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Reattachment streaks in hypersonic compression
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We employ global input–output analysis to quantify amplification of exogenous
disturbances in compressible boundary layer flows. Using the spatial structure of
the dominant response to time-periodic inputs, we explain the origin of steady
reattachment streaks in a hypersonic flow over a compression ramp. Our analysis
of the laminar shock–boundary layer interaction reveals that the streaks arise from
a preferential amplification of upstream counter-rotating vortical perturbations with a
specific spanwise wavelength. These streaks are associated with heat-flux striations
at the wall near flow reattachment and they can trigger transition to turbulence. The
streak wavelength predicted by our analysis compares favourably with observations
from two different hypersonic compression ramp experiments. Furthermore, our
analysis of inviscid transport equations demonstrates that base-flow deceleration
contributes to the amplification of streamwise velocity and that the baroclinic effects
are responsible for the production of streamwise vorticity. Finally, the appearance of
the temperature streaks near reattachment is triggered by the growth of streamwise
velocity and streamwise vorticity perturbations as well as by the amplification of
upstream temperature perturbations by the reattachment shock.

Key words: compressible boundary layers, transition to turbulence, high-speed flow

1. Introduction
Compression corners are commonly encountered in intakes, control surfaces

and junctions. High-speed flow on a compression corner is a canonical case of
shock–boundary layer interaction (SBLI) (Simeonides & Haase 1995) involving flow
separation and reattachment with a shock system. Even though the compression ramp
geometry is homogeneous in the spanwise direction, experiments (Roghelia et al.
2017a) and numerical simulations (Navarro-Martinez & Tutty 2005) show that the
flow over it exhibits three-dimensionality in the form of streamwise streaks near

† Email address for correspondence: dwive016@umn.edu
‡ Present address: X-Computational Physics Division, Los Alamos National Laboratory, Los

Alamos, NM 87545, USA

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

70
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

SC
 - 

N
or

ri
s 

M
ed

ic
al

 L
ib

ra
ry

, o
n 

16
 O

ct
 2

01
9 

at
 1

7:
56

:4
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://orcid.org/0000-0003-1205-8835
https://orcid.org/0000-0002-4181-2924
mailto:dwive016@umn.edu
https://doi.org/10.1017/jfm.2019.702
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


114 A. Dwivedi, G. S. Sidharth, J. W. Nichols, G. V. Candler and M. R. Jovanović

reattachment. The streaks are associated with persistent large local peaks of heat
transfer; they can destabilize the boundary layer and cause transition (Simeonides &
Haase 1995; Roghelia et al. 2017a).

Recently, Chuvakhov et al. (2017) and Roghelia et al. (2017a) investigated
hypersonic compression ramp flows using temperature-sensitive paint and infrared
imaging. These techniques were employed to study the formation of streamwise
streaks and reattachment heat-flux patterns. Previous studies (Inger 1977; Simeonides
& Haase 1995; Chuvakhov et al. 2017) attribute the observed structures to Görtler-like
vortices which develop from upstream perturbations (Hall 1983) and can be amplified
by centrifugal effects in the regions of concave streamline curvature near reattachment.
However, in most compression ramp studies, the comparison with the theory of
Görtler instability on curved walls is only qualitative. Furthermore, this theory does
not account for the amplification that arises from baroclinic effects in the presence of
the wall-normal density gradients (Zapryagaev, Kavun & Lipatov 2013) and most of
the literature neglects the dynamics in the separation bubble. Zhuang et al. (2017)
used nano-tracer planar laser scattering to visualize a Mach 3 turbulent boundary
layer turning on a 25◦ compression ramp. They found that streamwise streaks not
only appear after reattachment but also in the separation bubble. It is thus important
to understand the role of the recirculation bubble dynamics in the formation and
amplification of streamwise streaks.

To include the effect of the separated flow, Sidharth et al. (2018) carried out a
global stability analysis and discovered a three-dimensional (3-D) global instability
in the separation bubble, which results in temperature streaks post-reattachment. The
spanwise wavelength of the global instability scales with the recirculation length
(Sidharth et al. 2017). This is in contrast to the spanwise wavelength observed
for reattachment streaks (Navarro-Martinez & Tutty 2005; Chuvakhov et al. 2017;
Roghelia et al. 2017a), which scale with the separated boundary layer thickness,
indicating that the global instability is not responsible for their formation. To
characterize the role of external perturbations in the formation of these streaks, we
consider compression ramp flows that do not exhibit 3-D global instability. External
disturbances are amplified as they pass through the flow field and we utilize global
input–output (I/O) analysis to quantify this amplification.

The I/O analysis evaluates the response (outputs) of a dynamical system to external
perturbation sources (inputs). For time-periodic inputs, the transfer function maps
the input forcing to output responses; see figure 1 for an illustration. For small
perturbations, the transfer function can be obtained by linearizing the compressible
Navier–Stokes (NS) equations around a laminar base flow. The I/O approach
has been employed to quantify amplification and study transition mechanisms in
channels (Jovanović 2004; Jovanović & Bamieh 2005), boundary layers (Brandt et al.
2011; Sipp & Marquet 2013; Fosas de Pando & Schmid 2017; Nichols 2018; Ran
et al. 2018) and jets (Jeun, Nichols & Jovanović 2016; Schmidt et al. 2018).

In this paper, we utilize the I/O analysis to demonstrate that the hypersonic SBLI
over a compression ramp strongly amplifies low-frequency upstream disturbances
with a specific spanwise length scale. The dominant I/O pair resulting from our
analysis is used to explain the emergence of reattachment streaks and to compare our
results with experiments. We utilize direct numerical simulations (DNS) to verify the
presence of reattachment streaks in the flow subject to dominant steady and unsteady
inputs. To uncover physical mechanisms responsible for streak amplification, we
also conduct an analysis of inviscid transport equations associated with velocity,
vorticity and temperature perturbations. We show that base flow deceleration
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FIGURE 1. (Colour online) Schematic of the I/O approach to compressible flow
instabilities.

contributes to the amplification of streamwise velocity and that the baroclinic
effects are responsible for the amplification of streamwise vorticity. Furthermore,
the appearance of the temperature streaks near reattachment is triggered by the
growth of streamwise velocity and vorticity as well as by the amplification of
upstream temperature perturbations by the reattachment shock. In contrast to previous
studies (Navarro-Martinez & Tutty 2005; Chuvakhov et al. 2017; Roghelia et al.
2017a), our analysis demonstrates the importance of baroclinic terms in cold-wall
hypersonic boundary layers and shows that the centrifugal effects play only a minor
role in the emergence of steady reattachment streaks. We also show that the spanwise
scale selection results from the interplay between the presence of flow perturbations
in the separation bubble and in the reattaching shear layer.

Our presentation is organized as follows. In § 2, we present the linearized
model and provide a brief summary of the I/O formulation. We compute the
amplification in attached supersonic flat-plate boundary layers and verify our method
against state-of-the-art approaches. In § 3, we evaluate the frequency response of
two-dimensional (2-D) laminar hypersonic base flow on a compression ramp to 3-D
upstream disturbances and illustrate that the dominant output field appears in the
form of steady streamwise streaks near reattachment. We verify the robustness of
the dominant response predicted by our analysis using DNS and visualize its spatial
structure to illustrate the role of various flow regions in perturbation amplification.
In § 4, we examine inviscid transport equations, investigate production of flow
perturbations by the base flow gradients and uncover physical mechanisms driving
the growth of reattachment streaks. We conclude our presentation in § 5.

2. Input–output formulation for compressible flows

The compressible NS equations for a perfect gas in conservative form are given by

∂U
∂t
+ ∂Fj

∂xj
= 0, (2.1)

where Fj(U) is the flux vector and U= (ρ, ρu,E) is the vector of conserved variables
representing mass, momentum and total energy per unit volume of the gas (Candler
et al. 2015). We decompose the state vector U(x, t) into a steady base component
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U(x) and a time-varying perturbation component U ′(x, t), U(x, t)=U(x)+U ′(x, t).
The evolution of small perturbations is then governed by the linearized flow equations

∂

∂t
U′(x, t)=A(U)U′(x, t), (2.2)

where A(U) represents the compressible NS operator resulting from linearization
of (2.1) around the base flow U . A second-order central finite-volume discretization
(Sidharth et al. 2018) is used to obtain the finite-dimensional approximation of (2.2):

d
dt

q= Aq, (2.3)

which describes the dynamics of the spatially discretized perturbation vector q.
In this paper, we are interested in quantifying the amplification of exogenous

disturbances in boundary layer flows (Jovanović & Bamieh 2005; Schmid 2007).
To accomplish this objective, we augment the evolution model (2.3) with external
excitation sources

d
dt

q= Aq + Bd,

φ = Cq,

 (2.4)

where d is a spatially distributed and temporally varying disturbance source (input)
and φ = (ρ ′, u ′, T ′) is the quantity of interest (output), where T ′ denotes temperature
perturbations. In (2.4) the matrix B specifies how the input enters into the state
equation, while the matrix C extracts the output from the state q. An I/O relation is
obtained by applying the Laplace transform to (2.4):

φ(s)= C (sI − A)−1(q(0)+ Bd(s)), (2.5)

where q(0) denotes the initial condition and s is the complex number. Equation (2.5)
can be used to characterize both the unforced (to initial condition q(0)) and forced
(to external disturbances d) responses of the flow perturbations.

In boundary layer flows, the linearized flow system is globally stable. Thus, for
a time-periodic input with frequency ω, d(t) = d̂(ω)eiωt, the steady-state output of a
stable system (2.4) is given by φ(t)= φ̂(ω)eiωt, where φ̂(ω)=H(iω)d̂(ω) and H(iω)
is the frequency response

H(iω)= C (iωI − A)−1B . (2.6)

At any ω, the singular value decomposition of H(iω) can be used to quantify
amplification of time-periodic inputs (Jovanović 2004; Schmid 2007; McKeon &
Sharma 2010):

H(iω)D (iω)=Φ(iω)Σ(iω) ⇔ H(iω)=Φ(iω)Σ(iω)D ∗(iω). (2.7)

Here, (·)∗ denotes the complex-conjugate transpose, Φ and D are unitary matrices and
Σ is the rectangular diagonal matrix of the singular values σi(ω). The columns di
of the matrix D represent the input forcing directions that are mapped through the
frequency response H to the corresponding columns φi of the matrix Φ; for d̂ =
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Reattachment streaks in hypersonic compression ramp flow 117

di, the output φ̂ is in the direction φi and the amplification is determined by the
corresponding singular value σi. For a given temporal frequency ω, we use a matrix-
free approach (Dwivedi et al. 2018) to compute the largest singular value σ1(ω) of
H(iω). Note that, at any ω,

G(ω) := σ1(ω)= ‖H(iω)d1(ω)‖E

‖d1(ω)‖E
= ‖φ1(ω)‖E

‖d1(ω)‖E
(2.8)

denotes the largest induced gain with respect to Chu’s compressible energy norm
(Hanifi, Schmid & Henningson 1996), where (d1(ω), φ1(ω)) identify the spatial
structure of the dominant I/O pair.

2.1. Validation: supersonic flat-plate boundary layer
Before analysing the amplification of disturbances in a hypersonic flow involving
SBLI, we apply I/O analysis to compute amplification in a supersonic flow over a flat
plate. Our computations are verified against conventional approaches to demonstrate
the agreement for canonical problems. Two amplification mechanisms are considered:
2-D unsteady acoustic amplification (Ma & Zhong 2003) and 3-D steady lift-up
amplification (Zuccher, Tumin & Reshotko 2005).

2.1.1. Two-dimensional unsteady perturbations: acoustic amplification
Local spatial instabilities corresponding to acoustic perturbations dominate the

transition in high-speed flat-plate boundary layers (Fedorov 2011). Using local spatial
linear stability theory (LST) and DNS, Ma & Zhong (2003) showed that perturbation
with non-dimensional frequencies 0.6× 10−4<F< 2.2× 10−4 results in spatial growth
due to the local instability over a part of the domain. We consider I/O analysis at
F = 1.6 × 10−4 and compare the region of growth with that predicted by LST (Ma
& Zhong 2003); see figure 2(a) for geometry. The base flow is computed using the
finite-volume compressible-flow solver US3D (Candler et al. 2015) with 125 cells in
the wall-normal direction and 1600 cells in the streamwise direction. This resolution
yields grid-insensitive I/O results.

As shown in figure 2(a), we use the matrix B in (2.4) to localize the disturbance
input at a streamwise location corresponding to the local Reynolds number Re :=√

Rex=850, where the Reynolds number Rex is based on the distance x downstream of
the leading edge. This choice allows us to avoid large streamwise gradients in the base
flow in the vicinity of the leading edge. The slow streamwise variation of the base
flow implies that LST is approximately valid downstream of this location. Furthermore,
this location is sufficiently upstream of the neutral point of the acoustic instability,
which takes place at Re= 1140. This ensures that any non-modal growth arising from
the Orr mechanism (Dwivedi et al. 2018) decays before the spatial growth rate of
the local acoustic instability becomes positive. Sponge regions are used at the top
and right boundaries to model non-reflecting radiation boundary conditions. We have
verified the independence of our results on the strength and the location of the sponge
zones.

The output of interest is chosen to be the perturbation field in the entire domain,
i.e. φ = q. Figure 2(b) shows the spatial structure of pressure perturbation in the
principal output mode φ1. We compute the local spatial growth rate from pressure at
the wall p̂wall, αi=−(∂ p̂wall/∂x)/p̂wall. Figure 2(c) shows that our I/O analysis correctly
identifies the region of spatial instability and predicts growth rates that are close to
those resulting from LST (Ma & Zhong 2003). The difference can be attributed to the
fact that LST does not account for the spatially growing nature of the base flow.
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FIGURE 2. (Colour online) (a) Results of I/O analysis applied to Mach 4.5 adiabatic
boundary layer with perturbation input at Re = 850; (b) pressure perturbations
corresponding to the principal output direction φ1; and (c) comparison of spatial growth
rate with LST (Ma & Zhong 2003).

2.1.2. Three-dimensional steady perturbations: lift-up mechanism
The spatially developing boundary layer also supports significant growth of

perturbations that are not related to a dominant eigenmode of the linearized dynamical
generator. For example, the steady 3-D streak-like perturbations that result from the
lift-up mechanism (Ellingsen & Palm 1975) play an important role in transition to
turbulence induced by distributed surface roughness (Reshotko 2001). Zuccher et al.
(2005) used the linearized boundary layer equations to compute spatial transient
growth and to analyse this mechanism. For verification purposes, we compare the
spanwise wavelength of the maximally amplified streaks resulting from the linearized
boundary layer equations and the I/O analysis. We specifically consider the conditions
in Zuccher et al. (2005) corresponding to a boundary layer on a 2-D adiabatic flat
plate in a supersonic free stream.

A grid with 250 cells in the wall-normal direction and 600 cells in the streamwise
direction is used to compute the base flow and conduct I/O analysis. The input is
localized to a plane at streamwise location x/L = 0.3, where L denotes the plate
length. As in the previous subsection, the output is the perturbation field in the entire
domain. Owing to homogeneity in the spanwise direction, 3-D perturbations take the
form q(x, y, z, t) = q̃(x, y)ei(βz−ωt), where β = 2π/λz is the spanwise wavenumber.
Here, the spanwise and wall-normal coordinates are non-dimensionalized using the
viscous length scale, L/ReL, where ReL is the Reynolds number based on the plate
length L. To capture the steady lift-up mechanism, we conduct the I/O analysis for
ω= 0. In figure 3(a), we illustrate the β-dependence of the gain G resulting from the
I/O analysis and identify the value of β at which the largest spatial transient growth
takes place. This value is slightly smaller than the one reported in Zuccher et al.
(2005). We attribute the observed mismatch to different base-flow profiles; while we
use a numerically computed 2-D base flow, Zuccher et al. (2005) used an analytical
self-similar base-flow profile. The input d1 (shown in figure 3c) consists of streamwise
vortical perturbations and the output φ1 consists of a rapid development of streamwise
velocity streaks. The algebraic nature of the growth (as opposed to exponential) is
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FIGURE 3. (Colour online) (a) Optimal I/O amplification for steady perturbations;
(b) streamwise velocity perturbation for different spanwise wavenumbers β along the
base-flow streamlines; and (c) contours of streamwise vorticity input (d1) and isosurfaces
of streamwise velocity output (φ1) along the boundary layer (shown using base-flow
streamwise velocity). The dashed curve in (a) indicates the spanwise wavenumber from
spatial transient growth calculations (Zuccher et al. 2005).

illustrated in figure 3(b) for different β. As expected, a large initial transient growth
is followed by eventual downstream decay.

The above results show that I/O analysis correctly captures the physical mechanisms
responsible for amplification in canonical supersonic flows. As we demonstrate in
the next section, this analysis also provides useful insight about the early stages of
transition in complex hypersonic compression ramp flow with SBLI.

3. Input–output analysis of hypersonic compression ramp flow
Streamwise streaks in wall temperature are often observed in compression ramp

experiments. Although their appearance is typically attributed to amplification that
arises near reattachment from centrifugal (Navarro-Martinez & Tutty 2005; Chuvakhov
et al. 2017) or baroclinic (Zapryagaev et al. 2013) effects, quantifying amplification
in the presence of a recirculation bubble is an open challenge. Herein, we employ the
I/O framework to study the amplification of infinitesimal spanwise periodic upstream
disturbances in hypersonic compression ramp flow and explain the origin of the heat
streaks at reattachment.

Recently, Chuvakhov et al. (2017) and Roghelia et al. (2017a) reported multiple
hypersonic compression ramp experiments in two different facilities with matched
free-stream Mach and Reynolds numbers. Temperature-sensitive paint and infrared
thermography measurements of reattachment heat-flux wall patterns revealed quantita-
tively similar streaks. The effects of free-stream Reynolds number and leading-edge
radius on the spanwise wavelength λz of the streaks were also reported. Our objective
is to identify the streak wavelength λz that is selected by the linearized compressible
NS equations in the SBLI.

We consider the experiments performed in the UT-1M Ludwig tube (Chuvakhov
et al. 2017) at Mach 8 with a test time Ttest= 40 ms. As illustrated in figure 4(a), the
geometry consists of an L=50 mm isothermal flat plate with a sharp leading edge and
wall temperature Tw = 293 K, followed by an inclined ramp at 15◦. The streamwise
domain extends from x/L= 0 to x/L= 1.65. Table 1 summarizes the two free-stream
conditions that are considered in our study. We note that the aforementioned test
time is large compared to the convective time scale L/U∞, Ttest = 1000L/U∞.
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FIGURE 4. (Colour online) (a) Flow geometry and 2-D steady streamwise velocity at
ReL = 3.7 × 105; (b) comparison to experimental schlieren; and (c) variation of Stanton
number (St) with x/L. Curves G1–G4 denote computational grids at varying resolution
(nξ × nη), with G1 (577 × 349), G2 (495 × 300), G3 (412 × 249) and G4 (330 ×
200), where nξ and nη denote the number of streamwise and wall-normal grid points,
respectively. The shaded grey region denotes the envelope of spanwise variation of St
measured in experiments.

ReL p∞ (Pa) T∞ (K) U∞ (m s−1) ρ∞ (kg m−3)

3.7× 105 355 55 1190 0.022
2.0× 105 164 55 1188 0.010

TABLE 1. Free-stream conditions for experiments reported in Chuvakhov et al. (2017) and
Roghelia et al. (2017a), respectively. Reynolds number ReL is based on the plate length L.

Figure 4(b) provides comparison of the experimental schlieren image with the 2-D
base-flow density gradient magnitude field that we computed using US3D. Our 2-D
simulations correctly capture the presence of both the separation and reattachment
shocks. The mismatch near the leading edge is attributed to the presence of strong
oblique shocks that originate from the sidewalls which are required to maintain 2-D
flow in experiments but are completely absent in numerically computed 2-D base
flow. As seen from the computed flow field, the corresponding shock from the sharp
leading edge is significantly weaker and is not captured clearly in the experimental
schlieren.

The Stanton number St is a non-dimensional parameter that determines the wall
heat-transfer coefficient (Schlichting & Gersten 2016; Chuvakhov et al. 2017),

St= qw

ρ∞U∞cp(T0 − Tw)
, (3.1)

where qw is the heat flux at the surface, cp is the specific heat capacity and T0 is
the stagnation temperature. In experiments, the Stanton number can be inferred from
temperature-sensitive paint and infrared thermography measurements. Figure 4(c)
compares experimental values of St to those predicted by our 2-D simulations at
different grid resolutions. We see that the computed flow captures the heat-flux trends
correctly except near the separation and the post-reattachment regions. In experiments,
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FIGURE 5. (Colour online) (a) The ω-dependence of the largest induced gain with respect
to the compressible energy norm, G(ω), for unsteady inputs with the spanwise wavelengths
λz={1, 3, 6, 10}. (b) Isosurfaces of streamwise vorticity corresponding to the input d1 and
temperature corresponding to the output φ1 for (i) ω = 0, (ii) ω = 0.02 and (iii) ω = 0.1
for λz = 3.

these regions display significant spanwise variation in St and they are marked by the
grey band in figure 4(c).

Since the flow is globally stable with respect to 3-D perturbations (Sidharth et al.
2018), we conjecture that spanwise variations arise from non-modal amplification of
3-D perturbations around the 2-D base flow. To verify our hypothesis, we employ
global I/O analysis to quantify the amplification of exogenous disturbances and
uncover mechanisms that can trigger the early stages of transition in a hypersonic
compression ramp flow.

3.1. Frequency response analysis
We utilize frequency response analysis to investigate the amplification of infinitesimal
upstream perturbations in a hypersonic compression ramp flow. This choice is
motivated by experimental studies (Chuvakhov et al. 2017; Roghelia et al. 2017a)
where variation in the properties of the incoming boundary layer was found to have
profound effects on the downstream streaks. By proper selection of the matrix B
in (2.4), we restrict the inputs to the domain prior to separation (i.e. x/L < 0.5).
Furthermore, we choose the perturbation field in the entire domain as the output,
φ = q, by setting C = I . The I/O analysis is conducted on a grid with 412 cells in
the streamwise direction and 249 cells in the wall-normal direction (labelled as G3 in
figure 4c). Numerical sponge boundary conditions are applied near the leading edge
(x/L< 0.02) and the outflow (x/L> 1.6).

Figure 5(a) shows the I/O amplification G(ω), defined in (2.8), in a flow with
high Reynolds number (ReL = 3.7× 105) for different spanwise wavelengths λz. Here,
λz := λ∗z/δsep and ω := ω∗δsep/U∞ denote the non-dimensional spanwise wavelength
and temporal frequency, respectively, λ∗z and ω∗ are the corresponding quantities in
physical units, whereas δsep represents the displacement boundary layer thickness at
separation. We observe the low-pass feature of the amplification curve: G achieves its
largest value at ω = 0, it decreases slowly for low frequencies and it experiences
a rapid decay after the roll-off frequency (ω ≈ 0.01). The visualization of the
dominant I/O directions d1 and φ1 in figure 5(i,ii) reveals that the flat region of
the amplification curve corresponds to incoming streamwise vortical disturbances (as
inputs) that generate streak-like downstream perturbations (as outputs). In contrast,
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FIGURE 6. (Colour online) (a) The λz-dependence of the amplification map G for steady
inputs (i.e. ω= 0). (b) Comparison of experiments and dominant output φ1 at reattachment.
The vertical dashed line in (b) denotes the approximate reattachment line in experiments
and 2-D simulations.

figure 5(iii) demonstrates that, at high temporal frequency (ω = 0.1), dominant I/O
pairs exhibit streamwise periodicity and take the form of oblique waves. It should be
noted that the low-pass frequency response features as well as the resulting changes
in the response shape (from streaks to oblique waves) were also observed in canonical
channel and boundary layer flows (Jovanović 2004; Ran et al. 2018).

The impact of the spanwise wavelengths λz on the amplification G for steady
perturbations (i.e. at ω= 0) is shown in figure 6(a). For both Reynolds numbers, the
amplification curve achieves its maximum for a particular value of λz. This indicates
that SBLI preferentially amplifies upstream perturbations with a specific spanwise
wavelength. The experimental estimates of λz resulting from the observed spanwise
modulations in the temperature-sensitive paint images in figure 6(b) agree well with
the predictions of our I/O analysis. Even though the value of λz at which G(0)
peaks changes from λ̄z = 3 at ReL = 3.7× 105 to λ̄z = 4.5 at ReL = 2× 105, the ratio
between λ̄z and the displacement boundary layer thickness at reattachment δR remains
constant (λ̄z/δR≈ 1.8). This value is also consistent with previous studies (Inger 1977;
Navarro-Martinez & Tutty 2005).

Our analysis shows that the compression ramp flow strongly amplifies steady
upstream disturbances with a preferential spanwise length scale. To understand the
effect of disturbances in the recirculation region, we repeat the analysis for B = I
in (2.4) and ω= 0. We find that the streaks with the same spanwise wavelengths still
undergo the largest amplification. This demonstrates that the compression ramp flow
is most sensitive to the upstream disturbances, which is consistent with experimental
observations.

3.2. Validation of dominant output directions using DNS
We validate the response of the compression ramp SBLI to external inputs using 3-D
DNS of the flow with ReL = 3.7 × 105. The simulations are done in the presence
of the dominant input d1 resulting from the I/O analysis at ω = 0 and λz = 3. The
amplitude of the input is fixed at 0.01 % of the of the corresponding free-stream
values given in table 1. We employ Crank–Nicolson implicit time marching scheme
and low-dissipation second-order fluxes for spatial discretization. To accurately capture
the evolution of the 3-D perturbations, the Courant–Friedrichs–Lewy number is set to
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FIGURE 7. (Colour online) Comparison of (a) the temperature perturbations and (b) the
streamwise growth rate of streamwise perturbation energy corresponding to DNS and the
dominant output φ1 resulting from the I/O analysis at λz = 3. The reattachment location
is at x/L= 1.34.

10 (i.e. the time step in physical units is around 10 ns). We employ periodic boundary
conditions in the spanwise direction, use 32 grid points for resolving the spanwise
wavelength of 3 and find our results to be independent of the spanwise width of the
domain.

Figure 7 demonstrates qualitative similarity between (i) the spatial structure of
the temperature perturbations T ′ and (ii) the spatial growth rate of the perturbation
specific kinetic energy resulting from the I/O analysis and the DNS. Even though
the DNS results validate the predictions of our analysis, other mechanisms for streak
formation are possible. For example, it is well known that unsteady oblique modes
can interact nonlinearly to produce streaks in canonical flows (Schmid & Henningson
1992; Fasel, Thumm & Bestek 1993; Berlin, Lundbladh & Henningson 1994; Chang
& Malik 1994; Sandham, Adams & Kleiser 1995). However, even when we conduct
simulations using a pair of unsteady oblique inputs (shown in figure 5c and with the
same amplitude as the previous steady inputs), the dominant responses in DNS are
still given by the steady streaky outputs. Since both I/O analysis and DNS identify
steady streaks as the robust flow features, the amplification of infinitesimal upstream
perturbations may play an important role in the formation of the streaks in realistic
flow configurations. Thus, in what follows, we investigate the spatial structure of the
dominant steady responses resulting from the I/O analysis in an attempt to uncover
physical mechanisms responsible for the streak formation in compression ramp flow.

3.3. Spatial structure of the most amplified perturbations
In order to gain insight into the spatial structure of the most amplified perturbations,
we examine the velocity and vorticity components (u′s, ω

′
s) of the dominant output

φ1 along the coordinate system associated with the base-flow streamlines (Bradshaw
1973). In figure 8, we also show the wall-aligned coordinate system, where ξ and η
denote the directions parallel and normal to the wall, respectively. In the flow with
ReL= 3.7× 105, figure 8(b) illustrates the output components corresponding to λz= 3
near reattachment in the (η, z) plane. We note that the most amplified perturbations are

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

70
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

SC
 - 

N
or

ri
s 

M
ed

ic
al

 L
ib

ra
ry

, o
n 

16
 O

ct
 2

01
9 

at
 1

7:
56

:4
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.702
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


124 A. Dwivedi, G. S. Sidharth, J. W. Nichols, G. V. Candler and M. R. Jovanović

y(a) (b)
x

˙

≈

˙

z
¬z = 3

n
s

FIGURE 8. (Colour online) (a) Schematic of the different coordinate systems for analysing
the perturbation evolution. (b) Colour plots of streamwise velocity u′s and contour lines of
streamwise vorticity ω′s at streamwise location x/L= 1.4 (post-reattachment) corresponding
to the dominant output φ1 at λz = 3. Solid lines denote positive values and dashed lines
denote negative values of ω′s.

given by alternating regions of high and low velocities with counter-rotating vortices
between them and that u′s and ω′s are 90◦ out of phase in the spanwise direction.

To quantify the spatial evolution of flow perturbations, we compute the wall-normal
integrals of the streamwise enstrophy (ω′sω

′
s) and the streamwise specific energy (u′su

′
s)

as a function of x for three different values of λz (1, 3 and 10). In the flow with
ReL= 3.7× 105, these respectively identify the outputs with small, dominant and large
spanwise wavelengths. To ensure that the perturbations in the separated shear layer
are captured, the wall-normal integral is computed for η ∈ [0, 5δsep], where δsep is the
displacement boundary layer thickness at separation. For λz = 1, figure 9 illustrates
that both the streamwise enstrophy and specific energy saturate within the bubble
followed by a large amplification near the reattachment R. In contrast, for λz = 10
the perturbations grow steadily in the bubble followed by a weaker amplification near
reattachment. For λz = 3, the flow perturbations experience significant amplification
in both the separated zone (prior to the corner, x/L ≈ 1) and in the reattachment
region. These amplification trends are further illustrated in figure 10 which visualizes
ω′s and u′s in the (x, y) plane. We see that both ω′s and u′s have footprints inside the
recirculation zone which demonstrates that they do not solely reside in the reattaching
shear layer. The strength of the perturbations in the recirculation zone increases with
an increase in λz. Therefore, the spanwise wavelength where largest amplification
occurs is associated with vortical perturbations with significant contribution from
both the separation zone (i.e. the separation bubble and the shear layer) and the
reattaching boundary layer. In what follows, we refer to these steady perturbations as
‘reattachment streaks’.

3.4. Input–output analysis without separation bubble perturbations
To confirm the role of separation bubble in the amplification of flow perturbations, we
carry out the I/O analysis by excluding the perturbation dynamics in the bubble. For
ReL = 3.7× 105, we introduce the 2-D base-flow separation streamline as an artificial
boundary, ensuring that the incoming streamwise vortices travel parallel to the surface
of this inviscid boundary with the curvature properties of the separation streamline.
Thus, no perturbations enter the recirculation zone, and all of them are equal to zero
inside this region, as seen in figure 11(a) for ω′s.

The amplification map in figure 11(a) shows that eliminating the role of the
bubble perturbations reduces the largest amplification five times. Also, the spanwise
wavelength that corresponds to the largest gain decreases from λz = 3.0 to λz = 2.25.
Figure 11(b) shows that the wall-normal integrals of the streamwise enstrophy
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FIGURE 9. (Colour online) Spatial evolution of the wall-normal integral of (a) streamwise
enstrophy and (b) streamwise specific energy of the dominant output φ1 for λz = 1, 3, 10.
The lines S and R denote the separation and reattachment points in the 2-D base flow.
The values are normalized using the respective wall-normal integrals at x/L= 0.5.
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FIGURE 10. (Colour online) Streamwise (a) vorticity and (b) velocity perturbations
corresponding to the dominant output φ1 in the (x, y) plane. The bold black line denotes
the separation streamline. Note that ω′s is 90◦ out of phase with respect to u′s in the
spanwise direction.

(ω′sω
′
s) and streamwise specific energy (u′su

′
s) are also reduced in the absence of

the perturbation dynamics within the bubble. The perturbation growth in the present
case clearly saturates until the reattachment region, beyond which it follows the same
trend as in the original I/O fields. We note that, for small values of λz, the I/O
analysis of the SBLI reveals that perturbations experience significant amplification
near reattachment without any contribution from the recirculation bubble. This is
consistent with figure 11(a), which shows almost identical gains for small values
of λz.

4. Amplification of steady reattachment streaks: physical mechanism
As demonstrated in the previous section, the hypersonic flow over a compression

ramp selectively amplifies small upstream perturbations of a specific spanwise
wavelength. The largest amplification is associated with steady perturbations where
different regions of the 2-D base flow contribute to the growth of 3-D reattachment
streaks. To characterize the streak amplification, we examine the equation that governs
the evolution of Chu’s compressible energy ECE (Chu 1965; Hanifi et al. 1996) of
the perturbations resulting from the I/O analysis. As shown in Sidharth et al. (2018),
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FIGURE 11. (Colour online) (a) Amplification map G for steady inputs along with
insets of streamwise vorticity ω′s. (b) Comparison of wall-normal integrals of the
streamwise enstrophy (ω′sω

′
s) and specific kinetic energy (u′su

′
s) in the presence and

absence of perturbation dynamics in the recirculation bubble for λz that yields the largest
amplification. The values in (b) are normalized using the respective wall-normal integrals
at x/L= 0.5.

this equation is given by

dECE

dt
+ T =P + S + V +F , (4.1)

where T , S , P and V , respectively, determine transport, source, production and
viscous terms (Sidharth et al. 2018, equations (16) and (17)). On the other hand, F
accounts for the work done by external disturbances (see appendix C). The transport
term T is responsible for advection of perturbations by the base-flow velocity; the
source term S corresponds to the perturbation component of the inviscid material
derivative; the production term P quantifies interactions of perturbations with the
mean flow gradients and is, in general, sign-indefinite; and the viscous term V
determines dissipation of Chu’s compressible energy by viscous stresses.

For incompressible flows, the divergence-free property of velocity field can be
utilized to simplify the terms in (4.1); e.g. see Sipp & Marquet (2013) for the
analysis of energy amplification in an incompressible spatially developing boundary
layer. Here, we evaluate different terms in (4.1) for the most amplified steady
perturbations with λz = 3. The viscous terms are dissipative and, thus, negative
throughout the domain and the terms S and F are found to be negligible. As
illustrated in figure 12, the production term P associated with steady perturbations
is active in the spatial locations near and after reattachment. Further analysis reveals
that the dominant positive contribution to P comes from the momentum transport
equation.

To investigate the physical mechanisms responsible for the amplification of 3-D
reattachment streaks we analyse the dominant terms in the linearized inviscid transport
equations. In particular, we examine the spatial development of the streamwise
vorticity, velocity and temperature perturbations and identify amplification mechanisms
that result from the interactions of flow perturbations with base-flow gradients.

4.1. Inviscid transport of streamwise vorticity
We consider transport of flow fluctuations in the (s, n, z) coordinate system which is
locally aligned with the streamlines of the base flow (ūs, 0, 0). This coordinate system
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Separation streamline

Base flow streamlines

p > 0 in red

FIGURE 12. (Colour online) Distribution of the production term P in (4.1) for steady
perturbations with λz= 3. The regions marked in red and blue correspond to positive and
negative values of P .

allows us to quantify relative contributions to the energy amplification of base-flow
gradients, the flow curvature in the presence of flow separation and the baroclinic
effects. Similar framework has been utilized to evaluate the effect of longitudinal
streamline curvature on Reynolds stresses in turbulent boundary layer and shear layer
flows (Finnigan 1983; Richmond, Chen & Patel 1986; Maurizi et al. 1997; Patel &
Sotiropoulos 1997; Kansa 2002).

As shown in appendix B, the inviscid transport of steady streamwise vorticity
perturbation ω′s can be written as

ūs∂sω
′
s ≈

∂nρ̄

ρ̄2
iβp′ − ∂nūs∂sw′ − 2ūs

R
iβu′s, (4.2)

where R is the local radius of curvature, (u′s, u′n,w′) are the velocity fluctuations and
ω′s := ∂nw′− iβu′n, where β :=2π/λz. The left-hand side of (4.2) determines streamwise
advection of ω′s by the base flow ūs. On the other hand, the three terms on the right-
hand side lead to production (P) of ω′s and they account for:

(i) baroclinic effect, which arises from misalignment of pressure and density
gradients and accounts for differential acceleration caused by variable inertia
(Sidharth, Candler & Dimotakis 2014; Sidharth & Candler 2018);

(ii) vortex tilting, which redistributes vorticity perturbations from the stream-normal
direction n to the streamwise direction s; and

(iii) centrifugal effect, which originates from the curvature 1/R in the coordinate
system associated with the base-flow streamlines.

Multiplication of (4.2) with ω′s and integration over η yield the equation that can be
used to evaluate the spatial transport of streamwise enstrophy (ω′sω

′
s) and assess the

relative contribution of different physical effects:

1
2

∫ η0

0
ūs∂s(ω

′
sω
′
s) dη ≈

∫ η0

0

∂nρ̄

ρ̄2
iβp′ω′s dη−

∫ η0

0
∂nūs(ω

′
s∂sw′) dη

−
∫ η0

0

2ūs

R
iβu′sω

′
s dη, (4.3)

where η0 = 5δsep. Figure 13(a) compares the x-dependence of the absolute values of
the terms on the right-hand side of (4.3) for dominant output perturbations resulting
from the I/O analysis with λz=3. The dominant contribution arises from the baroclinic
effect, with spanwise variations in p′ and stream-normal variations in ρ̄ representing
the prime sources of the baroclinic torque perturbations. In contrast to incompressible
flows, the baroclinic term is particularly important in cold-wall hypersonic boundary
layers and it is the sole contributor to ω′s in the bulk of the separation zone.
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FIGURE 13. (Colour online) (a) Comparison of the magnitude of the production terms P
in (4.3) (where the perturbations are normalized using the value of

∫
ω′sω

′
s dη at x/L =

0.5) along with the streamwise variation of the Görtler number G; (b) illustration of the
baroclinic term ∇ρ̄ × ∇p′ for the dominant output with λz = 3; and (c) corresponding
quantities near the reattachment plane at x/L= 1.36.

Previous experimental (Chuvakhov et al. 2017; Roghelia et al. 2017b) and
numerical (Navarro-Martinez & Tutty 2005) SBLI studies have attributed the
development of streamwise streaks to centrifugal effects. The Görtler number,
G = √L/(Rε), where ε := ūη/ūξ (see appendix A), quantifies the effect of local
flow curvature and figure 13(a) shows that the contribution of the centrifugal terms to
the reattachment streaks increases in the regions of high G (i.e. near separation and
reattachment points). Relative to baroclinic and vortex tilting terms, the centrifugal
effects appear to play a minor role in the spatial amplification of reattachment
streaks. Since the largest contribution comes from the baroclinic term, our analysis
of the spatial transport of the most amplified output perturbations demonstrates that
baroclinic effects (rather than centrifugal effects) trigger reattachment streaks in
hypersonic compression ramp flows.

We illustrate the linear baroclinic mechanism in figure 13(b) by showing three
quantities: (i) the base-flow density ρ̄ in the (x, y) plane using an orange colourmap;
(ii) the spanwise gradient of the pressure perturbations p′ in the (y, z) plane near
reattachment using the red–white–blue colourmap; and (iii) the isosurfaces of
streamwise vorticity ω′s using a grey–black colourmap. Since the linearized baroclinic
torque that is active in the steady response is associated with ∇ρ̄ × ∇p′, we focus
on examining the gradients of ρ̄ and p′ shown in figure 13(c). Near reattachment,
the density gradient is aligned with the wall-normal direction η. This is because the
ρ̄ colourmap becomes darker as we move away from the wall in the direction of
increasing η. At the same x location, the gradient of p′ is orthogonal to the (x, y)
plane; it achieves its largest value midway between the blue and the red lobes and
it points in the direction from the centre of the blue to the centre of the red lobes.
As illustrated in figure 13(b,c), the resulting linearized baroclinic torque ∇ρ̄ × ∇p′
aligns with the streamwise vorticity ω′s, thereby leading to its production.

4.2. Inviscid transport of streamwise velocity
Recent experimental (Mustafa et al. 2019) and numerical (Sandham et al. 2014;
Dwivedi et al. 2017) studies demonstrated that streamwise velocity perturbations
contribute most to the kinetic energy. In appendix A, we confirm this observation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

70
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

SC
 - 

N
or

ri
s 

M
ed

ic
al

 L
ib

ra
ry

, o
n 

16
 O

ct
 2

01
9 

at
 1

7:
56

:4
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.702
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Reattachment streaks in hypersonic compression ramp flow 129

using relative scaling of the perturbation quantities. The spatial transport of streamwise
velocity u′s is governed by

ūs∂su′s ≈−∂sūsu′s − ∂nūsu′n −
ūs

R
u′n −

1
ρ̄
∂sp′, (4.4)

where the term on the left-hand side quantifies the transport of u′s by the base flow
ūs. The first two terms on the right-hand side account for the production (P) of
perturbations by the base-flow gradients. In particular, the first term is responsible
for the growth of u′s because of the streamwise deceleration of the base flow (where
∂sūs < 0), the second term originates from the base-flow shear and it accounts for the
lift-up mechanism (Landahl 1980) and the additional terms account for the centrifugal
effects and the influence of pressure gradient.

Multiplication of (4.4) with u′s and integration over η yield the equation that can be
used to evaluate the spatial transport of streamwise specific energy (u′su

′
s) and assess

the relative contribution of different physical effects:

1
2

∫ η0

0
ūs∂s(u′su

′
s) dη ≈ −

∫ η0

0
∂sūs(u′su

′
s) dη−

∫ η0

0
∂nūs(u′nu′s) dη

−
∫ η0

0

ūs

R
(u′nu′s) dη−

∫ η0

0

1
ρ̄
(∂sp′u′s) dη, (4.5)

where η0 = 5δsep. The centrifugal effects are found to be negligible and the pressure
gradient reduces growth of specific kinetic energy. Thus, to quantify the spatial
amplification of u′s it is essential to examine the role of the production terms (i.e. the
first two terms on the right-hand side of (4.5)).

The contribution of the production terms to the streamwise specific kinetic energy is
illustrated in figure 14 for three different values of λz. In all three cases, streamwise
deceleration term dominates the production of u′s and it peaks for the spanwise
wavelength λz = 3. The lift-up effect introduces a large positive contribution for
the perturbations with small values of λz. These perturbations are almost absent in
the recirculation zone and the contribution from this effect is dominant prior to
separation. For larger values of λz, the contribution of lift-up mechanism decreases
after separation and becomes negative over a significant region within the separation
zone. This explains the reduced amplification at reattachment for large spanwise
wavelength observed in figure 9(b).

4.3. Inviscid transport of temperature perturbations
To understand the formation of heat streaks near reattachment, we consider the spatial
amplification of temperature perturbations T ′ as they are transported by the base flow.
For the most amplified output perturbations, we retain the terms with significant
contribution to the inviscid transport equation for T ′2:

ūs∂s(T ′2/2)≈−∂sT̄(u′sT
′)− ∂nT̄(u′nT ′)− (γ − 1)(∇ · ū)T ′2. (4.6)

It turns out that ∂nw′ does not have a significant contribution to the production of T ′2
for λz = 3 and, since ω′s = ∂nw′ − iβu′n, we have u′n ≈ −ω′s/(iβ). Thus, for the most
amplified steady 3-D output perturbations, we can approximate equation (4.6) as

ūs∂s(T ′2/2)≈−∂sT̄(u′sT
′)+ ∂nT̄

(ω′sT
′)

iβ
− (γ − 1)(∇ · ū)T ′2. (4.7)
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FIGURE 14. Contribution of the production term P in (4.5) for the output φ1 with (a)
small, (b) dominant and (c) large value of λz. For each spanwise wavelength, the terms
are normalized using the wall-normal integrals of the streamwise specific kinetic energy
(at x/L= 0.5). The negative values of the shear term are not plotted.

The first term on the right-hand side is associated with the temperature perturbation
flux in the streamwise direction and the streamwise gradient ∂sT̄ near reattachment
is responsible for the production of the temperature fluctuations. The second term
accounts for the transport of T ′ by the streamwise vorticity ω′s across the wall-normal
thermal base-flow gradients in the boundary layer. Therefore, both u′s and ω′s contribute
to production of temperature fluctuations at reattachment. The third term quantifies the
base-flow dilatation in the reattachment shock where ∇ · ū takes large negative values.
All of these three physical effects significantly contribute to the amplification of T ′
near reattachment.

Remark 1. Our analysis of inviscid transport equations uncovers physical mechani-
sms responsible for the amplification of steady reattachment streaks. We showed that
streamwise deceleration contributes to the amplification of u′s and that the baroclinic
effects are responsible for the amplification of ω′s. Furthermore, the appearance
of the temperature streaks near reattachment is triggered by the growth of both
u′s and ω′s as well as by the amplification of upstream temperature perturbations
by base-flow dilatation ∇ · ū that originates from the reattachment shock. The
spanwise scale selection can be attributed to the presence of flow perturbations in the
separation bubble and in the reattaching shear layer. As demonstrated in § 3.3, weak
amplification for small spanwise wavelengths arises from the absence of perturbation
dynamics within the bubble. In contrast, for large values of λz, amplification is weak
because the perturbations in the bubble destructively interfere with the perturbations
in the separated shear layer (see § 4.2).

Remark 2. The emergence of reattachment streaks in laminar hypersonic SBLI is
typically attributed to centrifugal instability that results from the streamline curvature
near reattachment (Navarro-Martinez & Tutty 2005; Chuvakhov et al. 2017; Roghelia
et al. 2017a,b). In contrast, our analysis demonstrates the importance of baroclinic
terms and shows that the centrifugal effects play only a minor role in the spatial
amplification of the streaks. In cold-wall hypersonic boundary layers, baroclinic torque
results from the interactions of upstream pressure perturbations with base-flow density
gradients which provides a physical mechanism for the emergence of the reattachment
streaks.
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5. Concluding remarks
We have employed an I/O analysis to investigate amplification of disturbances in

compressible boundary layer flows. Our approach utilizes global linearized dynamics
to study the growth of flow perturbations and identify the spatial structure of the
dominant response. For supersonic flat-plate boundary layers, we have verified that the
I/O approach captures both acoustic and vortical spatial growth mechanisms without
any a priori knowledge of the perturbation form.

In an effort to explain the heat streaks near reattachment, we have also examined
the experimentally observed reattachment streaks in SBLI on Mach 8 flow over a
15◦ compression ramp. In spite of global stability, the I/O analysis predicts large
amplification of incoming steady streamwise vortical disturbances with a specific
spanwise length scale. The dominant output takes the form of steady streamwise
streaks near reattachment and we employ DNS to verify robustness of the identified
responses. In addition to an agreement with DNS, our predictions of the most
amplified spatio-temporal flow structures agree well with two recent experiments.

We have also uncovered physical mechanisms responsible for amplification of steady
reattachment streaks. This was accomplished by evaluating the dominant contribution
of the base-flow gradients to the production of streamwise velocity, vorticity and
temperature perturbations in the inviscid transport equations. We have demonstrated
that streamwise deceleration in the recirculation bubble and the reattaching shear
layer are responsible for the amplification of streamwise velocity perturbations and
that the baroclinic effects contribute most to the amplification of streamwise vorticity.
Furthermore, the appearance of the temperature streaks near reattachment is triggered
by the growth of both streamwise velocity and vorticity along with the amplification
of upstream temperature perturbations by the reattachment shock.

The emergence of reattachment streaks is typically attributed to Görtler-like
centrifugal instability at the reattachment (Navarro-Martinez & Tutty 2005; Chuvakhov
et al. 2017; Roghelia et al. 2017a,b). In contrast, our analysis shows that the
reattachment streaks in a cold-wall hypersonic compression ramp flow are caused by
the baroclinic effects. These effects arise from the interactions of base-flow density
gradients in the thermal boundary layer with spanwise gradients of the incoming
pressure perturbations and are a distinguishing feature of high-speed cold-wall
compressible flows. We have also demonstrated that the spanwise scale selection
can be attributed to the presence of flow perturbations in the separation bubble and
in the reattaching shear layer. In particular, the weak amplification for small spanwise
wavelengths results from the absence of perturbation dynamics within the bubble. In
contrast, for perturbations with large spanwise length scales, amplification is weak
because the perturbations in the separation bubble destructively interfere with the
perturbations in the separated shear layer.

The I/O approach provides a useful computational framework to quantify the spatial
evolution of external perturbations in SBLIs. Improved understanding of amplification
mechanisms can provide important physical insights about transition to turbulence.
We expect that our work will motivate additional numerical and experimental studies
that explore nonlinear aspects of transition in complex high-speed flows and pave the
way for the development of predictive transition models and effective flow-control
strategies.

Acknowledgements
Financial support from the Air Force Office of Scientific Research (under award

FA9550-18-1-0422) and the Office of Naval Research (under awards N00014-17-1-
2496 and N00014-19-1-2037) is gratefully acknowledged.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

70
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

SC
 - 

N
or

ri
s 

M
ed

ic
al

 L
ib

ra
ry

, o
n 

16
 O

ct
 2

01
9 

at
 1

7:
56

:4
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.702
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


132 A. Dwivedi, G. S. Sidharth, J. W. Nichols, G. V. Candler and M. R. Jovanović

0.5 1.0
(ø�

s¬z/u�
s)(1/´)

1.5 2.0

0.006

Boundary/shear layer
Recirculation

0.004
p.

d.
f.

0.002

0

FIGURE 15. (Colour online) Probability distribution function (p.d.f.) comparing relative
size of streamwise vorticity ω′s and velocity u′s perturbation components of the dominant
output φ1 for spanwise wavelength λz = 3. The inset shows regions corresponding to the
recirculation bubble and the boundary/shear layer.

Appendix A. Relative scaling of perturbation velocity components

Streak-like perturbations in attached boundary layers obey a scaling similar to
the base-flow quantities. Since the streamwise velocity perturbations are significantly
larger than the wall-normal and spanwise perturbations, we have u′n,z/u

′
s ≈ O(ε),

where ε= ūη/ūξ is the small parameter and (η, ξ ) denotes the wall-aligned coordinate
system. Here, we verify the validity of this relative scaling in the steady output mode
associated with the compression ramp SBLI flow.

Analysis is done for ReL= 3.7× 105 and the dominant output at this flow condition
corresponds to λz = 3. We study the relative scaling of the streamwise velocity u′s
and vorticity ω′s := ∂nw′ − iβu′n perturbations associated with the dominant output by
examining the quantity ω′sλzε/u′s at each spatial location in the flow field. If a relative
scaling described above holds, this quantity should be of O(1). Figure 15 shows
the probability distribution function of this quantity, sampled inside and outside the
recirculation region. In both regions, the quantity is indeed of O(1), confirming the
scaling. We also observe that, when normalized with the streamwise component, ω′s
is larger in the recirculation region than in the shear/boundary layer.

Appendix B. Spatial transport of streamwise vorticity

The steady inviscid streamwise vorticity equation in the (s, n) coordinates is given
by

uj∂jωs =ωj∂jus −ωs∂juj + ∂nρ∂zp− ∂zρ∂np
ρ2

− usωn

R
, j= s, n, z. (B 1)

Linearization of (B 1) around base velocity (ūs, 0, 0) and vorticity (0, 0, ω̄z) fields
yields

ūs∂sω
′
s = (ω̄z∂zu′s + ∂sūsω

′
s + ∂nūsω

′
n)− ∂sūsω

′
s +
(
∂nρ̄

ρ̄2
∂zp′ − ∂np̄

ρ̄2
∂zρ
′
)
− ūs

R
ω′n. (B 2)
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As shown in appendix A, for the dominant output we have ∂nρ̄∂zp′ � ∂np̄∂zρ
′ and

∂zu′s� ∂sw′. Since ω̄z := −∂nūs − ūs/R and ω′n := −∂sw′ + ∂zu′s, for spanwise periodic
perturbations with the spanwise wavenumber β we obtain

ūs∂sω
′
s ≈−∂sw′∂nūs − 2

ūs

R
iβu′s +

∂nρ̄

ρ̄2
iβp′. (B 3)

Appendix C. Transport equation for Chu’s compressible energy

Chu’s compressible energy is determined by the quadratic form of the state q of
the linearized evolution model (2.4):

ECE = φ∗Qφ = q∗Mq, (C 1)

where the matrix Q incorporates the quadrature weights as well as the diagonal
transformation matrix that depends on the base-flow quantities (Hanifi et al. 1996),
and M = C ∗QC . By introducing a coordinate transformation

q̃ =M1/2q, (C 2)

the state equation in (2.4) takes the form

d
dt

q̃=M1/2AM−1/2q̃ +M1/2Bd, (C 3)

and the square of the Euclidean norm of q̃ gives Chu’s compressible energy, ECE =
q̃∗q̃. Left multiplication of (4.1) with q̃∗ yields (4.1), where work done by external
disturbances F is determined by the inner product of q̃ with M1/2Bd . Expressions
for transport, source, production and viscous terms in (4.1) are provided in Sidharth
et al. (2018, equations (16) and (17)).
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JEUN, J., NICHOLS, J. W. & JOVANOVIĆ, M. R. 2016 Input–output analysis of high-speed

axisymmetric isothermal jet noise. Phys. Fluids 28 (4), 047101.
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