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Direct numerical simulation (DNS) of oblique shock interacting with an incoming lam-
inar boundary layer on an adiabatic flat plate at Mach 5.92 is considered. Various shock
angles are considered to simulate interactions at various strengths. Above a critical shock
angle, the flow around the separation bubble becomes three dimensional and transition to
turbulence ensues. Previous studies5,11 point to the existence of three-dimensional streak
like structures just before transition occurs. In order to investigate the origin and the
linear amplification of steady streamwise structures after the reattachment, we use an ad-
joint looping algorithm suitable for investigating spatial optimal growth. We modify this
approach to account for the effect of curvature of streamlines due to the presence of the
separation bubble. We further comment on the role of the non-modal spatial growth in
transition due to such an interaction. With this analysis we observe that the boundary
layer downstream of reattachment can support significant growth. Furthermore, spanwise
wavenumber of the optimal perturbation at the reattachment location matches quite well
with the energetical spanwise scale observed in DNS for a range of shock angles.

I. Introduction

Flow configurations involving high speed flows over complicated geometries are important for many high
speed applications. In such configurations, Shock Boundary Layer Interactions (SBLI) are ubiquitous. A
sufficiently strong adverse pressure gradient from an oblique shock impinging on a boundary layer flow can
cause the flow to separate from the wall. The resulting laminar separation bubble can quickly become three
dimensional and may transition to turbulence near the reattachment point. This transitional interaction can
lead to significant aerothermal loads, potentially resulting in vehicle failure. A fundamental understanding
of the transition process under such conditions is extremely essential.

Many previous studies have focused on the origin of low frequency unsteadiness of fully turbulent
SBLI.4,6, 10 However, experimental and flight conditions can involve transitional interactions. In such sce-
narios, a broad range of flow phenomena may appear before the flow transitions depending on the state of
boundary layer at the shock impingement location. A transitional boundary layer interacting with a shock
may contain features of both fully turbulent and fully laminar interactions. Detailed experimental investi-
gation by Schülein15 considered a two dimensional shock wave impinging on a transitional boundary layer
developing on a flat plate in a Mach 6 Ludwieg-Tube facility. Recent work by Sandham et al.11 focuses on
characterizing the effect of intermittancy of the transitional boundary layer on shock interactions. Further,
they attribute the transition process in this scenario to develop from the second (Mack) mode instabilities
superimposed on streamwise streaks. It is interesting to note that these experimental and computational
studies have considered facilities with presence of significant free-stream acoustic disturbances.

Laminar interactions have been considered in numerous theoretical and computational studies as well.
These interactions typically lead to large separated zones compared to fully turbulent or transitional interac-
tions. The experimental studies by Hakkinen et al.35 along with the triple deck analysis by Stewartson and
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Williams38 have provided a detailed analysis of the laminar recirculation bubble. However, many aspects of
transition in those configurations remains to be investigated. In this context linear stability analysis of the
resulting flow field can provide some insight. For boundary layers with freestream Mach number above ∼ 3,
the transition process is dominated by the second Mack modes.27,32,39 In SBLI configurations, the presence
of a separation bubble leads to an additional source for disturbance amplification due to the separated shear
layer. Pagella et al.9 investigated the relevance of linear growth for small disturbances in flow over a ramp
at Mach 4.8. Further work by Yao et al.41 investigated the role of varying Mach number on the growth
rate of linear stability modes for SBLI. Benay et al.1 carried out numerical and experimental investigations
for transition on a hollow cylinder flare. For shock impingement on a fully laminar boundary layer, they
notice the presence of three dimensional organization of the flow field which was attributed to the presence of
Görtler instability. However, the authors do not implicate Görtler vortices in the transition process observed
downstream. It should be noted that all of these studies carried out a local linear stability analysis which
treated the separated and attached parts of the boundary layer as independent and all the non-parallel
effects were neglected. Recently, Robinet7 considered oblique SBLI at Mach 2.15 by evaluating the growth
rate of spanwise periodic two dimensional global instabilities. This allowed investigation of the global effect
of separated and attached parts of the flow field on growth of small fluctuations. In fact it was shown that
the three dimensonality of the resulting separation bubble in the DNS can be traced to the global linear
instability of the two dimensional laminar base flow. However, due the low Reynolds number of the boundary
layer no transition was observed even for very strong interactions. More recently, a study by Shrestha et al.5

considered the interaction of oblique shock impinging on a laminar boundary layer at Mach 5.92, without
free stream disturbances. For the higher Reynolds number considered in this study, the direct numerical
simulation (DNS), produces streamwise streaks prior to transition. Further, these structures were observed
to be almost steady. By comparing the results from DNS with the structure of the spanwise periodic two
dimensional global modes, these streaks were proposed to originate from global linear instabilities.

It is interesting to note the presence of spanwise periodic three dimensional flow structures in all these
laminar interactions before the flow transitions. In this context, numerical computations by Martinez &
Tutty33 investigated the growth and development of Görtler vortices in hypersonic compression ramps.
Both the forced and natural development of spanwise periodic and steady structures was observed in these
simulations. A large value of the Görtler number was cited as the reason for the development of these
spanwise structures. However, there was a significant discrepency between the heat flux from the numerical
computations and the experiments. Experiments by Bleibens & Olivier2 report the presence of spanwise
periodic structures near the reattachment location on a heated ramp model at Mach ∼ 7−8. Recently, Yang
et al.40 carried out experiments at Mach 5 on a double ramp configuration. Techniques using temperature
sensitive and pressure sensitive paint were used to characterize the location and properties of the three
dimensional patterns near reattachment location. However, it should be noted that in most of these studies
the comparison with theory on Görtler instability is only qualitative. A more detailed understanding of the
role of centrifugal instability needs to be investigated to obtain a clear picture of its potential role in the
emergence of three dimensionality and the process of transition.

Recent works by Reshotko37 and many others, have commented that transition due to linear instability
may only be one of the several routes for transition to turbulence. In this context, transient growth and
non-modal amplification of stochastic and deterministic disturbances can play a very important role.23,24

This is particularly important in situations where the growth has to occur within finite time and/or finite
distance in space. Transient growth in both compressible17,18 and incompressible16,30 boundary layers has
been extensively investigated by various researchers in the past. An adjoint based analysis by Cossu et
al.3 characterizes maximum spatial growth of Görtler vortices in an incompressible flow over concave walls.
This work clearly illustrates the importance of non-modal nature of the boundary layer equations even in
the presence of a centrifugal instability. A similar optimization based approach for investigating transient
growth in space has been successfully applied to laminar separation bubble in the incompressible regime.19

In the present work, we consider the interaction of oblique shock wave with an incoming laminar boundary
layer over an adiabatic flat plate at Mach 5.92. No external forcing in the free stream is assumed. DNS
with a range of shock wave angles are considered to investigate the effect of increasing interaction strength.
The three dimensional aspects of the flow field observed in these interactions are characterized. Further, in
order to investigate the role of centrifugal instabilities in the origin of three dimensionality, spatial growth in
the reattached portion of the two dimensional flow field is considered. An optimization procedure using the
adjoints is proposed to obtain possible growth of streamwise steady and spanwise periodic perturbations in
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the region after the reattachment location. The analysis allows us to investigate the role of algebraic growth
of Görtler like vortices. Comparison of the results from this simplified analysis with the DNS is made to
shed some light on their contribution to three dimensional flow field.

II. Numerical Setup and Flow Geometry

The focus of the current work is to understand the physical mechanism responsible for the generation
of streamwise steady and spanwise periodic structures. In order to investigate the origin through numerical
simulation we carry out a DNS of the oblique SBLI with a laminar boundary layer. The next few subsections
briefly discuss the flow geometry and numerical method used to simulate the interaction. For more details
reader is referred to our previous work.5

A. Numerical Scheme

We solve the compressible Navier-Stokes equations for a perfect gas in conservative form

∂U

∂t
+
∂Fj
∂xj

=
∂F v

j

∂xj
, (1)

where the vector of conserved variables U is

U =

 ρ

ρui

E

 (2)

and the convective Fj and viscous F v
j fluxes are expressed as

Fj =

 ρuj

ρuiuj + pδij

(E + p)uj

 , F v
j =

 0

σij

σijui − qij

 . (3a,b)

The fluid density ρ and temperature T are related to pressure p through the equation of state for an ideal gas
given by p = ρRT . In the above equations, ui is the ith component of velocity and E = ρcvT +ρuiui/2 is the
total energy. The viscous flux tensor σij is defined as σij = 2µSij − 2µSkkδij/3, where Sij is the symmetric
part of the velocity gradient tensor. We use Fourier’s law to calculate the heat flux vector qj . Molecular
viscosity µ is calculated using Sutherland’s law: µ = aT 1.5/(T + b) with a = 1.458 × 10-6 and b = 110.4.
Finally, the thermal conductivity k = µcp/Pr is computed with a constant Prandtl number Pr = 0.72 and
ratio of specific heats γ = 1.4.

For the inviscid flux calculation, we implement a stable low-dissipation scheme based on the Kinetic
Energy Consistent (KEC) method developed by Subbareddy and Candler.20 In this method, the inviscid
flux is split into a symmetric (non-dissipative) and an upwind (dissipative) portion. The flux is pre-multiplied
by a shock-detecting switch, ensuring that the dissipation occurs only around shocks.21 We use a spatially
sixth-order accurate central KEC scheme for the present study. Note that the viscous fluxes are modeled
with second-order central differences.

Here time integration is performed using an implicit second-order accurate Euler method with point
relaxation to maintain numerical stability and accuracy. The implicit system is also solved with the full
matrix Data Parallel Point Relaxation (FMPR) method, which has good parallel efficiency.25,26

B. 2D Computations

We consider a laminar boundary layer atM∞ = 5.92 with a unit Reynolds number equal to 4.6×106 m−1. The
free-stream temperature and pressure are T∞ = 53.06 K and p∞ = 308.2 Pa, respectively. These conditions
match the experiments performed in the ACE Hypersonic Wind Tunnel22 at Texas A&M University. A
schematic representation of the domain used in the current work is shown in Figure 1. An incoming laminar
boundary layer, with a displacement thickness, δ∗ is shown. This inflow boundary layer for simulating the
oblique SBLI is computed separately. A computation of zero pressure gradient boundary layer flow over a
flat plate with a cylindrical leading edge (r = 10−4 m) was carried out. For more details the reader is referred
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to our previous study.5 The boundary layer displacement thickness, δ∗ is 2.1 × 10−3 at the inflow. All the
length scales in the current work are non-dimensionalized using this as the length scale. The oblique shock
at a shock angle, θ is generated at the inflow using Rankine-Hugoniot jump conditions. The oblique shock
impinges the flat plate at 119δ∗ from the inflow for all the shock wave angles considered in the current work.
This allows us to consider interaction at a fixed Reynolds number. The interaction of the oblique shock
with the laminar boundary layer causes it to separate, eventually reattaching downstream. This results in
separation bubble with a length Xsep. This changes with the strength of the interaction. The total length of
the domain in the streamwise direction is 238δ∗. We implement an adiabatic wall at the bottom boundary
and supersonic outlet along the right boundary.

Figure 1: Domain for the oblique SBLI considered in the current work. The contours of
streamwise velocity along with the density gradient magnitudes are shown. The streamlines
within the boundary layer and the recirculation bubble along with the separation point, S and
the reattachment point, R are also marked.

To accurately capture the gradients we use a stretched grid along the wall normal direction with the
near-wall y+ = 0.5. Here, y+ is the non-dimensional distance in viscous units. Uniform mesh spacing is
chosen in the streamwise direction to resolve the small wavelengths of the traveling waves in the streamwise
direction. A grid convergence study was carried out and showed that nx = 998 points in the streamwise along
with ny = 418 points in the wall normal direction are sufficient to resolve the two-dimensional flow field. In
the present study, four shock angles are considered in order to investigate the effect of interaction strength in
oblique SBLI. Two dimensional computations of oblique SBLI at shock angles, θ = 12.0◦, 13.0◦, 13.6◦, 14.0◦

are considered. Figure 2 shows the contours of Mach number and pressure for one such computation carried
at θ = 13◦ in a two dimensional domain. Please note that all the two dimensional computations for all shock
wave angles considered are steady.

Figure 3 shows the variation of skin friction coefficient at the wall for all shock wave angles considered.
This is helpful in obtaining a quantitative estimate of the extent of separation with varying interaction
strengths. The separation bubble corresponds to the region of the flow with negative skin friction coefficient.
It is interesting to note that, for increasing shock angles the reattachment point remains relatively fixed while
the separation point moves upstream (see angles, θ ≥ 13◦). Also, increasing the interaction strength leads to
emergence of small regions (secondary bubble) with positive skin friction coefficient within the larger region
of negative skin friction coefficient (primary bubble). This starts to appear for interaction at θ = 13.6◦ and
can be seen clearly for θ = 14◦.

C. 3D Simulations

In order to simulate any 3D effects which might originate due to SBLI, 3D computations are carried out
for all the shock interactions considered in the present study. The computations are initialized using the
two-dimensional flow field corresponding to the oblique SBLI at the corresponding shock wave angle. The
2D domain is extruded in the spanwise direction and periodic boundary conditions are enforced. Ideally, the
spanwise length should be as large as possible for three dimensional instabilities to appear spontaneously.7 In
the present case, it was found that a spanwise length of 95.2δ∗. It was found that 200 uniformly distributed
points are sufficient to resolve the three dimensional phenomena of interest. In the present study no external
forcing is introduced in the flow field. It is found that the flow field for θ = 12◦ remains two dimensional
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Figure 2: (a) Mach number and (b) Non-dimensionalized pressure contours for SBLI at θ = 13◦.
The weak oblique shock at the inflow is the bow shock from the leading edge of the flat plate.

even after integrating for more than 80 flow through times. On the other hand, at θ = 13◦ the flow field
starts becoming three dimensional after about 15 flow through times. However, no unsteadiness is noticed
in the resulting flow field. For stronger interaction at θ = 13.6◦ and θ = 14◦, we notice the flow field quickly
becomes 3D (after about 15 flow through times). It eventually becomes unsteady inside the recirculation
bubble and near the reattachment location. After a sufficiently long time, we start to notice that the attached
boundary layer transitions. Figure 4 shows the snapshot of the spanwise velocity for θ = 13.0◦, 13.6◦, 14.0◦

after 80 flow through times.
In order to investigate the spatio-temporal characteristics of the resulting flow field. We compute time

averaged Power Spectral Density (PSD) of the streamwise velocity fluctuations. Spanwise snapshots were
taken at a fixed interval of 20µs (0.035L/U∞) for about 21 flow through times (605 snapshots). Figure 5 shows
the time averaged power spectral density for θ = 13◦, 13.6◦, 14.0◦. For θ = 13◦ we can see the emergence of
a relatively few length scales in the spanwise drection. We notice a maximum at a spanwise wavenumber,
βδ∗ = 0.24, which corresponds to roughly 3 wavelengths in the spanwise direction. This length scale is
energetically dominant within the bubble but then quickly decays in the region near reattachment. However,
it appears again in the region after reattachment towards the end of domain where it persists for a significant
distance in the downstream direction. Thus, pointing to the spatial amplification of steady spanwise periodic
streamwise velocity fluctuations in the reattaching boundary layer. Local maxima corresponding to the
higher harmonics are also present. At θ = 13.6◦, apart from a local maximum at βδ∗ = 0.24, we note the
presence of several other spanwise periodic fluctuations corresponding to its higher harmonics. Further, most
of these higher harmonics grow downstream close to the reattachment location. For θ = 14◦, the peak in
βδ∗ vanishes. The energy is distributed continuously over a range of spanwise wavenumbers. We notice the
emergence of two new peaks at βδ∗ = 0.87 and βδ∗ = 1.20. Even though the flow field still exhibits the
presence of several spanwise periodic structures, we notice the presence of significantly higher levels of flow
unsteadiness inside the bubble and near the reattachment location.

III. Centrifugal Instabilities

Observations from the DNS at various interaction strengths point to the presence of steady spanwise
periodic fluctuations within the separation bubble and reattached boundary layer. Further, large and rapid
amplification of the streamwise fluctuations is observed in the reattached boundary layer. Previous studies
involving laminar SBLI on compression ramps have commented on the role of Görtler instability for the
emergence of these streak like steady structures.1,33 In this context, it is interesting to note that separation
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Figure 3: Skin friction distribution for various shock interaction strengths. The variation of
skin friction coefficient in the absence of any oblique shock is also plotted for comparison.

bubble introduces curvature in the streamlines near the reattachment and the separation location. The
curvature of streamlines can lead to the presence of Görtler like centrifugal instabilities in these regions. One
way to quantify possible regions of growth due to this is to consider the variation of Görtler number along
the streamwise direction. In the present work, the Görtler number is defined as,

Ge2 =
U∞Lδ

νR
(3)

Here, L, denotes the reference length (taken to be the streamwise distance) and δ denotes the boundary
layer thickness. Further, R denotes the radius of curvature of the streamline; we calculate R along the
separation streamline. Figure 6 shows the variation of the Görtler number for all shock angles considered.
Note that only real and positive values of the Ge have been shown. Previous work on Görtler instability
in compressible flows on curved walls have shown that the critical value for Görtler instability to become
important for Ge ∼ 0.6.28 This value along with the separation and the reattachment points are marked
in Figure 6. For weaker interactions θ = 12◦, the streamwise variation of Ge is symmetric near both the
reattachment and the separation point. Further, we notice finite regions of the flow near separation and
reattachment points, which are locally unstable to centrifugal instabilities. It is interesting to note that
despite this, DNS shows no three dimensionality. For larger shock wave angles we notice that the spatial
variation of Görtler number is no longer symmetric. This asymmetry shows up as a larger value of Ge near
the reattachment location. Increasing the shock wave angle, increases this asymmetry, with the value of
Görtler number remaining reasonably constant near the separation point. However, unlike flow on curved
walls which often involves constant or slowly varying wall curvature, we note a rapid change in streamline
curvature. This is important in the context of spatial growth of Görtler vortices, which now have to occur
in boundary layer with a rapidly changing curvature. Further, the idea of defining a critical number based
on local analysis is justified only when the boundary layer thickness is large compared to the spanwise
wavelength of the Görtler vortices.29 Thus, to investigate the possible growth we need a methodology for
computing disturbance growth which takes into account this rapid variation of streamline curvature after
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Figure 4: Snapshot of spanwise velocity fluctuation for (a) θ = 13◦, (b) θ = 13.6◦ and (c)
θ = 14.0◦. The data are collected at wall normal distance of y/δ∗ = 1. The points S and R
denoting the separation and reattachment locations are also marked.
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Figure 5: Power spectral density of streamwise velocity fluctuations at various streamwise
locations for (a) θ = 13◦, (b) θ = 13.6◦ and (c) θ = 14.0◦. The data are collected at wall normal
distance of y/δ∗ = 1. Most energetic spanwise wavenumbers are also marked.
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reattachment.

Figure 6: Streamwise variation of Görtler number for the separation streamline. The points
S and R, denote the separation and the reattachment points. The shaded region denotes the
attached portion of the flow which is locally unstable to Görtler instability.28

Previous work (especially on wedges12,33) has often focused on using the spatial variation of the Görtler
number (Ge) as an indicator for the importance of the centrifugal instability. Any investigation of spatial
growth due to centrifugal instability should also account for possible growth from non-modal effects. In
the present work, we significantly simplify our analysis by restricting the attention to the attached portions
of the boundary layer. In particular, the focus would be on finding the maximum possible growth in the
attached portion of boundary layer after the reattachment point.

The role of transient growth of steady spanwise disturbances due to non-orthogonality of the eigenmodes
in zero pressure gradient boundary layer flows has been extensively investigated.13 Transient growth can
also occur in space. Even though the growth occurs over a finite distance, the amplitude of growth can be
considerably large. Previous work by Cossu et al.3 has considered maximum growth associated with Görtler
vortices on concave walls. In the next few sections, we briefly describe the methodology behind computing
upper bound on spatial growth of Görtler vortices in compressible boundary layer. In the present work, we
closely follow the work by Tumin et al.17 for using an adjoint based iterative algorithm to calculate the
inflow disturbances resulting in the largest gain in disturbance energy for a certain streamwise distance.

A. Transient Growth in Space

1. Linearized Boundary Layer Equation

In the current work we are interested in understanding the amplification property of the attached portion of
the boundary layer downstream of reattachment. The observations from DNS suggest that these are steady
elongated disturbances which are periodic in spanwise direction. In general, evolution of small perturbation
in compressible flows is governed by linearized disturbance equation.7,31 However, restricting our attention
to reattached boundary layer, we can further simplify the linearized equations assuming the boundary layer
scaling. We define the small parameter ε = Re−1/2 =

√
µ∞/(ρ∞U∞L). Here, U∞, µ∞, ρ∞ are the free stream

speed, coefficient of dynamic viscosity and density respectively. Assuming that the streamwise coordinate
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scales with a characteristic length, L along the flat plate, whereas the wall normal and spanwise coordinate
scale with

√
µ∞L/(ρ∞U∞). Also,

u′ ∼ U∞ v′ ∼ εU∞ w′ ∼ εU∞
ρ′ ∼ ρ∞ π ∼ ε2ρ∞U2

∞ θ ∼ T∞
(4)

Here, {u′, v′, w′, ρ′, π, θ} denote the disturbance velocities, density, pressure and temperature, respectively,
and T∞ denotes the free stream temperature. Further, we assume that the disturbances are steady in time
and periodic in the spanwise direction. In other words,

φ(x, y, z) = φ(x, y)eiβz (5)

Here, φ = (u′, v′, w′, θ, π)T denotes the disturbance state vector and β denotes the spanwise wavenumber.
Using the scaling from Equation 4 and the disturbance form given by Equation 5, the linearized disturbance
equation can be simplified to

(Aφ)x = B0φ+ B1φy + B2φyy (6)

Where, A,B0,B1,B2 are all 5 × 5 matrices. The non-zero entries of these matrices are presented in the
Appendix. This is the governing equation for Görtler instability in compressible boundary layer. The
following boundary conditions are applied at the wall and the free stream :

u′ = v′ = w′ = θ =
dπ

dy
= 0 at y = 0

u′ = v′ = w′ = θ = π = 0 at y = ymax

(7)

Equation 6 along with boundary conditions, 7 determine the downstream evolution of disturbance (Equa-
tion 5) starting from a given initial condition at location xin.

2. Spatial Growth Optimization

The DNS shows that at the onset of three dimensionality for interaction at θ = 13◦ (see Figure 4) the spanwise
velocity fluctuations appear as elongated structures in the streamwise direction but decay downstream of the
reattachment location. Whereas, streamwise velocity fluctuations keep increasing as we go downstream (see
Figure 5). This motivates us to investigate the growth of perturbations in the form of streamwise vortices at
the reattachment point which develop into streamwise velocity fluctuation downstream. In order to obtain
an upper bound on the possible growth, we wish to identify the disturbance pattern (with unit energy) at
reattachment point which maximizes the energy at the downstream plane at xout.

First, we need to choose a measure for energy of disturbances in compressible flows. In general, the
energy of a perturbation (within the scope of parallel flow) can be described by the following norm,32,36

2E =

∫ ∞
0

φHMφdy (8)

Here,

M = diag
( T̄

ρ̄γM2
, ρ̄, ρ̄, ρ̄,

ρ̄

γ(γ − 1)T̄M2

)
Note that the base flow quantities are denoted as, ρ̄, Ū , V̄ , T̄ . The objective of optimization can be written

as maximization of the ratio E(xr)/E(xout) for various initial conditions. Here, xr is the reattachment location
and xout is the downstream location where the maximum of the growth is sought. However, assuming the
scaling of the disturbances described above and the form of the disturbances observed in the DNS, we can
simplify the expression for energy at the reattachment, xr for streamwise vortical disturbances as,

Exr
=

∫ ∞
0

[ρ̄(v2 + w2)]dy (9)
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Similarly, at the downstream location, the expression for energy simplifies by considering only the con-
tribution from the streamwise and temperature perturbation. Using the equation of state we obtain the
following,

Exout =

∫ ∞
0

[ρ̄u2 +
θ2

(γ − 1)T̄ 2M2
]dy (10)

The optimization procedure now maximizes the energy ratio defined by Equations 10 & 9. A power iteration
algorithm using the forward equations (Equation 6) and the adjoint equation is employed.16,17,30 Using the
approach suggested by13,17 the adjoint variable, ψ satisfies the following adjoint equation,

−AHψx = BHψ − (BH1 ψ)y + (BH2 ψ)yy (11)

The boundary conditions are given by:

ψ2 = ψ3 = ψ4 = ψ5 = 0 at y = 0

ψ1 + ψ2 + 2V̄ ψ3 + ψ5 + (4/3)(ψ3)y = 0 at y = ymax
(12)

Note that the adjoint equations are well posed in the direction opposite to forward linearized boundary layer
equations. Hence, they are solved backwards from xout to xr. To do that we initialize the adjoint modes ψ
at xr using the following equations,

ψ1(xout) =
−1

ρ̄2Ū

φ4
(γ − 1)(T̄M)2

∣∣∣
(xout)

ρ̄(xout)ψ1(xout) + ψ5(xout) = ρ̄(xout)φ1(xout)

ψ2(xout) = ψ3(xout) = ψ4(xout) = 0

(13)

Here, (φ1, φ2, φ3, φ4, φ5)T = (u, v, w, θ, π)T and the over bar denotes the base quantities.
After integrating backwards to xr we solve the forward equations again (Eq. 6) with the following initial

conditions:

φ1(xr) = φ4(xr) = 0

φ2(xr) = Ū(xr)ψ3(xr)

φ3(xr) = Ū(xr)ψ4(xr)

(14)

The φ at the inflow, (xr) is then scaled such that Exr
= 1. This process of iteratively solving the forward and

the adjoint equation is carried out until the growth ratio, Exout
/Exr

converges. This is shown schematically
in Figure 7. Further details regarding the derivation of these equations can be found in the appendix of the
work by Tumin et al.17

B. Numerical Procedure

Both the forward equations and the adjoint equations are discretized using Chebyshev polynomials.13 The
wall normal two dimensional base flow is interpolated to a set of Gauss-Lobatto points. The presence
of discontinuities is neglected and only the base flow properties within the attached boundary layer are
considered for interpolation. Since the governing equation is assumed to be parabolic, a second order implicit
scheme is used to march the solution in the streamwise direction.16 For Equation 6 this can be written as

3

2
(Aφ)n+1 − 2(Aφ)n +

1

2
(Aφ)n−1 =

3

2

(
D∂φ
∂y

)n+1

− 2
(
D∂φ
∂y

)n
+

1

2

(
D∂φ
∂φ

)n−1
+∆x

[
(B0φ)n+1 +

(
B1
∂φ

∂y

)n+1

+
(
B2
∂2φ

∂y2

)n+1] (15)

Here, n denotes the nth streamwise station. For the first step however, implicit Euler is used

(Aφ)1 − (Aφ)0 =
(
D∂φ
∂y

)1
−
(
D∂φ
∂y

)0
+ ∆x

[
(B0φ)1 +

(
B1
∂φ

∂y

)1
+
(
B2
∂2φ

∂y2

)1]
(16)
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Figure 7: A sketch of the iterative scheme for finding maximum growth for steady spanwise
periodic perturbations at outflow location, xout starting from an initial vortical perturbation
at reattachment location, xr.

Here, ∆x denotes the size of the step along the streamwise direction. In the present case this value is
taken to be the same as the one used in the base flow calculations. Using a value of ∆x/2 does not have
any effect on the results. Similarly, the adjoint Equation 11 is integrated in the backward direction using
the same numerical scheme. It is found that 450 points in the wall normal direction are sufficient to produce
grid independent results.

C. Spatial Optimal Growth

In order to obtain an upper bound on the growth of the Görtler like vortices, we restrict our attention to
the reattached portion of the boundary layer. The optimization procedure discussed in the previous section
involving the use of forward linearized boundary layer and backward adjoint equations is used. Note that
the effect of centrifugal instabilities due to curvature of the streamlines near the reattachment point is taken
into account by using the previously defined values of the Görtler number (see Figure 6).

Figure 4 shows the variation of maximum growth of perturbations with various spanwise wavenumbers
starting from the reattachment point. In the optimization procedure discussed earlier, the initial location
is kept fixed at the reattachment location. On the other hand, the final location is taken as a parameter.
This is important because for a given streamwise extent from the reattachment location we are optimizing
over all possible initial conditions with a unit energy norm. These initial condition may be different for
different downstream locations. We can see from Figure 8 that the value of growth that is possible over
a finite distance increases as we go further downstream for all the interactions considered. This shows us
that the flow after the reattachment is in fact centrifugally unstable. Further, it is interesting to note the
differences in the possible growth among various shock wave angles. For weaker interaction at θ = 12.0◦, we
notice a band of wavenumbers, β ∼ 0.18−0.26 with a maxima around β = 0.22 can show significant growth.
As we keep increasing the strength of interaction, for θ = 13.0◦, we notice a significant growth associated
with a broader range of spanwise wavenumbers. Also, larger growth is possible further upstream. Further, it
is interesting to note that the wavenumber corresponding to maximum growth for θ = 13.0◦ occurs around
β = 0.24. This is remarkably close to the value observed from the DNS (see Figure 5). Increasing the shock
angle magnifies these trends further. For θ = 13.6◦ a much broader peak is observed along with a maxima
around β = 0.24. The DNS (Figure 5) shows the peaks at β ∼ 0.24 along with its higher harmonics near
the reattachment location. For θ = 14◦ we again notice maximum growth around β = 0.28. However, this
is not observed in the DNS. This may have to do with the fact that at such a large interaction strength, the
bubble becomes significantly more unsteady and larger range of perturbations are active. In this context,
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a simplified analysis which ignores the contribution from the bubble may not be useful. Further, we also
notice a much broader range of wavenumbers with significant growth indicating that other wavenumbers
might grow significantly within the boundary layer.

Using this analysis we can also comment on the relative importance of the algebraic (non-modal) and
exponential (modal) interactions within the reattached boundary layer. Figure 8 shows the maximum of the
growth for all spanwise wavenumber, β and the final downstream location using the optimization procedure
described previously. This clearly shows that closer to the reattachment location algebraic growth dominates
over the exponential growth. Moving further downstream, exponential growth plays an important role. Note,
that the exponential effects start becoming more important at a streamwise location of x/δ∗ ∼ 210 for all
the shock wave angles considered.

It is interesting to note the shape of the optimal perturbation which can lead to the maximum growth in
these flows. Figure 10 shows the optimal input and the corresponding response. Starting with initial vortical
disturbance (i.e. with only v′ and w′) we obtain a spatial growing streamwise velocity fluctuation. This
observation clearly points to the important role played by the lift up effect even in the presence of centrifugal
terms in the linearized bundary layer equation. A similar observation was reported for incompressible flow
over the concave wall by Cossu et al.3

Figure 8: Maximum spatial growth in the boundary layer after reattachment for various
spanwise wavenumber, β
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Figure 9: Maximum spatial growth in the boundary layer after reattachment, for various
spanwise wavenumbers β and streamwise distance x/δ∗ for optimization

Figure 10: Shape of the optimal input fluctuation (contours of v′ are shown) and the optimal
response (isosurface of the u′)
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IV. Discussion and Conclusions

Direct Numerical Simulation (DNS) of oblique Shock Boundary Layer Interaction (SBLI) is carried out
for various shock wave angles. An incoming laminar boundary layer over a flat plate at Mach 5.92 without
the presence of any external perturbations is considered. For smaller shock wave angles, the flow remains
two dimensional and steady. For stronger interactions, a steady three dimensional flow field emerges. This
three dimensionality is characterized by the presence of streamwise structures which are periodic in span.
An analysis of the spanwise Power Spectral Density (PSD) of streamwise fluctuations shows the presence
of discrete wavenumbers, some of which are energetically more significant than others. Furthermore, we
notice significant growth of streamwise fluctuations near and just downstream of the reattachment location.
For θ = 13◦ we note that a single spanwise wavenumber at β = 0.24 to be most dominant. Increasing the
strength of interaction further, leads to emergence of more spanwise scales. The flow becomes unsteady
near the reattachment location but most of the energy is still present in the spanwise scale with β = 0.24
and its higher harmonics. Within the bubble the flow becomes unsteady and the flow transitions further
downstream after reattachment. For oblique SBLI at θ = 14.0◦, the energy peak at β = 0.24 vanishes and
higher spanwise wavenumbers become more energetically significant. It should be noted that for all of these
interactions, the three dimensionality and the unsteadiness is confined to the separation bubble and the
reattachment point whereas the separation line remains undisturbed.

Previous studies of SBLI2,12,33 have suggested Görtler instability as the responsible mechanism for these
structures. In order to investigate the role of centrifugal instability due to the curvature of the streamline
at the separation and the reattachment location, we consider the distribution of the Görtler number for the
various shock angles considered in the DNS. It is found that the Görtler number exceeds the critical value for
instability in the regions near the reattachment location while remaining reasonably constant in the region
near the separation point. In order to investigate the spatial growth of Görtler like perturbations over a finite
distance in space we follow an approach proposed by Cossu et al.3 This allows us to account for the non-
modal algebraic growth of perturbations in space.3,16,17 Using boundary layer scaling a parabolic system
of equations governing the spatial evolution of Görtler vortices in compressible boundary layer is obtained.
An adjoint based iterative approach is used to obtain the maximum growth of vortical spanwise periodic
perturbation in the reattached part of the boundary layer. The analysis is carried out for various spanwise
wavenumbers. It is found that for perturbations starting at the reattachment location there is continuous
band of spanwise wavenumbers which can show significant growth downstream. The analysis also reveals
that reattached boundary layer supports larger growth for a broader range of spanwise wavenumbers at
stronger interactions than at weaker interactions at smaller shock angles. The shape of the initial of the
initial perturbation which leads to maximum response downstream clearly shows the importance of lift-up
in this interaction. Interestingly, even though we are completely neglecting the role played by the separation
bubble, we do find that the spanwise wavenumber corresponding to the maximum growth is also seen in the
DNS at moderate interaction strengths for oblique shock at θ = 13.0◦ and θ = 13.6◦.

From this analysis we can clearly see the important role played by centrifugal instability due to stream-
line curvature in promoting large growth in the regions after reattachment. There is also a close match
between the optimal spanwise wavenumber and the energetically dominant spanwise scale in DNS. The role
of separation bubble is however neglected in the current framework. The Biglobal linear stability analysis5,7

has shown the presence of global modes which lead to the three dimensional state in the numerical simula-
tions. This is interesting in the context of many experimental configurations where wind tunnels often have
non-negligible levels of free stream pressure fluctuations which the SBLI can amplify. The simplified analysis
presented in the current work gives us some indications that an analysis of the forced response of the system
might play an important role in understanding several aspects of this interaction.

V. Appendix

The base flow quantities are denoted as (ρ̄, Ū , V̄ , T̄ ). Using the scaling given by Eq. 4, the equation of
state for the perturbation is given as,

ρ = − θ

T̄ 2
(17)

The governing equations for zero Görtler number are derived and given in Tumin.17 In the current work we
include the effect of non-zero Görtler number (Ge). This only modifies the y− momentum equation given
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by Tumin .17 The governing equations in are given as,

(Aφ)x = B0φ+B1φy +B2φyy (18)

Comparing with Eq. 18 with Eq. 6, we find

A = A

B1 = B1

B2 = B2

B0 = B0 +G

(19)

Here, G accounts for the contribution coming from the non-zero Görtler number. The non-zero entries
of G are given as

G31 = −2Ge2ρ̄Ū

G34 = Ge2ρ̄2Ū
(20)
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29Hall, P., ”The linear development of Görtler vortices in growing boundary layers,” J. Fluid Mech., Vol. 130, 1983, pp.
41-58

30Luchini, P., ”Reynolds number independent instability of boundary layer over a flat surface Part 2: optimal perturba-
tions,”J. Fluid Mech., vol. 404, 2000, pp. 289-309

31Malik, M. R., ”Numerical Methods for Hypersonic Boundary Layer Stability,” Journal of Computational Physics,Vol.
86, 1990, pp. 376-413.

32Mack, L.M.,”Boundary Layer Stability Theory,” Jet Propulsion Lab., JPL Rept. 900-277, California Inst. of Technology,
Pasadena, CA, Nov. 1969

33Martinez, S. Navarro and Tutty, O. R., ”Numerical simulation of Görtler vortices in hypersonic compression
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