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Abstract— We utilize stochastically-forced compressible lin-
earized Navier-Stokes equations to study the dynamics of
hypersonic flows over blunt bodies. Our analysis of the energy
of the flow fluctuations around the laminar stagnated flow
reveals strong amplification of specific streamwise and spanwise
length scales. We also provide insights into how changes in
different physical parameters, such as the temperature of the
blunt body and its curvature, influence the amplification of
flow fluctuations. We show that increasing the bluntness and
decreasing the wall temperature can significantly enhance the
amplification of flow fluctuations. Our approach offers a system-
atic control-theoretic framework for quantifying the influence of
stochastic excitation sources (e.g., free-stream turbulence and
surface roughness) that are unavoidable in experiments and
paves the way for the development of control-oriented models
of hypersonic flows over blunt bodies.

I. INTRODUCTION

Vehicle surface heating at hypersonic flow conditions,
where the fluid flows at least five times faster than the speed
of sound, is a major concern: an unmanaged thermal loading
on vehicle surface can lead to structural failure. Throughout
the flight geometry, the largest amount of heating typically
appears at the nose tip of the flight vehicle, where the high-
speed flow undergoes a rapid deceleration as it interacts
with the solid surface for the first time [1]. A common
approach to reduce this heat flux is to increase the bluntness
by decreasing the curvature of the nose-tip [2]. However,
experiments in wind-tunnels indicate that such an increase
in the bluntness causes an early transition from a laminar
to turbulent flow [3], [4] which introduces an additional
source of aerodynamic heating: surface temperatures are
about five times larger in turbulent than in laminar flow [5].
The dynamics at such extreme flow conditions are poorly
understood, especially in the presence of uncertainties that
are typical in experimental setups and flight configurations.
The development of control-oriented models that can account
for the robustness of laminar flows at hypersonic conditions
is critically important for vehicle performance and surviv-
ability. In this paper, we analyze the dynamical properties of
the blunt body flow in the presence of spatially distributed
and temporally varying external disturbances.

The early onset of flow transition in the blunt body flows
at hypersonic conditions has been a subject of numerous ex-
perimental [6], [7] and numerical investigations [8], [9]. The

Financial support from the Air Force Office of Scientific Research (under
award FA9550-18-1-0422) and the Office of Naval Research (under award
N00014-19-1-2037) is gratefully acknowledged.

Anubhav Dwivedi and Mihailo R. Jovanović are with the Ming Hsieh
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classical approach to understanding transition onset involves
carrying out a spectral (i.e. normal mode) analysis of the
linearized compressible flow equations. In this framework, if
given flow conditions lead to unstable normal modes then the
linearized dynamical generator associated with the laminar
flow is also unstable. However, previous applications of the
hydrodynamic stability analysis [10] indicate that the blunt
body flow is stable. Furthermore, as the radius of the nose-
tip increases, the flow is found to become more stable,
which is in contrast to the experimental observations that
indicate an early onset of flow transition with an increase in
bluntness [4], [7]. Recently, it has been recognized that even
in asymptotically stable flows, transient (finite-time) growth
can play significant role [11], [12] in the transition process.
This approach has been utilized to identify the ‘worst case’
initial state in the blunt body flows [13], [14] that can lead
to the largest energy growth of flow fluctuations. However,
these initial states may not be realizable in experiments.
In this context, we adopt a complementary viewpoint by
utilizing an input-output approach. This framework allows
us to quantify the influence of modeling imperfections which
are unavoidable in physical systems, thereby bringing in an
appealing robustness interpretation.

A major source of uncertainty in the wind-tunnel experi-
ments appears in the form of free-stream turbulence which is
often unavoidable at hypersonic flow conditions [15], [16].
The presence of turbulence introduces a source of unsteady
stochastic excitation whose detailed modeling often requires
very expensive numerical computations [17]. In the present
work, we utilize an input-output framework that models
the influence of turbulence as small amplitude white-in-time
external disturbances. These disturbances are considered as
inputs, while various combinations of velocities and temper-
ature are considered as outputs.

Input-output (I/O) analysis that evaluates the response
(outputs) of the linearized Navier-Stokes (NS) equations to
external perturbation sources (inputs) has been successfully
employed to quantify the amplification and study transition
mechanisms in low speed channels [18]–[20], boundary
layers [21]–[23], jets [24] and hypersonic shock-boundary-
layer-interactions [25]–[28]. In this paper, we utilize the
I/O analysis to demonstrate that the hypersonic blunt bod-
ies strongly amplify external stochastic excitations with a
specific spanwise and streamwise length scale. Furthermore,
our analysis also indicates that in the presence of back-
ground noise, increasing the bluntness and decreasing wall
temperature can cause a dramatic increase in disturbance
amplification which agree well with experimentally observed
trends.
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Our presentation is organized as follows. In § II, we
introduce hypersonic blunt body flow. In § III, we provide
linearized model associated with the blunt body flow and
a brief summary of the input-output formulation. In § IV,
we evaluate the energy amplification in the presence of
background noise and quantify the role of physical param-
eters such as nose-bluntness and wall temperature on the
robustness of the laminar hypersonic flow. We conclude our
presentation in § V.

II. LAMINAR STAGNATION POINT FLOW

To analyze the response of hypersonic blunt body flows to
small external disturbances, we first evaluate the mean flow
near the stagnation point. Throughout our presentation, we
assume calorically perfect gases.

First, we provide a brief physical description of the flow
near the stagnation region. Figure 1 (a) shows a canonical
flow over a planar blunt body obtained from a numerical
simulation [29]. Most significant heat transfer into the ve-
hicle surface appears at the leading edge, where the free-
stream hypersonic flow undergoes a rapid deceleration before
stagnation. To obtain the steady flow in this region, consider
the zoomed-in view in figure 1 (b). The high-speed flow
prior to stagnation is characterized by large value of Mach
number M := U∞/c∞, where U∞ is the free-stream velocity
and c∞ is the free-stream speed of sound. This corresponds
to the M � 1 flow in region-1. After the shock wave, the
flow in region-2 is considerably slower, i.e. M � 1, and
the flow turns begins to turn as we move closer to the wall
(see the streamtraces which are locally aligned with the flow
velocity). However, very close to the wall, the viscous effects
become important, and a stagnation boundary layer starts
to develop as shown in figure 1 (c). Next, we describe our
methodology for obtaining the flow after the shock.

1) Inviscid flow in region-2: The flow conditions in
region-1 are specified in terms of the state q1 = (ρ1, u1, T1),
which denotes the density, the x−component of velocity, and
the temperature, respectively. Furthermore, q1 is assumed
to be independent of the spatial coordinates in this region.
Across the shock, near the stagnation point, the state of the
gas is given by q2 = (ρ2, u2w, T2), where u2w denotes the
velocity along the surface, i.e., along the direction xw (see
figure 1(b) for reference). Abusing notation, we will drop the
subscript w from u2w. To obtain q2 we utilize conservation
of mass, momentum and energy across a normal shock wave,

ρ2 = ρ1
(γ + 1)M2

2 + (γ − 1)M2
,

u2 =
2∆xw
R

√
(γM2 + 1)ρ1RT1

(γ + 1)ρ2
,

T2 = T1

(
2γ

γ + 1
M2 − γ − 1

γ + 1

)(
2

(γ + 1)M2
+
γ − 1

γ + 1

)
,

(1)

where R denotes the nose-tip radius of the blunt body (see
figure 1), γ = 1.4, R denotes the gas constant, and ∆xw is
the distance along the surface with the stagnation point as the

origin. Note that the flow close to the stagnation location, i.e.
when ∆xw � 1, is considerably slower than the free-stream
flow in the region-1. The radiusR is the key parameter which
determines how quickly the flow accelerates in the region-
2: larger bluntness leads to smaller velocity gradients. After
determining q2 from equation (1), we can obtain the viscous
flow close to the wall as described below.

2) Boundary layer flow in region-3: The state in region-3
close to the wall is given by q3 = (ρ3, u3, T3), where u3
denotes the velocity along the surface, i.e., along the direc-
tion xw. Unlike regions-1 and 2, determining q3, in general,
requires solving boundary layer equations which are a set of
coupled parabolic partial differential equations (PDEs) [1].
However, close to the stagnation region, these PDEs can
be simplified using the Lees-Dorodnitsyn transformations by
changing the coordinates (xw, yw) to (ξ, η) through,

ξ(xw) :=

∫ xw

0

ρ2u2µ2 dx,

η(xw, yw) :=
u2√
2ξ

∫ yw

0

ρdy.

(2)

As shown in figure 1 (c), the stagnation boundary layer
develops slowly in the xw direction. The introduction of
transformations in equation (2), allows us to look for simi-
larity solutions [1],

f ′ = f ′(η) =
u3
u2
, g = g(η) =

T3
T2
. (3)

In other words, even though q3 varies along the coordinates
(xw, yw), it is only a function of η in the transformed
coordinates. As a result, the non-dimensional stagnation
boundary layer equations can be expressed as coupled or-
dinary differential equations (ODEs),

(Cf ′′)
′
+ ff ′′ = (f ′)

2 − g,(
C

Pr
g′
)′

+ fg′ = 0,
(4)

where, Pr denotes the Prandtl number of the gas. In general,
the variable C also depends on the properties of the gas and
the pressure variation along the blunt body. However, for the
present work, we assume that the gas of interest is air with
constant Pr ≈ 0.72. Furthermore, the pressure across the
stagnation point can be well approximated as constant which
allows us to express C = g−0.28 and ρ3 = ρ2T2/T3. The
ODEs in the equation (4) are accompanied by the following
boundary conditions,

at η = 0 (wall), f = f ′ = 0; g = gw,

at η →∞ (region-2), f ′ = 1; g = 1,
(5)

where gw := Tw/T2 is the ratio of wall temperature to the
temperature in the region-2. Physically, the values of the
boundary condition gw ∈ (0, 1]. For example, gw = 1 implies
a surface which is in thermal equilibrium with the stagnated
flow, while gw < 1 signifies a surface which is cooler than
the surrounding fluid. Equation (5) illustrates that the value
of gw together with the nose-tip radius R serve as the two
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Fig. 1. (a) The spatial variation of the heat flux into a typical blunt body at hypersonic conditions; (b) zoomed in view near the nose tip; (c) stagnation
boundary layer in region-3.

parameters in the blunt-body flow.
Past experiments on blunt bodies often observe a rapid

transition of laminar boundary layer to a turbulent one. The
experimental observations indicate that the transition process
moves closer to the stagnation region as theR decreases or if
the wall temperature gw is reduced [4], [7]. This observation
is in contrast with the classical linear hydrodynamic theory
which does not identify any exponentially growing modes.
However, the classical approach does not account for the
role of uncertainties encountered in flight or in ground
experiments at hypersonic conditions. In the rest of this work,
we will examine the response of the stagnation point flow to
external excitations.

III. EXTERNALLY FORCED LINEARIZED COMPRESSIBLE
EQUATIONS: INPUT-OUTPUT FRAMEWORK

In this section, we examine the linearized dynamics of
fluctuations associated with the blunt-body flow in the pres-
ence of external disturbances. A large amplification of the
flow fluctuations can lead to a rapid transition of the mean
flow from a laminar to turbulent state.

The mean flow in the present case is assumed to be the
flow in the regions-2 and 3. As illustrated in the previous
section, this base state only depends on η (the boundary
layer coordinate). Transforming back to the (xw, yw, z)
coordinates, the quantities ρ, U, T are constant in the z−
coordinate but they vary slowly with the surface aligned
xw−direction [1]. In this work we assume that this variation
along xw is negligible, allowing us to simplify our analysis
through Fourier transform. The linearized equations are

∂u

∂t
+ ikxUu = −vU ′ + 1

ρ̄Rel
ζx,

∂v

∂t
+ ikxUv =

1

ρ̄Rel
ζy,

∂w

∂t
+ ikxUw =

1

ρ̄Rel
ζz,

∂θ

∂t
+ ikxUθ = −vT ′ − (γ − 1)T (∇ · u)

+
γ

ρPrRel
Θ,

(6)

where

ζx = ikx(λ∇ · u + 2ikxµu+ 2µ′T ′U ′θ)

+ (µ′ (u′ + ikxv) + (µ′T ′U ′)′θ)+

+ (µ (u′′ + ikxv
′) + µ′T ′U ′θ′)+

− kzµ (kzu+ kxw) + ikz
dµ

dT
U ′1θ

ζy = ikz(µ (ikxv + u′) + µ′T ′U ′1θ)

+ (λ′∇ · u + 2µ′v′) + (λ(∇ · u)′ + 2µv′′)

+ ikz(µ (ikzv + w′))

ζz = −µ
(
k2xw + kzkxu

)
+ ikxµ

′T ′U ′θ+

(µ (w′ + ikzv))′ + ikz(λ∇ · u + 2ikzµw)

Θ = 2κ′θ′ + κ′′θ − κ(k2x + k2z)θ + κθ′′,

µ

µ2
= (

T

T2
)0.72, λ = −2

3
µ,

∇ · u = ikxu+ v′ + ikzw, (·)′ :=
d(·)
dyw

.

(7)

Here, u, v, and w are the fluctuation velocity components
along the xw, yw, and z directions, respectively. θ is the
perturbation temperature. In symbolic form equations (6) can
be rewritten as,

∂

∂t
q = Aq, (8)

which describes the dynamics of the perturbation field q :=
(u, v, w, θ)T at given values of the pair (kx, kz) denoting
the streamwise and spanwise wavenumbers, respectively. In
addition to (kx, kz), the system in equation (12) is also
parametrized by the Reynolds number Rel which is defined
in terms of the flow quantities in the region-2,

Rel =
ρ2U2l

µ2
, (9)

where the length scale l :=
√
xwµ2/(ρ2U2) at xw stream-

wise distance from the nose-tip. This definition of Reynolds
number can be related to Reynolds number based on the
radius R. At a fixed angle ϕ (see the sketch in figure 1(b)
for illustration), we can utilize equations (1) and (9) to obtain
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the following relationship,

Re2l = ϕRen, (10)

where,

Ren =
ρ2U2Rn

µ2
. (11)

In this paper, we are interested in quantifying the am-
plification of exogenous disturbances. To accomplish this
objective, we augment the evolution model (8) with external
excitation sources

∂

∂t
q = Aq + Bd

φ = Cq
(12)

where, d := (dx, dy, dz, dt)
T is a spatially distributed

and temporally varying disturbance source (input). For the
present study, we assume that B = C = I , i.e. the distur-
bances are allowed to influence the state equation directly
and all the state variables are of interest. To characterize the
evolution of flow fluctuations described by equation (12),
we utilize a finite dimensional approximation by using
Chebyshev polynomials [30]. After discretization using, say,
N collocation points [30] in the wall-normal direction at a
given value of (kx, kz), equation (12) can be simplified and
rewritten as,

d

dt
ψ̄ = Āψ̄ + f̄ , (13)

where Ā ∈ CN×N , ψ̄ ∈ CN×1, and f̄ ∈ CN×1 denotes
the discretized linear operator A, state q, and the forcing d,
respectively.

A. Energy norm for stagnation-point hypersonic flow

We utilize Chu’s [31] compressible energy norm to quan-
tify the amplification of flow fluctuations in the presence
of external disturbances. The resulting compressible energy
density for an ideal gas can be defined as,

‖q‖2E =

∫ ∞
0

ρ2
2

(u2 + v2 + w2) +
p2

2(γ − 1)T 2
2

θ2 dyw,

(14)

where, p2 denotes the pressure in the region-2 after the shock.
Near the stagnation point, p2 can be well approximated as
the stagnation pressure using the following expression,

p2 =
2γ

γ + 1
M2p1, (15)

here, p1 is the pressure in region-1 before the shock and we
have utilized the assumption M � 1 in region-1. In the non-
dimension variables p1 = 1/(γM2), leading to the following
expression for energy density in the stagnation region,

‖q‖2E =

∫ ∞
0

ρ2
2

(u2 + v2 + w2) +
1

(γ2 − 1)T 2
2

θ2 dyw.

(16)

For numerical computations, we choose a finite but large
enough length L in the wall-normal direction. With this

approximation, the energy norm in equation (16) can be
expressed as an inner product,

E = 〈ψ,ψ〉e =
1

2

∫ L

0

ψ∗Qψdy =: 〈ψ,Qψ〉, (17)

where 〈·, ·〉 denotes the standard L2 inner product and
Q := diag(ρ, ρ, ρ, 2/((γ2 − 1)T 2

2 )) is the energy weighting
matrix. After wall-normal discretization, the energy norm is
determined by E = ψ̄∗IW

1/2Q̄IW
1/2ψ̄ = ψ̄∗Qψ̄, where

Q̄ is the finite-dimensional representation of the operator Q
and the IW is the diagonal matrix of integration weights.

Since the matrix Q is positive-definite, the state of the
linearized equation (13) can be transformed into a set of co-
ordinates in which the energy is determined by the standard
Euclidean norm, i.e., E = ψ∗ψ with ψ := Q1/2ψ̄. With
this change of coordinates, and defining A := Q1/2ĀQ−1/2

and f := IW
1/2f̄ , we can rewrite the linearized dynamics in

equation (13) as,

d

dt
ψ = Aψ + f , (18)

B. Response to stochastic excitations
Our numerical computations indicate that the linearized

dynamical generator A in equation (18) is stable across the
range of radii R and wall temperatures gw. This observation
is consistent with previous studies on hypersonic blunt body
flows, which demonstrate that the favorable pressure gradient
near the stagnation region stabilizes the classical hydrody-
namic instabilities observed in compressible boundary layer
flows [8], [13].

In order to model the stochastic sources of uncertainties
such as free-stream turbulence encountered in hypersonic
wind-tunnels, the external disturbance f in equation (18)
is assumed to be zero-mean and white-in-time stochastic
forcing with covariance Ω = Ω∗ = I , i.e.,

E (f (t1) f∗ (t2)) = I4N×4Nδ (t1 − t2) . (19)

Here, E(·) denotes the expectation operator and ∗ denotes
the complex-conjugate-transpose. In the statistical steady
state, the covariance matrix at a given wavenumber pair
k := (kx, kz),

X(k) = lim
t→∞

E (ψ(k, t)ψ∗(k, t)) , (20)

is determined by the solution to the Lyapunov equation,

A(k)X(k) +X(k)A∗(k) = −I. (21)

The energy amplification of the stochastically-forced flow
can be computed using the solution to equation (21) as:

E(k) = trace(X(k)). (22)

The above expression for the energy E(k) also represents
the H2-norms of the system (12) at a given (kx, kz).

IV. ENERGY AMPLIFICATION IN A HYPERSONIC BLUNT
BODY FLOW

In what follows, we will utilize the analysis presented in
the previous section to quantify energy amplification in the
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TABLE I
FREE-STREAM CONDITIONS FOR BLUNT BODY FLOW

M∞ T∞ U∞ ρ∞
10 227 K 3000 m/s 0.01 Kg/m3

presence of external stochastic forcing in a hypersonic blunt
body flow.

The dimensional free-stream conditions in the region-1
chosen for the present work are presented in table I. These
conditions are typical in flight and we utilize the expressions
presented in section II-.1 to obtain the flow in the region-2.
Furthermore, we assume a fixed angular location of ϕ = 5◦

from the stagnation point for all the results presented in this
section. The linearized dynamics in the equation (18) are
numerically approximated over a domain of height L = 75
using 600 Chebyshev collocation points for the state vector
ψ (i.e., 150 points for each of the fluctuation quantity). By
increasing the number of points it is confirmed that this
resolution is high enough. Furthermore, we find that the
energy of the steady of state response is insensitive to any
further increase in the domain height L.

Fig. 2. Plots of log10(E(k)) in the stagnation point boundary layer subject
to white-in-time stochastic excitations at (a) cold wall gw = 0.15 and (b)
hot wall gw = 0.9. The Reynolds number based on blunt-body curvature
Ren = 1.33× 103.

Figure 2 shows the energy E associated with the statistical
steady state response as a function of the wavenumbers
(kx, kz) for a flow with a nose-tip Reynolds number Ren =
1.33×103 (i.e., a dimensional Rn = 1 cm). As shown in the
figure, below a certain spanwise and streamwise wavelength,
there is a strong attenuation of the energy associated with the
flow response. Even though this behavior is independent of
the wall temperature, there are some important differences.
In particular, in the flow with a colder wall (see figure 2
(a) with gw = 0.15), the fluctuations undergo a much larger
amplification than that observed in hotter wall as shown in
figure 2 (b) with gw = 0.9.

In addition to the wall-temperature, the radius Rn acts as
an additional parameter which determines the base flow in a
blunt body flow. Figure 3 shows the mean flow temperature
and velocity profile at a fixed angular location for a range of
Reynolds numbers Ren at a fixed wall temperature gw = 0.2.
As the nose-tip becomes more blunt, i.e. as Ren increases,
we observe that the region of high velocity and thermal
gradients moves away from the wall. The considerable differ-
ences in the mean profile introduced by changing the radius

Fig. 3. The wall-normal profile of (a) temperature and (b) velocity for
various nose-tip Reynolds number Ren.

indicate that in addition to wall-temperature, this parameter
could play a crucial role in determining amplification of
external disturbances.

Figure 4 plots variation of the maximum energy Emax

associated with the flow fluctuations that undergo the largest
amplification (over kx, kz values) for a range of curvature-
based Reynolds number Ren and wall temperature gw.
Figure 4 (a) shows that there is a considerable change in the
overall growth of flow fluctuations as we vary Ren and gw.
In particular, we note that as the wall-temperature increases,
there is a significant decline in the fluctuation energy E.
On the hand, an increase in the Ren causes an increase in
E regardless of the parameter gw. These conclusions are in
good agreement with flow experiments over blunt bodies in
wind tunnels, where an increase in bluntness or a decrease in
wall temperature causes the transition to turbulence to appear
closer to the nose-tip [3], [4], [6], [7].

To make these observations quantitative figure 4 (b) plots
Emax as a function of Ren. As shown in the figure, over
a cold wall, the energy of the fluctuations grows slightly
faster than a quadratic function of Ren (it goes as O(Re2.4n )).
On the other hand, at hot-wall conditions, the E exhibits a
much smaller growth. At these conditions, we observe two
distinct trends: at lower Ren, the increase in energy is sub-
linear, however, as the Reynolds number increases, it starts
to approach a quadratic function of Ren.

V. CONCLUDING REMARKS

The main objective of the present study has been to
analyze the steady state response of hypersonic blunt body
flows in the presence of background noise using an input-
output approach. The starting point of our analysis is a
model for the laminar flow near the stagnation point of the
blunt body where the high-speed free-stream flow undergoes
a rapid deceleration. By utilizing linearized compressible
boundary layer equations, we have demonstrated that the
background noise can undergo significant amplification over
a range of streamwise and spanwise length scales. Fur-
thermore, we have investigated dependence of the steady
state response on important physical parameters which are
often used to control the behavior of the laminar blunt body
flows. Our analysis indicates that in the presence of external
stochastic disturbances, a decrease in the wall temperature
and an increase in bluntness can significantly deteriorate the
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Fig. 4. Plots of maximum energy log10(Emax.) as a function of wall temperature and nose-tip Reynolds number.

robustness of the laminar flow. The point of view adopted
in the present work quantifies the influence of uncertainties
within an input-output framework and the observations from
our analysis are found to agree well with the experimental
trends. The present work provides the first steps towards
developing control oriented models for flow transition in
hypersonic flows. We expect that our work will motivate
additional studies for predictive modeling and control of
transition to turbulence in high speed flows.
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in hypersonic double-wedge flow,” J. Fluid Mech., vol. 948, October
2022.

[29] G. V. Candler, H. B. Johnson, I. Nompelis, V. M. Gidzak, P. K.
Subbareddy, and M. Barnhardt, “Development of the US3D code for
advanced compressible and reacting flow simulations,” in 53rd AIAA
Aerospace Sciences Meeting, 2015, aIAA 2015-1893.

[30] J. P. Boyd, Chebyshev and Fourier spectral methods. Courier
Corporation, 2001.

[31] B.-T. Chu, “On the energy transfer to small disturbances in fluid flow
(part i),” Acta Mech., vol. 1, no. 3, pp. 215–234, 1965.

1601

Authorized licensed use limited to: University of Southern California. Downloaded on December 22,2023 at 11:29:32 UTC from IEEE Xplore.  Restrictions apply. 


