ near the separation location is
about 1 mm. Unless otherwise specified, the length scales are
non-dimensionalized by § at the separation location, and the
time-scales are non-dimensionalized by §/Us, where Us
denotes the free-stream speed in figure 1 (a). The boundary
layer separates around 13.8§ from the corner on the first
wedge and is associated with the formation of the separation
shock. The separated flow reattaches around 10.59 away
from the corner on the second wedge and the reattaching
flow is associated with the formation of the reattachment
shock. S and R, respectively, mark the separation and the
reattachment location in the two-dimensional steady flow.

Sidharth er al. [21] demonstrated global linear stability
of the two-dimensional separated base flow. Recent stud-
ies of similar SBLI configurations, such as compression
ramps, revealed extreme sensitivity to upstream disturbances
even in the absence of global instability [14]. Leading-edge
roughness and free-stream disturbances provide persistent
external excitation sources and are inevitable in realistic flow
environments. To evaluate the role of such uncertainty in
triggering the transition to turbulence, we utilize input-output
(I/0) analysis [22] to quantify amplification of unsteady
disturbances in hypersonic flow over the double wedge.

III. LINEARIZED FLOW EQUATIONS

To quantify amplification of unsteady external distur-
bances in globally stable two-dimensional SWBLI over a
double wedge we decompose the state vector U = (p, pu, E)
into mean and fluctuating parts,

U(x,t) = U9(x) + eUD(x,8) + - - -, (1)

where U(©)(x) represents the steady 2D laminar flow and e
denotes a small amplitude. To account for the rate of change
of the perturbation density, momentum, and total energy, we
model unsteady external disturbances as volumetric sources
of excitation,

d(x,t) = edM (x,1). 2)
The linearized flow equations
0
Z (0) 1 — 1)
[at AU )]U BAW), 3)

Reattachment

(R)

Separation

(S)

(a) Flow geometry and experimental conditions; (b) contours of |V p| of the two dimensional base flow.

are obtained by neglecting O(e?) terms upon substitution
of (1) and (2) in the compressible NS equations. Here,
A(U®) denotes the compressible NS operator resulting
from linearization around the base flow U® [6], [21] and
B is the operator that specifies how disturbances enter into
the state equation.

A second-order central finite-volume discretization [21]
is used to obtain a finite dimensional approximation of
equation (3). The state-space formulation,

d
—q = A B
4 q + Bd, @

¢ = Cq,

describes the evolution of the spatially discretized pertur-
bation vector q, where d is a spatially distributed and
temporally varying disturbance (input) and ¢ is the quantity
of interest (output). In equation (4), we utilize the matrix
B to restrict the spatial location of the inputs entering into
the state equation, while the matrix C extracts the output
from the state vector q. In the present case, C transforms
the state q to output the perturbation density, velocity and
temperature i.e., ¢ = (p,u,T) (see [6, appendix A.1]).

At the present flow conditions, the linearized system is
globally stable and for a time-periodic input with frequency
w, d(t) = d(w)e*!, the steady-state output of (4) is
determined by ¢(t) = ¢(w)e'*, where ¢(w) = H(iw)d(w),
H(iw) is the frequency response matrix

H(iw) = C(iwI — A)™'B, (5)

and R(iw) = (iwI — A)~! is the resolvent associated with
the linearized model (4). At any w, the singular value de-
composition of H(iw) can be used to quantify amplification
of time-periodic inputs [9], [22], [23],

$(w) = H(w)d(w) = Zai(w)@(wﬂdi(w),3(W)>E-
Z ©)

Here, o;(w) denotes the ith singular value of H(iw), (-, ) g
is the inner product that induces a compressible energy
norm [24] (see appendix V-A), and d;(w) and ¢,;(w) are the
left and right singular vectors of H(iw) which provide or-
thonormal bases of the corresponding input and output spaces
(with respect to (-, -} ). The frequency response H(iw) maps
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the ¢th input mode d;(w) into the response whose spatial
profile is specified by the ith output mode ¢,(w) and the
amplification is determined by the corresponding singular
value o;(w); ie., for d(w) = d;(w), p(w) = H(iw)d;(w) =
oi(w);(w) and [|p(w)| 5 = o3(w).

For a given frequency w, we use a matrix-free Arnoldi
iterations [6], [13] to compute the singular values o;(w) of
H(iw). Note that, at any w,

_ [H(w)diw)lle _ llor(w)ér(w)lle
Id1 (W)l ||d1(w)HE(7)

o1(w)

determines the largest induced gain with respect to a com-
pressible energy norm, where (d;(w), ¢;(w)) identify the
spatial structure of the dominant input-output pair.

A. Frequency response analysis

We utilize I/O analysis to study the amplification of har-
monic disturbances with frequency w. Owing to homogeneity
in the spanwise direction, the 3D perturbations take the form,

®)

where § = 27/\. is the spanwise wavenumber. Thus, in
addition to w, the frequency response in equation (5) is also
parameterized by the spanwise wavelength \,.

We first set B = 1, i.e., we introduce inputs that ex-
cite flow at any spatial location and examine their impact
on output density, velocity and temperature in the entire
computational domain. Computations with 545 cells in the
streamwise, 249 cells in the wall-normal direction yield
grid independent results. The perturbations are attenuated as
they leave the flow domain by utilizing a numerical sponge
boundary condition near the leading edge (r = 1) and the
outflow boundaries [6].

Figure 2 shows the dependence on the frequency w and
the wavelength A, of the I/O gain G(w, ;). There are
two major amplification regions with the respective peaks
at (w=0,\, = 1.5) and (w = 0.4, A\, = 3). The first peak
in G identifies the global maximum and the corresponding
output is determined by reattachment streaks that result from
steady vortical disturbances upstream of the recirculation
zone. We observe selective amplification of disturbances with
A, =~ 1.5 and low-pass filtering features over w. The I/O
gain GG experiences rapid decay beyond the roll-off frequency
w ~ 0.4 and it attains its largest value at w = 0. In contrast
to [14], which focused on disturbances with w = 0, we
examine unsteady disturbances that trigger oblique waves in
the reattaching shear layer, as identified by the second peak
in the I/O gain G. This amplification region takes place in a
narrow band of temporal frequencies w over a fairly broad
range of spanwise wavelengths \,.

Even when we allow disturbances to enter the entire
computational domain, the largest amplification is caused by
inputs localized upstream (near the inflow), with the resulting
response appearing downstream. The upstream disturbances
are the most effective way to excite the flow because of
the large convection velocity of the mean flow [23] and the

A(z,y, 2, t) = §(z,y, B,w)eF=Feh),

)

dominant output emerges in the separated and the reattached
regions of the base flow. In the next section, we utilize the
downstream response to unsteady excitations to evaluate the
growth of steady secondary perturbations using a weakly
non-linear approach.
IV. WEAKLY NON-LINEAR ANALYSIS
In § III, we used the input-output analysis to identify
oblique waves as the most energetic responses of the lin-
earized flow equations in the presence of unsteady distur-
bances. Here, we present a framework to quantify perturba-
tion development responsible for early stages of transition in
the double-wedge flow as the unsteady waves amplify. In the
presence of a pair of small external disturbance,

d(z,y,z,t) = e(dy(z,y)e! + d_(z,y)e ) e?,
©))

a weakly nonlinear analysis can be utilized to represent the
flow state as

U(x,t) = U%(z,y)
+ (U (2, 9)e + UV (2, y)e ) e (10)
+ AU (x,t) + O(e%),
where d(il ) and U$ ) are the principal oblique input-output

pairs resulting from the linearized analysis in § III-A. At
O(€?), the fluctuation’s dynamics are governed by

[gt _ A(mm)} U® = NO),

where A(U®) denotes the compressible NS operator result-
ing from linearization around the base flow U(® and N2
is the nonlinear term that accounts for quadratic interactions
between U$> and UV (see appendix V-B for details).
Furthermore, the quadratic nature of the nonlinear term
allows us to express U (x,t) as,

(U(()z)(ax y)) R

+ (Uf)(x’y)eZiwt n U(E)(x’y)e—int) o287
(12)

(1)

u® (x,1)

Previous numerical experiments of flow transition induced by
unsteady perturbations in canonical fluid flow setups such as
low-speed channel [8] and boundary layer [25]-[27] show
that there is steady three-dimensional modification of the
base flow in the form of streaks. The destabilization of the
boundary layer by these streamwise streaks is a precursor to
flow transition. Therefore, we analyze the dynamics of the
steady component of the response at O(e?) which satisfies

(A (UO) U] @) = -NDlww). (3)
Finally, the finite-volume discretization of (13) yields,
Aqifr)eak = _Niflzeak’ (14)

where A is the dynamical generator in the linearized state-
space model (4). Thus, the resolvent associated with (4)

evaluated at w = 0 maps the forcing Nifr)eak that arises
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Input-output analysis with B = C = I. (a) Gain G(\.,w) contours with A, and w respectively. (b) Isosurfaces of streamwise vorticity

corresponding to the input mode d; and the temperature corresponding to the output mode ¢;.
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Fig. 3. (a) Setup for weakly nonlinear analysis: slice showing the dominant
input mode resulting from input-output analysis at A, = 3 and the
isosurfaces of the streamwise velocity perturbation (u’) corresponding to
the associated response. (b) Streamwise streaks (with A, = 1.5) arising
from the interaction of oblique disturbances.
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Fig. 4.
non-linear interaction of oblique perturbations in @ — y plane along with

(a) Real part of streamwise vorticity corresponding to IN

base flow streamlines. (b) Wall-normal profile of the forcing term Nsli)ak

to the streamwise vorticity, density, temperature, and streamwise velocity
of the streaks at x = 58 (before reattachment).

from quadratic interactions of small oblique waves and yields
steady streamwise streaks,
(2) _ R(IO)N(Z) _ _Ale(z)

Ustreak streak T streak”

5)

To investigate the emergence of streaks from upstream
unsteady disturbances, we carry out the input-output analysis
with streamwise localized inputs before separation, i.e. the
inputs are restricted to a plane at x = 25 via a proper
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Fig. 5. (a) Streamwise velocity fluctuations associated with the steady

streaks at A, = 1.5 from full non-linear simulations with oblique inputs
with (w = 0.4, A\, = 3) are shown; (b) simulation results compared with
the results of weakly nonlinear analysis.

selection of matrix B. We evaluate the nonlinear evolu-
tion of the resulting dominant oblique waves. Figure 3(a)
illustrates the setup in which a pair of input modes with
(w = +04, A, = 3) is introduced at x;, = 25. The
resulting response at O(e) is given by oblique waves with
opposite phase velocities, leading to a checkerboard wave
pattern in the spanwise direction. The oblique perturba-
tions undergo rapid amplification in the separation zone
as they convect downstream. Figure 3(b) shows the steady
streamwise velocity perturbations at O(e?) that arise from
the nonlinear interactions of the oblique waves with Fw.
The steady response is given by streamwise streaks with
half the spanwise wavelength \$treaks — )obliaue /o — 1 5
of the forcing input. These streaks experience significant
amplification in the reattachment zone.

A weakly nonlinear analysis allows us to demonstrate
that the source of steady streaks at O(e?) arises from the
quadratic interaction of oblique waves at O(€?). Figure 4(a)
utilizes a wall-aligned (£,n) coordinate system to illustrate
a forcing term N . in (13). Here, { and 7 denote the
directions parallel and normal to the wall, respectively. The
large amplification of the oblique waves that result from
the linearized analysis in the reattachment region triggers
strongest forcing N® « in that region. Figure 4(b) shows

strea
the wall-normal profiles of the forcing term to the mass,
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Fig. 6. (a) Dominant singular values of the linear system corresponding
to the two-dimensional flow over double wedge at parameter A, = 1.5. (b)
Projection coefficient of the input modes onto the non-linear terms from
oblique wave interaction.
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Fig. 7. Wall-normal profiles of the real component of the streamwise
velocity corresponding to (a) the streaks from weakly non-linear analysis
and the two dominant output modes after reattachment x = 65; (b)
vortical forcing from the non-linear interaction of oblique waves and the
two dominant input modes in the separated shear layer at x = 57.

momentum, and temperature equations in (11) before reat-
tachment (x = 58). We observe the strongest contribution of
the forcing to the wall-normal and spanwise components of
the momentum equations, thereby demonstrating its vortical
nature. The vortical nature is confirmed by computing the
we(N®@)) = 9, (v,(N®@))) -9, (w(N®@)). Figure 4(b) shows
that we (N(®)) the most significant contribution to Ngﬁeak.

To examine the validity of the second order expansion
assumed in our analysis, we carry out direct numerical
simulations (DNS) of NS equations forced with the oblique
disturbances. Figure 5 compares the spatial evolution of the
streamwise velocity perturbation of the streaks in the DNS
with the weakly non-linear analysis. The results from the
weakly nonlinear framework are valid across a substantial
range of disturbances amplitudes, clearly demonstrating the
predictive power of our approach.

A. Representation of streaks in terms of output resolvent
modes

As described in § III, the left and right singular vectors
of the frequency response provide an orthonormal bases
of input and output spaces that can be used to study the
responses of the double-wedge flow to external excitations.
In particular, the streaks resulting from weakly nonlinear
interactions of oblique waves (cf. equation (15)) can be
represented using SVD of the resolvent associated with the
linearized system (4) at w = 0,

qifr)eak = R(iO)Nifr)eak = Z O-iqsi <dl’ Nglzeak>E' (16)

Here, o; is the 4th singular value and (d;,¢,) are the

corresponding input-output modes of the resolvent R(i0) =
—A~1 For \, = 1.5, the inner product (-, ) is carried over
the entire flow domain in (z,y) and the product between
o; and the projection coefficient (di,Ngmak> £ quantifies
the contribution of the ith output mode ¢, to steady streaks
that are triggered by weakly nonlinear interactions of oblique
waves.

Figure 6(a) shows 25 largest singular values of the resol-
vent for the linearized system (4) with (w = 0, A, = 1.5).
Even though the principal singular value o; is an order of
magnitude larger than o, figure 6(b) demonstrates that the
second output mode ¢, contributes most to queak. Fig-
ure 7(a) shows the wall-normal profiles of the streamwise ve-
locity component u’ associated with queak and the first two
output modes (¢, ¢,) of the resolvent. We observe striking
similarity between streaks generated by weakly nonlinear
interactions of oblique waves and the second output mode in
the post-reattachment region, at * = 65. Similarly, figure 7(b)
compares the wall-normal shapes of the corresponding input
modes d; and d, with the forcing Néfr)eak that arises from
quadratic interactions. The input modes are visualized in
the reattaching shear layer, at x = 57, and the streamwise
vorticity component of ds provides a good approximation
to the vortical forcing that captures interactions of unsteady
oblique fluctuations.

V. CONCLUDING REMARKS

We have employed an input-output analysis to investigate
the dynamics of NS equations in the presence of small
unsteady disturbances in compressible boundary layer flows.
Our approach utilizes global linearized dynamics to identify
the spatial structure of the dominant response. The non-
linear development of the resulting flow perturbations is
investigated within a weakly non-linear framework.

To demonstrate the utility of our approach in realistic
flow configurations, we examine the perturbation growth
in a canonical hypersonic double-wedge geometry. The I/O
analysis of the linearized NS equations predicts a significant
amplification of upstream steady and unsteady external dis-
turbances. The unsteady flow response appears in the form
of oblique waves. Our weakly non-linear analysis shows
that oblique waves undergo a non-linear quadratic interaction
to generate steady three-dimensional vortical forcing in the
separated flow. The resulting secondary response appears as
streamwise streaks which undergo linear amplification. Our
results demonstrate that the spatial structure of the streaks
can be well approximated with the I/O modes of the two-
dimensional SBLI.

The I/O approach and the weakly non-linear analysis
provide a useful computational framework to quantify the
spatial evolution of external perturbations in shock-boundary
layer interactions. Furthermore, identifying the dominant
flow structures that can exhibit significant amplification in
linear and non-linear regimes can provide critical physical
insights into the transition process. We expect our work to
motivate additional numerical and experimental studies to
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help develop reduced-order models for transition prediction
and effective control strategies in complex high-speed flows.

APPENDIX

A. Compressible energy norm

In the present work, we define compressible energy using
Chu’s norm [24]

1= [ B+

where (p, p, T) denote the base flow pressure, density and
temperature, and C, is specific heat at constant volume in
the domain €.

pC
2T

2272 40, (17)

B. Non-linear terms at O(€?)

As shown in section IV, N @ accounts for quadratic
interactions between U(l) and U at O(€?). For steady

streaks, the dominant contributions comes from Nm) cak,u’
(2 lw (1 1,1
Nstreak,u = p(o) (P ) ) + p( ( )

(u(_) -Vug) + uil) . Vu(_1)>

A (o 0

o (@ 7)u® + @@ v)u)

P(l) 1 1

pTB) ((ui) -V)u® + (u®. V)ui)) :

(18)

Here, w = 0.4 for oblique fluctuations. For expressions for
density and thermal components of Ngtr)eak see [18, appendix

D].
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