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Abstract— We consider the problem of reaching consensus
in a social network of agents described by the DeGroot
model. We develop a measure for the efficiency with which
consensus is reached, where the measure quantifies the transient
behavior of public opinion around the consensus value. We then
propose an optimization problem that maximizes consensus-
reaching efficiency via the creation of new social links, subject
to a total link-creation budget. We employ the alternating
direction method of multipliers, an algorithm well-suited to
large optimization problems, to find the optimal location and
weights of the new links. We demonstrate the utility of our
results through an example, where we observe that for a social
network described by a regular graph the addition of new
links leads to an augmented graph that resembles a small-world
network characterized by sparse long-range links.

Index Terms— Alternating direction method of multipliers,
consensus, DeGroot model, opinion dynamics, optimization,
small-world networks, social networks, sparsity, stochastic ma-
trices.

I. INTRODUCTION

Problems in social networks, such as social influence,
community detection, opinion formation, consensus,
cascades, and viral marketing, have been the topic of
active research across different scientific communities;
see [1]–[13] and references therein. Most of these works
share the common theme of analyzing a certain network
property or behavior over an a priori given topology of
social interactions. In contrast, in this work we search over
all possible augmentations of the existing network so as to
optimize its performance in achieving a common goal.

We consider a social network of single-integrator
agents whose beliefs evolve in time according to the
classic DeGroot model [14]. In this model every agent
updates its opinion by taking a weighted average of those
it socially interacts with. Networks governed by such
dynamics are known to reach consensus in steady-state.
However, steady-state analysis does not capture the system’s
transient characteristics, such as short-time amplification
and oscillations around the consensus value. Thus, in this
paper we begin by developing a measure for the efficiency
with which consensus is reached. Our measure is based
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on the deviation of individual opinions from a common
opinion, summed over all agents and over all time. We then
formulate an optimization problem which, given a certain
budget for creating new social links over the entire network,
attempts to maximize the efficiency of reaching consensus
by choosing both the best locations and the best weights for
new social links. This optimization problem is complicated
by the fact that, in order to incorporate the beliefs of new
individuals, an agent has to make room for new social links
by reconfiguring its weighted averaging scheme.

We use the alternating direction method of multipliers
(ADMM) to solve the optimization problem, and apply our
results to a social network described by a regular graph with
nearest neighbor interactions. We find that the optimal new
social interactions are in the form of sparse long-range links,
resembling the characteristics of a small-world network [15].

II. QUANTIFYING CONSENSUS EFFICIENCY

Consider a social network composed of n agents whose
beliefs evolve according to

x(k + 1) = Tx(k). (1)

Here, x is a column n-vector composed of nonnegative
values that represent the beliefs of the agents with regards to
a particular social issue, and T is a (right) stochastic matrix
that satisfies

T1 = 1, Tij ≥ 0, i, j = 1, . . . , n, (2)

where 1 is the column vector of all ones. The matrix T
is not necessarily symmetric. We assume that all diagonal
entries of T are positive and that the graph described by
T is strongly connected; these conditions guarantee that
the network will reach consensus in steady-state [8], [14],
and that all eigenvalues of T except for the one at λ = 1
belong to the open unit disk. The belief evolution scheme
described by (1)-(2) is widely used in the social networks
literature and is often referred to as the DeGroot model.

In a network described by (1)-(2), at every time step each
agent updates his/her beliefs by taking a weighted average
of the beliefs of those agents he/she socially interacts with.
This justifies why every row of T is composed of nonnegative
entries that sum to one. It is not difficult to see that if such
a system is initialized at an x(0) whose entries all belong
to the interval [0, 1], then the entries of x(k) remain within
this interval for all k ≥ 0. Furthermore, it can be shown that
under our assumptions on T , the network reaches consensus
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as k grows,
lim
k→∞

x(k) = χ1,

where the consensus value χ is determined by a weighted
average of the entries of x(0) with weights that depend
on the matrix T . Of course, this result concerns only the
steady-state behavior of the social network. In what follows,
we propose a new measure of consensus that accounts for
transient behavior around χ and quantifies the efficiency
with which the consensus opinion is reached, regardless of
the value of χ.

Let Q be a positive semidefinite matrix that satisfies Q1 =
0, i.e.,

1TQ1 = 0, ζTQζ ≥ 0 for all ζ 6= 0 s.t. ζT1 = 0.

The properties of Q imply that x(k)TQx(k) quantifies the
deviation of the entries of x(k) from a uniform value. Let
ei denote the ith standard basis vector in Rn, and let

x(0) = ei.

This can be interpreted as a social network in which all
agents have zero initial belief except for the ith agent, whose
belief is equal to one. From (1) it follows that the propagation
of this initial belief through society is described by

x(k) = T kei,

and
x(k)TQx(k) = eTi T

kTQT kei

measures the deviation from consensus at time k.

Proceeding formally, we define

J =
∑n
i=1(eTi Qei + eTi T

TQTei + eTi T
2TQT 2ei + · · · )

as a measure of consensus-reaching efficiency. We have

J = trace(Q(
∑
ieie

T
i ) + TTQT (

∑
ieie

T
i )

+ T 2TQT 2(
∑
ieie

T
i ) + · · · )

= trace(Q+ TTQT + T 2TQT 2 + · · · )
= trace(P )

where P is a positive semidefinite matrix that satisfies the
algebraic Lyapunov equation

P = TTP T +Q. (3)

Indeed, the smaller J is the more efficient the convergence
of public opinion to the consensus value.

We emphasize again that compared to other consensus
performance measures in the literature, e.g., distance
from average consensus in [8], the measure defined
by J is independent of the actual consensus value χ and
only depends on the cumulative transient behavior around χ.

In defining J in the preceding development, we
temporarily ignored issues of convergence. However, since
T satisfies T1 = 1 and therefore has an eigenvalue at
λ = 1, we have to ensure that the infinite series in the
definition of J converges. The key observation here is that

when Q satisfies Q1 = 0 it effectively makes the mode
at λ = 1 unobservable, thus allowing the infinite sum in
the definition of J to converge. Lemma 1 below makes
this notion precise. Furthermore, Lemma 1 describes how
to modify the Lyapunov equation (3) so that eigenvalue at
λ = 1 can be moved to within the open unit disk in the
complex plane. Our result is quite general in that it does not
require the matrix T to be symmetric, or its corresponding
graph to be undirected, as opposed to a similar result in
[16], [17] which utilizes the symmetry of T . We define the
notation 1⊥ = {x ∈ Rn | 1Tx = 0}.

Lemma 1: Let the matrices A and Q satisfy A1 = 1 and
Q1 = 0, QT = Q. Suppose that A is diagonalizable and
has spectrum in the open unit disk when restricted to the
subspace 1⊥, and that Q is a positive semidefinite matrix
when restricted to the subspace 1⊥. Then among all positive
semidefinite solutions of the Lyapunov equation

P = ATPA+Q,

the one with the minimum trace satisfies

P1 = 0.

Furthermore, this minimum-trace solution also satisfies

P = (A− 11T /n)TP (A− 11T /n) +Q,

where A− 11T /n has spectrum in the open unit disk.

Proof: An outline of the proof is as follows. We use
the properties A1 = 1 and Q1 = 0 to show that any matrix
P that satisfies P = ATPA + Q necessarily has 1 as an
eigenvector, P1 = ω1, and that the corresponding eigen-
value ω can take any nonnegative real value (independently
of the other eigenvalues). Since the trace of the positive
semidefinite matrix P is equal to the sum of its (nonnegative)
eigenvalues, then trace(P) is minimized if ω = 0, and
thus P1 = 0. This implies that if one solves the Lyapunov
equation P = (A−β 11T /n)TP (A−β 11T /n)+Q subject
to the condition P1 = 0 then the solution is independent of
β. Therefore β can be chosen to shift the eigenvalue of A at
1 to inside the open unit disk; in particular, β = 1 shifts this
eigenvalue to 0. The details of the proof are omitted due to
space limitations and will be reported elsewhere.

Using this result, in what follows we replace the Lyapunov
equation in (3) with

P = (T − 11T /n)TP (T − 11T /n) +Q.

III. CREATION OF NEW SOCIAL LINKS

In this section we consider the following problem:
Suppose that we are allotted a total amount of weight % that
we can use to create new social links, i.e., if the ith agent
creates new social links whose weights sum to σi, then∑n
i=1 σi ≤ %. Obviously % has to be a small number for

this to be an interesting problem; if % is very large, then the
result of creating new links may be a dense graph in which
every agent is connected to all other agents.
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Let us recall that in the framework considered in this
work, each agent updates its belief by taking a weighted
average over the beliefs of those it socially interacts with.
Thus, for an agent to create new links between itself and
other agents, it has to ‘make room’ in its weighted averaging
scheme by ‘scaling down’ the weight it puts on existing links.

The evolution of beliefs in the new augmented social
network is described by the dynamics [18], [19]

x(k + 1) = (S T + U)x(k)

where
S = I − diag{σ},

U1 = σ, Uij ≥ 0,

σ =
[
σ1 · · · σn

]T
,

0 ≤ σi ≤ 1 for i = 1, . . . , n,

σi = total weight agent i allocates to its new social links.

The matrix U describes the weight and distribution of the
new social links; the entries in the ith row of U sum to σi.
The matrix S scales down the weights of the existing links
to make room for new ones; the ith diagonal element of S is
equal to 1−σi. As expected, S T +U is a stochastic matrix,
as its entries are all positive and its rows sum to one,

(S T + U)1 = S T1+ U1 = S 1+ σ = 1− σ + σ = 1.

We now formulate an optimization problem with the
purpose of finding the vector of weights σ and the dis-
tribution of the weights U within the network such that
consensus-reaching efficiency is maximally raised, subject
to the constraint 1T σ ≤ % on the sum of weights,

minimize trace(P )

subject to P = (S T + U − 11T /n)TP ·
· (S T + U − 11T /n) +Q, P1 = 0

S = I − diag{σ}
U1 = σ, U ≥ 0

1Tσ ≤ %, 0 ≤ σ ≤ 1.
(4)

The Lyapunov equation in the constraints uses Lemma 1
with A := S T + U and Q := Q, and is a substitute for
the equation P = (S T + U)TP (S T + U) + Q; see the
discussion preceding Lemma 1 for a justification of this
substitution.

We note that in this formulation the number of links is
not explicitly penalized. Therefore, the possibilities in the
solution of (4) range from ‘all agents making many new
social links with small weights’ (which would correspond to
a dense U with many small entries) to ‘some agents making
a few (perhaps long-range) links with large weights’ (which
would correspond to both a sparse σ and a sparse U with
a few large entries). In the examples section, we will solve
(4) for some simple problems and demonstrate that solutions
indeed display sparse properties.

IV. SOLVING SOCIAL LINK CREATION PROBLEM

In this section, we examine the structure of the social
link creation problem (4). While it is a nonconvex
problem, (4) can be formulated as a minimization problem
with a nonlinear objective function over a set of linear
constraints. This observation motivates the use of the
alternating direction method of multipliers (ADMM)
[20], which decomposes (4) into a sequence of simpler
problems. Specifically, ADMM alternates between solving
an unconstrained nonlinear program and solving a quadratic
program with linear constraints.

We begin by rewriting problem (4) in the form

minimize J(σ, U) := trace(P )

subject to P = WTP W +Q, P1 = 0

W = S T + U − 11T /n
S = I − diag{σ}
U1 = σ, U ≥ 0

1Tσ ≤ %, 0 ≤ σ ≤ 1,

(5)

where optimization variables are the n-vector σ and the
n×n matrices P,W, S, U . Here, σ, U are design variables
of interest and P,W, S are auxiliary variables for computing
the objective value J . Note that (5) is a nonconvex
optimization problem because the Lyapunov equation
imposes a nonlinear equality constraint on variables W and
P .

To examine its structure, we next rewrite problem (5) as

minimize J(σ, U)

subject to U1 = σ, U ≥ 0

1Tσ ≤ %, 0 ≤ σ ≤ 1,

(6)

where the consensus-reaching efficiency J(σ, U) is com-
puted as follows. For given (σ, U), we form S and W ,

S = I − diag{σ}
W = S T + U − 11T /n,

solve the Lyapunov equation

P = WTP W +Q,

and take the trace of P to obtain J . Note that the auxiliary
variables P,W, S are eliminated. Thus, J is a nonlinear
function of (σ, U) and the constraints in (6) are linear in
(σ, U). This structure is exploited next using ADMM.

We introduce the indicator function of the linear constraint
set

φ(σ, U) =

{
0 (σ, U) ∈ C
∞ otherwise

where

C :=
{

(σ, U) | U1 = σ, U ≥ 0, 1Tσ ≤ %, 0 ≤ σ ≤ 1
}
.

Then (5) can be put into the following form

minimize J(σ, U) + φ(σ, U),
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or equivalently,

minimize J(σ, U) + φ(z, Z)

subject to σ = z, U = Z.
(7)

The reformulation (7) aims at separating the nonlinear
objective function J from the set of linear constraints C.
This is done by introducing the auxiliary variables (z, Z)
such that J and φ are defined over two sets of optimization
variables. As we show below, the ADMM algorithm exploits
this separable structure and solves (7) through a sequence
of simpler problems. Specifically, it solves the constrained
nonlinear program (7) with a sequence of unconstrained
nonlinear programs and linearly constrained quadratic
programs.

To this end, we form the augmented Lagrangian function
of the constrained problem (7)

Lρ(σ, U, z, Z, ψ,Ψ) = J(σ, U) + φ(z, Z) + ψT (σ − z)

+ trace
(
ΨT (U − Z)

)
+
ρ

2

(
‖σ − z‖22 + ‖U − Z‖2F

)
where ψ ∈ Rn, Ψ ∈ Rn×n are Lagrange multipliers and ρ
is a positive scalar. The ADMM algorithm solves (7) using
the following sequence of iterations

(σ, U)k+1 := arg min
σ, U

Lρ(σ, U, zk, Zk, ψk,Ψk) (8a)

(z, Z)k+1 := arg min
z, Z

Lρ(σk+1, Uk+1, z, Z, ψk,Ψk) (8b)

ψk+1 := ψk + ρ(σk+1 − zk+1) (8c)

Ψk+1 := Ψk + ρ(Uk+1 − Zk+1) (8d)

until the primal and dual residues are sufficiently small,

primal residues:

{
‖σk − zk‖2 ≤ ε1
‖Uk − Zk‖F ≤ ε2

dual residues:


‖σk − σk+1‖2 ≤ ε3
‖zk − zk+1‖2 ≤ ε4
‖Uk − Uk+1‖F ≤ ε5
‖Zk − Zk+1‖F ≤ ε6

where εi are determined by problem data; see [20, Section
3.3] for details.

Note that the (σ, U)-minimization step (8a) is an un-
constrained nonlinear program, which can be solved us-
ing descent methods (e.g., gradient or quasi-Newton itera-
tions [21]). We provide expressions for the gradient direction

∇σLρ(σ, U) = − 2 diag{TMWTP}+ ρ(σ − πk)

∇ULρ(σ, U) = 2P WM + ρ(U −Πk),
(9)

where πk = zk − ψk/ρ and Πk = Zk −Ψk/ρ. Here,

W = (I − diag{σ})T + U − 11T /n, (10)

P and M are solutions of the Lyapunov equations

P = WTP W +Q

M = WMWT + I.
(11)

For given (σ, U), we form W in (10), compute P and M
by solving the Lyapunov equations in (11), and evaluate the
gradient direction in (9).

Using a gradient method, the computational complexity
of problem (8a) is of order n3, where n is the number of
agents in a social network. This is because the evaluation
of the gradient direction (9) requires solutions of Lyapunov
equations (11), which require O(n3) operations.

We next turn to the (z, Z)-minimization step (8b). This
step amounts to minimizing a quadratic objective function
subject to linear constraints

minimize
ρ

2

(
‖z − vk‖2 + ‖Z − V k‖2F

)
subject to Z1 = z, Z ≥ 0, 1T z ≤ %, 0 ≤ z ≤ 1,

where vk = σk+1 + ψk/ρ and V k = Uk+1 + Ψk/ρ.
Eliminating z yields

minimize
ρ

2

(
‖Z1− vk‖2 + ‖Z − V k‖2F

)
subject to Z ≥ 0, 1TZ1 ≤ %, 0 ≤ Z1 ≤ 1.

(12)

Since this is a convex quadratic program, its unique solution
can be computed efficiently by solving the resulting KKT
conditions (see e.g., [21, Section 6.4]).

V. AN EXAMPLE

We consider a social network with n = 25 agents on a
circle; see Fig. 2. The weight that agent i puts on its own
belief is determined by Tii = 0.5 + 0.01ri, where ri is a
Gaussian random variable with zero mean and unit variance.
Each agent distributes the remaining weight 1− Tii equally
on its neighbors and therefore T is right stochastic.

We solve (5) for % ∈ [0.01, 0.1] with 10 uniform grid
points. The consensus measure J decreases as % increases;
see Fig. 1a. This is expected, since a bigger % implies a
bigger feasible set for (σ, U), and hence a smaller optimal
objective value. On the other hand, it is observed that the
belief adjustment matrix U is an approximately sparse
matrix. Specifically, it has a few relatively large entries (on
the order of 10−3) and many small entries (on the order
of 10−9). In particular, the number of entries greater than
10−3 in U increases with %; see Fig. 1b.

This approximately sparse solution U is perhaps rather
surprising in view of the fact that no sparsity-promoting
penalty function (such as the `1 norm) is introduced in (5).
However, a closer look at (5) reveals that the constraints
on (σ, U) play the sparsity-promoting role. It is instructive
to examine the (z, Z)-minimization step in the ADMM
iterations. The resulting quadratic program (12) amounts
to a projection on the intersection of the positive orthant
Z ≥ 0 with the polyhedron determined by {1TZ1 ≤ %,
0 ≤ Z1 ≤ 1}. Such a projection tends to be on the vertices,
yielding a sparse solution. Also note that % controls the size
of the polyhedron and hence the level of sparsity of the
solution.
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Fig. 1: The consensus measure J and the number of social
links as a function of total belief weight %.

We next examine the structure of the new (augmented)
social networks. As shown in Fig. 2, the new social links
are formed among agents that are far from each other.
These long-range interactions facilitate consensus, as they
significantly shorten the average distance between any pair
of nodes in the social network. This is one of the main
characteristics of the small-world phenomenon that has been
observed in a variety of networks (e.g, see [15]).

VI. CONCLUDING REMARKS

We consider the efficiency of reaching consensus in
a social network governed by the DeGroot model. We
propose a performance measure that quantifies the transient
behavior of opinion dynamics. Based on this new measure,
we consider the optimal creation of new social links subject
to budget constraints. We develop an ADMM algorithm that
exploits the separable structure of the optimization problem.

(a) % = 0.01

(b) % = 0.02

(c) % = 0.03

Fig. 2: A social network with n = 25 agents on a circle with
local interactions between neighbors indicated by (black)
dash lines and long-range interactions indicated by (red) solid
lines.
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We observe in examples that new social links are created
among non-local agents. Indeed, it is possible to employ a
perturbation framework to demonstrate that the set of optimal
weak social links is both sparse and long-range, when the
network is allocated a small amount of resources with which
to make new links. This result will be the topic of future
research.
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