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We utilize stochastically-forced compressible linearized Navier-Stokes equations to study
the dynamics of hypersonic flows over blunt bodies. Our analysis of the energy of the flow
fluctuations around the laminar stagnated flow reveals strong amplification in the presence of
background noise. We also provide insights into how changes in different physical parameters,
such as the temperature of the blunt body and its curvature, influence the amplification of flow
fluctuations. We show that increasing the bluntness and decreasing the wall temperature can
significantly enhance the fluctuation amplification. In addition, we also evaluate the global
response in the presence of localized sources of stochastic excitations such as those associated
with surface roughness. Our approach reveals substantial amplification of flow fluctuations
along the convexly curved surface of the blunt leading edges and suggests that amplification
of these stochastic excitation sources (e.g., free-stream turbulence and surface roughness) that
are unavoidable in experiments might play a crucial role in transition observed over such
geometries.

I. Introduction
Vehicle surface heating at hypersonic flow conditions is a major concern: an unmanaged thermal loading on vehicle

surface can lead to structural failure. Throughout the flight geometry, the largest amount of heating typically appears at
the nose-tip of the flight vehicle, where the high-speed flow undergoes a rapid deceleration [1]. A common approach to
reduce this heat flux is to increase the bluntness by decreasing the curvature of the nose-tip [2]. However, experiments
in wind-tunnels indicate that such an arbitrary increase in the bluntness can cause an early transition of the downstream
boundary layer from a laminar to a turbulent state [3, 4]. The onset of turbulence introduces an additional source of
significant aerodynamic heating [5] and the role of nose-tip bluntness in initiating this transition process is required.

The early onset of flow transition in the blunt body flows at hypersonic conditions has been a subject of numerous
experimental [6, 7] and numerical investigations [8, 9]. The classical approach to understanding transition onset involves
carrying out a spectral (i.e. normal mode) analysis of the linearized compressible flow equations. In this framework,
if given flow conditions lead to unstable normal modes then the linearized dynamical generator associated with the
laminar flow is also unstable. However, previous applications of the hydrodynamic stability analysis [10] indicate that
the an increase in nose bluntness causes a decrease in the growth of these unstable modes in the boundary layer [11, 12],
eventually leading to stabilization of these modes. Interestingly, this observation is in contrast with the experimental
observations that indicate an earlier onset of flow transition with an increase in bluntness [4, 7, 13]. Recently, it has
been recognized that even in stable laminar flows, transient (finite-time) growth can play significant role [14, 15]
in the transition process. This approach has been utilized to identify the ‘worst case’ initial state in the blunt body
flows [16–18] that can lead to the largest energy growth of flow fluctuations. However, these initial states may not be
realizable in experiments. Furthermore, this analysis does not account for uncertainty encountered in realistic setups. In
this context, an input-output approach that can account for the influence of external disturbances provides a valuable
framework for analyzing the influence of the unmodeled dynamics.

A major source of uncertainty in the experiments over blunt bodies appears in the form of distributed roughness
at the nose tip [4, 19]. Experimental observations indicate that the onset of transition on blunt cones are extremely
sensitive to the surface finish near the stagnation region [4]. In the present work, utilize an input-output framework that
models the dynamical influence of surface roughness as small amplitude white-in-time external disturbances. These
disturbances are considered as inputs, while the fluctuation velocities and temperature are considered as outputs. In
particular, we consider the experiments carried out by Borovoy et al. [13] over blunted flat plates in a Mach 5 free stream.

Input-output (I/O) analysis that evaluates the response (outputs) of the linearized Navier-Stokes (NS) equations to
external perturbation sources (inputs) was successfully employed to quantify the amplification and study transition
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mechanisms in low speed channels [20–22], boundary layers [23–26], jets [27] and hypersonic shock-boundary-layer-
interactions [28–31]. However, quantifying the role of stochastic disturbance sources in high-speed flows is still an
open challenge due to the large computational costs associated with the obtaining the fluctuations associated with the
various realization of the disturbances in a spatially evolving flow field. In this paper, we utilize the I/O analysis to
demonstrate that the hypersonic flow over blunt flat plates strongly amplify external stochastic excitations with a specific
spanwise length scale. Our approach indicates that in the presence of background noise close to the surface, increasing
the leading edge bluntness causes a substantial increase in the fluctuation amplification near the stagnation region which
is found to agree well with experimentally observed trends.

Our presentation is organized as follows. In § II, we present the linearized model and provide a brief summary of
the I/O formulation in the presence of stochastic disturbances. In § III, we evaluate the energy amplification in a locally
parallel stagnation boundary layer flow in the presence of background noise. We also quantify the role of physical
parameters such as nose-bluntness and wall temperature on the robustness of the laminar hypersonic flow. § IV we
evaluate the global response of 2D laminar hypersonic base flow over flat plate with cylindrical leading edges in the
presence of stochastic disturbances that are present close to the wall. We demonstrate the dependence of the fluctuation
energy on the radius of curvature of leading edge. We conclude our presentation in § V.

II. Linearized model for compressible flows
The compressible NS equations for perfect gas in conservative form are given by

∂U
∂t
+

∂Fj

∂xj
= 0, (1)

where Fj(U) is the flux vector and U =
(
ρ, ρu, E

)
is the vector of conserved variables representing mass, momentum,

and total energy per unit volume of the gas [32]. We decompose the state vector U(x, t) into a steady base component
U(x) and a time-varying perturbation component U′(x, t), U(x, t) = U(x)+U′(x, t). The evolution of small perturbations
is then governed by the linearized flow equations,

∂

∂t
U′(x, t) = A(U)U′(x, t), (2)

where A(U) represents the compressible NS operator resulting from linearization of (1) around the base flow U.
We assume that (ρu)′ satisfies homogeneous Dirichlet boundary conditions while ρ′ and E ′ satisfy homogeneous
Neumann boundary conditions at the wall. Along the rest of the boundaries, all the perturbations are assumed to satisfy
homogeneous Dirichlet boundary conditions. A second order central finite volume discretization (as described in [33])
is used to obtain the finite dimensional approximation of Eq. (2),

d
dt

q̄ = Āq̄, (3)

which describes the dynamics of the spatially discretized perturbation vector q̄ ∈ C5N×1, where N denotes the number
of finite volume cells used to discretize the flow domain.

In this paper, we are interested in quantifying the amplification of exogenous disturbances in boundary layer
flows [21, 34]. To accomplish this objective, we augment the evolution model (3) with external excitation sources

d
dt

q̄ = Āq̄ + B̄f̄,

φ̄ = C̄q̄,
(4)

where f̄ is a spatially distributed and temporally varying disturbance source (input) and φ̄ = (ρ′, u′,T ′) is the quantity of
interest (output), where T ′ denotes temperature perturbations. In Eq. (4) the matrix B̄ ∈ C5N×d specifies how the input
enters into the state equation, while the matrix C̄ ∈ Cr×5N extracts the output from the state q̄. The definition of the
input and the output matrices is provided in the appendix.

Figure 1 (a) shows a typical high speed flow over a blunt flat plate obtained from numerical simulations [32]. Since
the flow on this geometry is invariant in the spanwise z direction, we can simplify our analysis by taking Fourier
transform in the spanwise direction. This enables a normal-mode representation of the forcing f̄ and the state q̄,

f̄(x, y, z, t) = f̂(x, y, t) eikz z, q̄(x, y, z, t) = q̂(x, y, t) eikz z . (5)
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Fig. 1 Schematic of a high speed flow over a blunt flat plate: (a) spanwise homogeneous base flow heat flux into
the vehicle surface; (b) zoomed in view of the various flow regions around the stagnation point.

As a result, the state space representation given in equation (4) can be parameterized over the spanwise wave number kz .
We will utilize this parameterization throughout the rest of this paper.

A. Change of coordinates

We utilize Chu’s [35] compressible energy norm to quantify the amplification of flow fluctuations in the presence of
external disturbances. The resulting compressible energy density for an ideal gas can be defined as,

‖q‖2E =
∫
Ω

1
2
ρ̄(u′2 + v′2 + w′2) +

p̄
2

(
ρ′

ρ̄

)2
+

Ēint
2

(
T ′

T̄

)2
dΩ, (6)

where, Ω denotes the flow domain of interest, p̄ denotes the base flow pressure, and Ēint denotes the base flow internal
energy. The energy norm in equation (6) can be expressed as an inner product,

E = 〈U′,U′〉e =
∫
Ω

U′∗QU′dΩ =: 〈U′,QU′〉, (7)

where 〈·, ·〉 denotes the standard L2 inner product and Q is the energy weighting matrix. After the finite volume
discretization, the energy norm is determined by E = q̄∗Qq̄, where Q is the finite-dimensional representation of the
operator Q.

Since the matrix Q is positive-definite, the state of the linearized equation (4) can be transformed into a set of
coordinates in which the energy is determined by the standard Euclidean norm, i.e., E = q∗q with q := Q1/2q̄. With
this change of coordinates the resulting discretized state space matrices Ā, B̄ and C̄ can be represented as,

A = Q1/2ĀQ−1/2, B = Q1/2B̄Iw
−1/2, C = Iw

1/2C̄Q−1/2, (8)

and the discretized input f̄ and the output φ̄ vectors are transformed to

f = Iw
1/2 f̄, φ = Iw

1/2φ̄. (9)

With this change of coordinates the state-space representation in equation (4) can be rewritten as,

d
dt

q = Aq + Bf,

φ = Cq,
(10)

B. Second-order statistics in response to stochastic excitations
We next characterize the structural dependence between the second-order statistics of the state and forcing term in

the linearized dynamics. We also describe how the energy amplification arising from persistent stochastic excitation and
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the energetically dominant flow structures can be computed from these flow statistics. All mathematical statements in
the remainder of this section are parameterized over homogeneous spanwise direction.

In boundary layer flows, the linearized flow system is globally stable. In order to model the stochastic sources of
uncertainties such as surface roughness or free-stream turbulence encountered in hypersonic wind-tunnels, the external
disturbance f in equation (10) are assumed to be zero-mean and white-in-time stochastic forcing with covariance W � 0,
i.e.,

E (f (t1) f∗ (t2)) = Wδ (t1 − t2) , (11)

where δ is the Dirac delta function, E(·) denotes the expectation operator, and ∗ denotes the complex-conjugate-
transpose. In the statistical steady state, the output covariance matrix at a given spanwise wavenumber kz is given
by Φ = limt→∞ E (φ(kz, t)φ∗(kz, t)) associated with the output vector φ, and it is related to the state covariance
X(kz) = limt→∞ E (q(kz, t)q∗(kz, t)) via

Φ = CXC∗. (12)

The steady state covariance X of the state q is determined by the solution to the Lyapunov equation,

AX + XA∗ = −BWB∗. (13)

The Lyapunov equation (13) relates the statistics of white-in-time forcing, represented by W, to the infinite-horizon state
covariance X via system matrices A and B. It can also be used to compute the energy spectrum associated with the
output fluctuations φ,

E = trace(Φ) = trace (CXC∗) . (14)

We note that the steady-state output covariance matrix Φ can be alternatively obtained from the spectral density
matrix of output fluctuations Sφ as [36],

Sφ(ω) := Tφf(ω)WT∗φf(ω) (15)

where the frequency response matrix

Tφf(ω) = C (iωI − A)−1 B, (16)

is obtained by applying the temporal Fourier transform on system (10). We note that the solution X to the algebraic
Lyapunov equation (13) allows us to avoid integration over temporal frequencies and compute the energy spectrum E
using (14).

III. Local analysis of stochastically forced stagnation point flow
To analyze the response of hypersonic blunt body flows to small external disturbances, we first quantify the linear

amplification near the stagnation region. The objective of this section is to characterize the role of important physical
parameters such as wall temperature and the radius of curvature on this amplification. For the rest of this section, we
will utilize the local boundary layer profile close to the stagnation location and assume that this flow profile is invariant
in the streamwise direction.

A. Stagnation boundary layer flow
The stagnation boundary layer profile is obtained by utilizing the local similaritymethod. The Levy-Lees-Dorodnitsyn

transformations is applied, i.e.,

ξ :=
∫ xw

0
ρ2u2µ2 dx,

η :=
u2√
2ξ

∫ yw

0
ρ dy,

(17)
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Table 1 Free-stream conditions for local analysis

M∞ T∞ U∞ ρ∞

10 227 K 3000 m/s 0.01 Kg/m3

where the coordinate xw is measured from the stagnation location along the surface and the coordinate yw is measured
orthogonal to the body surface. The introduction of transformations in equation (17), allows us to look for similarity
solutions [1],

f ′ = f ′(η) =
u
ue
, g = g(η) =

T
Te
, (18)

where, ue and Te denote the velocity and the temperature at the edge of the boundary layer. In the present case, we
utilize the pressure distribution from modified Newtonian theory and assumption of isentropic flow along the surface to
obtain these flow parameters along the edge of the boundary layer. Note that, even though the base flow varies along
the coordinates (xw, yw), it is only a function of η in the transformed coordinates. As a result, the non-dimensional
stagnation boundary layer equations can be expressed as coupled ordinary differential equations (ODEs),

(C f ′′)′ + f f ′′ = ( f ′)2 − g,(
C
Pr

g′
) ′
+ f g′ = 0,

(19)

where, Pr denotes the Prandtl number of the gas. In general, the variable C also depends on the properties of the gas and
the pressure variation along the blunt body. However, for the present work, we assume that the gas of interest is air with
constant Pr ≈ 0.72. Furthermore, the pressure across the stagnation point can be well approximated as constant which
allows us to express C = g−0.28 and ρ = ρeTe/T . The ODEs in the equation (19) are accompanied by the following
boundary conditions,

at η = 0 (wall), f = f ′ = 0; g = gw,

at η→∞ (region-2), f ′ = 1; g = 1,
(20)

where gw := Tw/Te is the ratio of wall temperature to the temperature in the region-2. Physically, the values of the
boundary condition gw ∈ (0, 1]. For example, gw = 1 implies a surface which is in thermal equilibrium with the
stagnated flow, while gw < 1 signifies a surface which is cooler than the surrounding fluid. Equation (20) illustrates that
the value of gw together with the leading edge radius R serve as the two parameters in the blunt-body flow.

B. Energy amplification in a stagnation boundary layer flow
In what follows, we utilize the analysis presented in the section II to quantify energy amplification in the presence of

external stochastic forcing in a hypersonic blunt body flow. For carrying out the local analysis, we assume that the
base flow profile is invariant in both the spanwise z and the streamwise x direction. As a result, we can utilize Fourier
transform in both these directions and the state-space representation as described in equation (10) can be parameterized
in terms of the spanwise wavenumber kz and streamwise wavenumbers kx . The velocity and the temperature are
non-dimensionalized using the edge velocity Ue and edge temperature Te, respectively. All the length scales are
non-dimensionalized using the boundary layer scale l :=

√
xwµe/(ρeUe), where xw denotes the distance from the

stagnation point along the surface.
In this section, we will assume that the external disturbances are associated with the sources of streamwise, wall-

normal and spanwise momentum, i.e. d(x, t) := (d̂x(y, t), d̂y(y, t), d̂z(y, t))ei(kx x+kz z). Furthermore, these disturbances
are assumed to have unit covariance in space and input matrix B in equation (10) is chosen such that these disturbances
are introduced uniformly throughout the wall normal direction. To make the discussions in this section concrete we
choose the dimensional free-stream conditions as shown in table 1. Furthermore, we assume a fixed angular location of
ϕ = 5◦ from the stagnation point (the angle of attack is fixed at 0◦) for all the results presented in this section. For
carrying out the local analysis we utilize a Chebyshev polynomial based discretization. The linearized dynamics are
approximated numerically using 150 Chebyshev collocation points over a wall normal extent L = 75. By increasing the
number of points it is confirmed that this resolution is high enough. We also find that the energy of the steady of state
response is insensitive to any further increase in the wall normal height L.
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Fig. 2 Plots of log10(E(k)) in the stagnation point boundary layer subject to white-in-time stochastic excitations
at (a) cold wall gw = 0.15 and (b) hot wall gw = 0.9. The Reynolds number based on blunt-body curvature
Ren = 1.33 × 103.

Figure 2 shows the energy E associated with the statistical steady state response as a function of the wavenumbers
(kx, kz) for a flow with a bluntness Reynolds number Ren = 1.33 × 103. Here, bluntness Reynolds number is defined in
terms of leading edge radius of curvature Ren = ρeUeR/µe. As shown in the figure, below a certain spanwise and
streamwise wavelength, there is a strong attenuation of the energy associated with the flow response. Even though this
behavior is independent of the wall temperature, there are some important differences. In particular, in the flow with a
colder wall (see figure 2 (a) with gw = 0.15), the fluctuations undergo a much larger amplification than that observed in
hotter wall as shown in figure 2 (b) with gw = 0.9.

Figure 3 plots variation of the maximum energy Emax associated with the flow fluctuations that undergo the largest
amplification (over kx, kz values) for a range of bluntness Reynolds number Ren and wall temperature gw . Figure 3
(a) shows that there is a considerable change in the overall growth of flow fluctuations as we vary Ren and gw . In
particular, we note that as the wall-temperature increases, there is a significant decline in the fluctuation energy E . On
the hand, an increase in the Ren causes an increase in E regardless of the parameter gw . These conclusions are in good
agreement with flow experiments over blunt bodies in wind tunnels, where an increase in bluntness or a decrease in wall
temperature causes the transition to turbulence to appear closer to the nose-tip [3, 4, 6, 7].

To make these observations quantitative figure 3 (b) plots Emax as a function of Ren. As shown in the figure, over a
cold wall, the energy of the fluctuations grows slightly faster than a quadratic function of Ren (it goes as O(Re2.4

n )).
On the other hand, at hot-wall conditions, the E exhibits a much smaller growth. At these conditions, we observe two
distinct trends: at lower Ren, the increase in energy is sub-linear, however, as the Reynolds number increases, it starts to
approach a quadratic function of Ren.

The main objective of this section has been to analyze the energy associated with the steady state response of
hypersonic blunt body boundary layer in the presence of background noise. For this we have utilized a boundary layer
profile close to the stagnation location. The local analysis which assumes spatial invariance in the streamwise and the
spanwise directions indicates that in the presence of external stochastic disturbances, a decrease in the wall temperature
and an increase in bluntness can significantly deteriorate the robustness of the laminar flow. Next, we analyze the role
of convex curvature of the leading edge bluntness on the noise amplification by carrying out a global analysis in the
presence of stochastic excitations near the leading edge.

IV. Global analysis of stochastically forced hypersonic flow over a blunt flat plate
The introduction of the bluntness in the leading edges has the positive effect of reducing the heat flux into the

surface. Furthermore, it is also well known that increasing the bluntness can have an additional stabilizing effect for
an intermediate range of leading edge/nose tip radius of curvature, delaying the laminar-turbulent transition further
downstream along the surface. However, experiments indicate that this trend of delaying transition can be reversed beyond
certain bluntness values, i.e. the transition front moves starts to move upstream leading to turbulence close to the leading
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Fig. 3 Plots of maximum energy log10(Emax.) as a function of wall temperature and leading edge bluntness
Reynolds number.

Table 2 Free-stream conditions for global analysis

M∞ T∞ Tw U∞ ρ∞

5 77.3 K 282K 881.2 m/s 0.338 Kg/m3

edge or the nose-tip. This reversal in the onset of transition has been reported in numerous experiments [4, 6, 7, 13].
Although this ‘transition-reversal’ has been attributed to the presence of surface roughness near the stagnation location
in experiments, quantifying the influence of such stochastic sources over such a rapidly spatially varying flow is still an
open challenge. Herein, we employ the I/O framework to study the amplification of infinitesimal spanwise periodic
stochastic excitation sources near the stagnation point in hypersonic blunt flat plate flow to investigate the transition
reversal over a range of leading edge bluntness.

Recently, Borovoy et al. [13] report multiple hypersonic blunt flat plate experiments over a range of free-stream
Reynolds number at Mach 5. Temperature sensitive paint measurements revealed that the transition reversal can be
observed for a variety of bluntness profiles of the leading edge. Our objective is to quantify the noise amplification over
cylindrical leading edges for which transition reversal is observed. In particular, we consider the experiments performed
in the UT-1M Ludwig tube with a test time of 40 ms. As illustrated in the figure 4 (a), the geometry consists of total
streamwise extent of L = 6 mm with a cylindrical profile of leading edge (the radius of the cylinder is denoted R). This
domain length is considerably shorter than the plate length in experiments. Our choice here is motivated by the desire to

Fig. 4 (a) x-velocity over a flat plate with a blunt leading edge (R = 1.2mm), (b) experimental data reproduced
from Borovoy et al. [13], and (c) the spatial location for introducing the stochastic excitations.
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investigate the dynamics close to the stagnation point and the flat plate leading edge junction. The experimental free
stream conditions are reported in the table 2. Figure 4 (a) also provides the two-dimensional numerically computed
flow field over a blunted flat plate with cylinder radius R = 1.2mm. As shown in the figure, the presence of the curved
leading edge introduces a strong normal shock and a considerable gradients close to the surface. As we move along the
surface, the flow expands and accelerates along the shoulder near the flat plate cylinder junction causing the formation of
a thin boundary layer profile while the free stream undergoes a substantial spatial variation in the streamwise direction.
Figure 4 (b) reproduces the plot from experiments of Borovoy et al. [13]. This figure plots the variation of the Reynolds
number at the onset of transition Rex,t against the Reynolds number based on the radius of curvature of the cylindrical
leading edge ReR . This curve clearly shows the transition reversal observed in experiments over blunt bodies. The
cylinder radii considered in the present work are also marked along this curve for reference.

A. Energy amplification in presence of stochastic sources near leading edge
We utilize the input-output analysis to investigate the amplification of infinitesimal upstream perturbations in the

hypersonic blunt flat plate flow. In particular, we obtain the second order statistics associated with the flow response in
the presence of the white-in-time excitation sources that are introduced near the leading edge. This choice of the forcing
location is motivated by the experimental studies where the surface roughness near the leading edge is found to be an
important factor in influencing the transition location downstream. In particular, we introduce stochastic excitations
in the three momentum equations over a finite streamwise extent of 1mm and a wall normal extent of 2µm through a
proper selection of the input matrix B (see figure 4 for illustration). This choice of forcing location is consistent across
the range of leading edge radii considered in the present work.

The linearized dynamics as presented in the equations (10) are numerically approximated using a second order
central finite volume based discretization. For the present flow configuration, we utilize 220 cells in the streamwise and
200 cells in the wall normal direction. The results presented in this section are found to be insensitive to further increase
in the spatial resolution. Furthermore, we assume numerical sponges in the regions close to the leading edge around the
stagnation point, towards the end of the flat plate and curved leading edge shock. In the present work, we are interested
in quantifying the energy amplification that appears in different spatial regions of this flow. In particular, we want to
quantify the amplification of flow fluctuations along the curved leading edge, and in the boundary layer on the flat plate
using the matrix C in the equations (12).

B. A streaming algorithm for obtaining ensemble energy of flow fluctuations
The second order statistics associated with the response of the flow fluctuation can be obtained by solving the

Lyapunov equations (13) and the resulting ensemble averaged energy associated with this response can be obtained by
utilizing equation (14). The classical approaches for solving the Lyapunov equations computationally scale as O(n6),
where n is the number of degrees of freedom associated with the state variable q. As a result, these approaches are
prohibitive for the current numerical resolution. To address this challenge, we utilize a streaming approach. Note that
the solution X to equation (13) can also be expressed as [36],

X =
∫ ∞

0
eAt B W B∗ eA∗t dt, (21)

where, ∗ denotes complex conjugate transpose. For the present work we assume that the disturbance covariance is
identity, i.e. W = I. Other non-diagonal covariances can be accounted in a straightforward manner. However, for the
ease of presentation, we will assume that W = I through out the rest of this work.

We can equivalently express equation (21) for the covariance matrix of the outputs as,

Φ =
∑
i

C
(∫ ∞

0
eAt bi (eAt bi)∗ dt

)
C∗, (22)

where, bi denotes the ith column of the input matrix B. Therefore, in order to compute the trace of the output covariance
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Fig. 5 Energy amplification over blunt leading edges over a range of radius of curvature R: (a) near the
stagnation region upstream of the flat plate, (b) in the boundary layer over the flat plate.

in equation (14), we utilize the following algorithm,
Data: A, C, B, bcols, maxiter, ε , timestep size ∆t
Result: Γ which approximates tr(Φ) in equation (14);
Γ ← 0;
i ← 1;
while i < bcols do

k ← 1;
while k < maxiter do

φi ← 0;
νi ← bi;
if ‖νi ‖ > ε then

νi ← f (A, νi,∆t), where f (·) is function that updates νi over ∆t;
γi ← γi + ∆t (Cνi)∗(Cνi);
k ← k + 1;

else
i ← i + 1 ;

end
end
Γ ← Γ + γi;

end
Algorithm 1: Streaming algorithm for ensemble energy of the output fluctuations

Here, bcols refer to the number of columns in the forcing matrix B. The above algorithm can be trivially parallelized.
In the present paper, we utilize explicit third-order Runge–Kutta scheme with a Courant–Friedrichs–Lewy number of
0.9.

C. Results
In this section, we quantify the energy of the flow fluctuations that emerge as a response to spatially localized

stochastic excitation sources that are introduced close to the leading edge of the blunt flat plate. Physically, these
disturbances can be thought of as modeling the influence of small randomly distributed roughness near the stagnation
point. Here, we make sure that these disturbances are restricted to roughly 1% of the stagnation boundary layer thickness
in the wall normal direction and ≈ 2 times the stagnation boundary layer thickness in the streamwise direction for all the
leading edge bluntness described in the previous sections.

The homogeneity of the base flow in the spanwise direction allows us to parameterize the dynamics in terms of
spanwise wavenumber kz . For each of the cylindrical leading edge (as marked in figure 4 (b)), we utilize the algorithm 1
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to compute the ensemble compressible energy (as defined in equation (6)) associated with the flow fluctuations. To
quantify the relative amplification that appears in the stagnation region versus what can be obtained in the boundary
layer, we utilize the two different output matrices C in equation (10). In the first case, we modify the output in a manner
that we only measure the energy of fluctuations in the region before the cylinder flat plate junction. In the second
case, we measure the energy over the flat plate while ignoring its growth in the convex region of the flow. Figure 5
(a) and (b) compares the amplification in these two regions. This comparison shows that across all the cylinder radii,
the amplification over the curved leading edge is substantially larger than that over the flat plate region. The small
amplification over the flat plate region, especially in the presence of relatively sharp leading edge can be attributed to
the small streamwise extent of the flat plate.

A closer inspection of the energy of the flow fluctuations over the leading edge in figure 5 (a) reveals that as the
leading edge radius increases, there is a substantial increase in the fluctuation amplification across a range of spanwise
wavenumbers kz . This observation is consistent with previous works [9, 16] where the largest possible transient spatial
amplification of fluctuation energy increases monotonically as one increases the radius of curvature of the blunt body.
Our computations demonstrate that this trend of increasing fluctuation growth is observed even in the presence of
close-wall-stochastic forcing. In contrast to the fluctuation energy in the vicinity of the leading edge, figure 5 (b)
reveals that over the flat plate the largest amplification is associated with the blunt flat plate geometry with the sharpest
leading edge. In fact, an increase in the leading edge radius causes the fluctuation energy to attenuate. This observation
is consistent with traditional normal mode analysis [10], where the increase in bluntness causes a stabilization of
the boundary layer. Our computations of the response to stochastic sources near the leading edge suggests that the
amplification that appears close to the stagnation region might play an important role in transition at higher values of the
bluntness, i.e. at higher values of R.

V. Concluding remarks
The main objective of the present study has been to analyze the steady state response of hypersonic blunt body

flows in the presence of background noise using an input-output approach. We carry out this analysis in two parts.
In the first part, we utilize a model for the laminar flow near the stagnation point while neglecting any streamwise
variation. By utilizing linearized compressible boundary layer equations, we have demonstrated that the background
noise can undergo significant amplification over a range of streamwise and spanwise length scales. Furthermore, we
have investigated dependence of the steady state response on important physical parameters which are often used to
control the behavior of the laminar blunt body flows. Our analysis indicates that in the presence of external stochastic
disturbances, a decrease in the wall temperature and an increase in bluntness can significantly deteriorate the robustness
of the laminar flow. In the second part of this paper, we utilize spatially evolving flow over flat plates with cylindrical
leading edges. In this case, our analysis demonstrates that spatially localized background noise close to the surface of
the leading edge can undergo substantial amplification over a range of spanwise length scales near the stagnation region.
The point of view adopted in the present work quantifies the influence of uncertainties within an input-output framework
and the observations from our analysis are found to agree well with the experimental trends. The present work provides
the first steps towards developing control oriented models for flow transition in hypersonic flows. We expect that our
work will motivate additional studies for predictive modeling and control of transition to turbulence in high speed flows.
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