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Abstract— We study consensus networks in which each node
updates its state by taking a weighted average of the states
of its neighbors. Our objective is to determine the optimal
set of weak links whose addition to the network maximally
improves the efficiency of reaching consensus. Allocating a small
amount of resources to the entire network with which new links
can be created, we employ a perturbation method to cast this
problem as a linear program. We demonstrate that the set of
optimal weak links is sparse and, based on extensive numerical
experiments, conjecture that they are also long-range. Examples
are provided to illustrate the utility of our developments.

Index Terms— Convex optimization, linear programming,
long-range links, opinion dynamics, perturbation analysis, so-
cial networks, sparsity.

I. INTRODUCTION

Consensus is often of primary importance in collaborative
networks: Generators in power networks synchronize and
their synchrony can be thought of as consensus in the values
of their frequency and phase [1]. Schools of fish achieve
consensus in their directional heading [2]. Rendezvous of a
robotic swarm can be considered as a consensus problem in
both time and space [3]. Societies and communities strive
to reach consensus on social issues. Other instances of
consensus in networks include load balancing in parallel
computing systems [4] and average consensus in sensor
networks [5].

In this paper we use the DeGroot model [6], in which
nodes update their values using a weighted average of their
own current value and that of their neighbors. In this model,
all nodes will eventually reach consensus if the network is
connected. However, in the present work we are interested
in the transient behavior of node values around a consensus
state and the efficiency with which consensus is attained,
rather than in the consensus value itself. We assume that
there is an incentive in the network as a whole to create new
links in order to facilitate the consensus process, and ask the
following question: Given a small amount of resources with
which to create new links, what are the best ‘weak’ links
whose creation would maximize the efficiency of reaching
consensus? Here, by weak links we imply those of small
strength.
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Perturbation methods constitute a powerful toolbox for
uncovering important trends in the design of complex
systems [7]–[9]. Recently, these methods have been
effectively employed to enhance coherence in vehicular
formations [10] and to control the onset of turbulence in
shear flows [11], [12]. We employ perturbation techniques
in the optimal weak link creation problem to recast it as a
linear program. We demonstrate that the optimal weak links
are both sparse and long-range. The cohesive power of weak
ties and their pivotal role in the diffusion of information
was illustrated in the influential work [13] in the context
of social networks, where weak links can be interpreted as
infrequent communication between nodes.

In comparison to existing literature, our work is most
related to that of Boyd et al. [14] on fastest mixing Markov
chains, Ghosh and Boyd on growing well-connected net-
works [15], Baras and Hovareshti [16] on efficient commu-
nication topologies in networked systems, and Olfati-Saber
[17] on ultrafast consensus in small-world networks. We
also draw on recent developments that have utilized `1-
regularization of optimal control problems as a means for
designing sparse consensus [18], [19] and synchronization
networks [20]. In all these works, attention is restricted to
symmetric communication links corresponding to undirected
graphs. In contrast, the communication structure of our
network can be described by any strongly connected directed
graph. Furthermore, in contrast to [14], we do not assume a
predetermined communication architecture for the new links.
In [16] the performance of the network is characterized by
the number of spanning trees in the undirected graph that
describes it. In this work, however, we measure performance
using the cumulative behavior of node values around their
consensus value. While in [17] new links result from a ran-
dom process, here we obtain new links as the solution to an
optimization problem. Finally, an analytical characterization
of how the addition of cycles enhances the performance of
undirected consensus networks has been provided in [19],
whereas we provide a procedure for the identification of
optimal weak links in directed consensus networks.

II. OPTIMAL LINK CREATION IN
CONSENSUS NETWORKS

In this section we describe the network dynamics,
introduce a measure of collective performance, and
formulate an optimization problem for the generation of
new communication links. Our setup is based on that
reported in [21]. Although the proposed framework has
general applicability, we focus on social networks as a
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motivational application and concrete instance of consensus
networks.

Consider a network of n agents whose beliefs evolve
according to the DeGroot model [6]

x(k + 1) = Tx(k). (1)

Here, x(k) is a column n-vector composed of nonnegative
values that represent the beliefs of the agents with regards to
a particular social issue at time k, and T is a (not necessarily
symmetric) matrix that satisfies

T1 = 1, T ≥ 0, (2)

where 1 is the column vector of all ones and the matrix
inequality is elementwise. Assuming that all diagonal entries
of T are positive and that the graph described by T is
strongly connected, all eigenvalues of T except for the one
at λ = 1 belong to the open unit disk. Furthermore, network
(1)-(2) is guaranteed to reach consensus asymptotically [6],
[22]. Finally, if the system is initialized at some x(0) whose
entries all belong to the interval [0, 1], then the entries of
x(k) remain within this interval for all time.

The paper [21] proposes a new measure of collective
performance, in the context of the efficiency of reaching
consensus, that quantifies collaborative behavior across
time and space. This measure is independent of the actual
consensus value and depends only on the cumulative
transient behavior around it. To elaborate, let Q be a
symmetric matrix that satisfies

1TQ1 = 0, ζTQζ > 0 for all ζ 6= 0 s.t. ζT1 = 0. (3)

The properties of Q ensure that x(k)TQx(k) quantifies
the deviation of the entries of x(t) from a uniform value.
Different Q can be used to penalize different spatial scales
of node-value variation across the network.

Let ei denote the ith standard basis vector in Rn, and let
x(0) = ei. This can be interpreted as a network in which all
agents have zero initial value except for the ith node, whose
value is equal to one. From (1) it follows that the propagation
of this initial value through the network is described by
x(k) = T kei, and x(k)TQx(k) = eTi T

kTQT kei measures
deviation-from-consensus at time k. Summing over k, i, and
defining J :=

∑n
i=1

∑∞
k=0 e

T
i T

kTQT kei as a cumulative
measure of consensus-reaching efficiency, it can be shown
that

J = trace(P ),

where P � 0 satisfies the Lyapunov equation

P = (T − 11T /n)TP (T − 11T /n) +Q. (4)

The reason for subtracting 11T /n from T is to eliminate
the eigenvalue λ = 1 of T and render the spectrum of
T − 11T /n inside the open unit disk. This guarantees that
(4) always has a well-defined solution P . Since T1 = 1

and Q1 = 0, the eigenvalue λ = 1 of T is unobservable
through Q, and thus replacing T by T − 11T /n does not
affect the value of J . Finally, as alluded to earlier, the

freedom in choosing Q can be used to penalize different
spatial scales of deviation-from-consensus, such as the sum
of squares of node deviations from the global average or the
sum of squares of node deviations from their local neighbors.

We now consider the optimal link creation problem [21],

minimize trace(P )

subject to P = (S T + U − 11T /n)TP ·
· (S T + U − 11T /n) +Q, P1 = 0

S = I − diag{σ}, 0 ≤ σ ≤ 1, 1Tσ ≤ %
U1 = σ, U ≥ 0,

(5)
where the optimization variables are the n-vector σ and
the n×n matrices U, S, P, and all matrix inequalities are
elementwise. We next elaborate on the formulation of
problem (5).

We assume that the network as a whole is allotted a
total budget % with which to create new links, and that σi
denotes the sum of link weights corresponding to new links
created by the ith agent; thus,

∑n
i=1 σi ≤ %. Furthermore,

for the ith agent to create new links of total weight σi, it
has to make space in its weighted averaging scheme by
scaling down, by a factor of 1 − σi, the weight it places
on its existing links. The elementwise-nonnegative matrix
U describes the weight and distribution of the new links;
the (i, j)th entry of U signifies a new link made by agent
i to agent j. Consequently, the entries in the ith row of
U sum to σi. Opinions in this augmented network evolve
according to (1) in which T is replaced by S T + U and
S = diag{1 − σi, i = 1, . . . , n}. The efficiency of this
augmented network in achieving consensus is captured
by trace(P ), where P satisfies (4) with T is replaced by
S T + U .

We bring attention to the fact that the number of links is
not explicitly penalized in (5). Therefore, the possibilities in
the solution of (5) range from all agents making many new
links with small weights (corresponding to a full U with
many small entries) to some agents making a few links with
large weights (corresponding to a sparse U with a few large
entries). In the sections that follow, we will demonstrate
that solutions are indeed sparse.

Defining the diagonal matrix D

D = diag{σ},

which in particular implies D1 = σ, problem (5) can be
equivalently written as

minimize trace(P )

subject to P = (S T + U − 11T /n)TP ·
· (S T + U − 11T /n) +Q, P1 = 0

S = I −D, 0 ≤ D ≤ I, trace(D) ≤ %
U1 = D1, U ≥ 0,

(6)
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where the optimization variables are the matrices U,D, S, P .

III. SPARSITY OF OPTIMAL WEAK LINKS

In this section we consider the problem of finding optimal
weak links. We refer to a link as weak if it has small
weight, and consider such links as modeling infrequent
communication between nodes. We demonstrate that such
links have the desirable property of being sparse.

In what follows, we approach problem (6) from a per-
turbation standpoint. We assume that the sum of weights
% and the entries of the diagonal matrix D are all small
positive numbers. This also implies that the elementwise-
nonnegative matrix U has small entries. We thus consider
the proceeding problem in which we seek the optimal weak
links to be created

minimize trace(P )

subject to P = (S T + U − 11T /n)TP ·
· (S T + U − 11T /n) +Q, P1 = 0

S = I −D, D diagonal, trace(D) ≤ ε
U1 = D1, U ≥ 0,

(7)
where ε is a small positive number.1 The constraint
trace(D) ≤ ε implies that, given a total budget of ε, the
scenarios for making new links range from one node making
one link with weight ε to many nodes making many links
with weights that add up to ε.

Proposition 1: For small enough values of ε > 0, the
solution of (7) can be determined from the solution of

minimize trace(KT (U −DT ))

subject to U1 = D1, U ≥ 0

trace(D) ≤ 1, D diagonal,

(8)

where the optimization variables are the matrices U and D,
and K is a fixed matrix that depends on T and Q.

Before we give the proof of the proposition, we elaborate
on how to use the solution of (8) to obtain the solution
of (7). Let % be a given small number, signifying the total
weight of the new links to be created. Set ε = %, and solve
(8) to obtain the optimal U∗, D∗. Then, with an abuse of
notation, the matrices U := εU∗ and D := εD∗ solve (7)
for small enough values of ε.

Proof: With an abuse of notation, we replace D, S, U ,
and P in (7) with εD, I − εD, εU , and

P = P0 + εP1 + ε2P2 + · · · ,

respectively. Substituting in the Lyapunov equation and col-
lecting terms gives

Pi = (T − 11T /n)TPi (T − 11T /n) +Qi, i = 0, 1,

1The constraint 0 ≤ D ≤ I has been omitted from (7), since D ≥ 0
is guaranteed by {U1 = D1, U ≥ 0, D diagonal}, and D ≤ I is
guaranteed by {trace(D) ≤ ε, D diagonal, ε� 1}.

with

Q0 := Q,

Q1 := (−DT + U)TP0 (T − 11T /n)
+ (T − 11T /n)TP0 (−DT + U).

We point out that Q1 depends on P0. On the other hand, the
objective function of our optimization problem can now be
rewritten as

trace(P ) = trace(P0) + ε trace(P1) +O(ε2).

Since P0 has no dependence on the optimization variables,
its trace has a constant value and can be eliminated from
the objective. Also, given that ε takes only small values, we
will disregard the higher-order terms and hereafter consider
trace(P1) as our new minimization objective.

The spectrum of T − 11T /n is guaranteed to belong to
the open unit disk and hence the Lyapunov equations for P0

and P1 admit the unique solutions

Pi =

∞∑
k=0

(T − 11T /n)kTQi(T − 11T /n)k, i = 0, 1.

It is easy to show that P01 = P11 = 0. Using the properties
of the trace, our new objective function can be rewritten as

trace(P1) =

∞∑
k=0

trace((T − 11T /n)k(T − 11T /n)kTQ1)

= trace(HQ1),

where

H :=

∞∑
k=0

(T − 11T /n)k(T − 11T /n)kT .

The matrix H can also be found as the solution to the
Lyapunov equation

H = (T − 11T /n)H(T − 11T /n)T + I

Further simplification of trace(P1) using the definition of
Q1 yields

trace(P1) = 2 trace(H(T − 11T /n)TP0 (U −DT ))

= 2 trace(KT (U −DT )),

where
K := P0(T − 11T /n)H.

The problem for the identification of optimal weak links can
now be stated as

minimize trace(KT (U −DT ))

subject to U1 = D1, U ≥ 0

trace(D) ≤ 1, D diagonal,

where the optimization variables are the matrices U and D.
This problem has a linear objective and linear constraints
and is thus a linear program. The proof of the proposition is
now complete.
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The following proposition is one of the main results of
this work. Let card(X) and ‖X‖`1 respectively denote the
cardinality and the 1-norm of the matrix/vector X ,

card(X) : number of nonzero entries in X,

‖X‖`1 :=
∑
i,j

|Xij |.

Proposition 2: Problem (8) is equivalent to

minimize trace((K − F )TU)

subject to ‖U‖`1 ≤ 1, U ≥ 0,
(9)

where the optimization variable is the matrix U , and F is a
fixed matrix that depends on T and K. Moreover, problem
(9) has a sparse solution U∗ that satisfies card(U∗) ≤ 1.

Proof: Using the diagonality of D and the constraint
U1 = D1, the objective of (8) can be rewritten as

trace(KT (U −DT )) = trace(UKT −DTKT )

= trace(UKT − UFT )

where

F : matrix whose ith row is equal to (KTT )ii1
T ,

and (KTT )ii is the ith diagonal entry of KTT . On the other
hand, the remaining constraints in (8) can be rewritten as

‖U‖`1 ≤ 1, U ≥ 0.

Problem (8) thus becomes

minimize trace((K − F )TU)

subject to ‖U‖`1 ≤ 1, U ≥ 0.

Let ν denote the value of the smallest entry of the matrix
K − F ,

ν = min{Kij − Fij , i, j = 1, . . . , n},

and let (iν , jν) denote the indices of any entry of K − F
that achieves this minimum. If ν ≥ 0, then clearly U∗ = 0,
as any other admissible U will render a positive value of the
objective. If ν < 0, then let U∗ be defined by its entries as

U∗ij =

{
0 (i, j) 6= (iν , jν)

1 (i, j) = (iν , jν)

for i, j = 1, . . . , n. This U∗ achieves the smallest value of the
objective among all nonzero and elementwise-nonnegative
U whose 1-norm is bounded by one. The proof of the
proposition is now complete.

We note that Proposition 2 does not guarantee a unique
solution; indeed, the solution is only unique if the minimum
ν in the proof of the proposition is achieved by only one
entry of K − F . For example, if the network is spatially
invariant, then K and F are circulant and there are at least
n entries of the matrix K −F that achieve the minimum ν.
This leads to an entire family of sparse solutions. We will
elaborate on such solutions in the next section.

IV. OPTIMAL WEAK LINKS IN
SPATIALLY INVARIANT NETWORKS

In this section we assume that the network, and the
measure used to quantify its consensus efficiency, are
spatially invariant. We demonstrate that the optimal
weak links inherit the spatial invariance property while
remaining sparse. Furthermore, based on extensive numerical
experiments, we conjecture that these weak links are also
long-range.

In what follows, we assume a spatially invariant network
described by a circulant matrix T . We also assume that Q is
circulant. To justify these choices for T and Q we note that
our developments in this section are motivated by the work
of Watts and Strogatz [23] on small-world networks, where
the authors consider random ‘perturbations’ (in the form of
rewiring of links) to regular connected graphs composed of
local links. We take such regular graphs to be represented
by circulant matrices T . Furthermore, as far as (democratic)
consensus is concerned, most relevant performance measures
use Q matrices that are inherently spatially invariant (as there
is no reason to prefer certain nodes over others), e.g.,

xTQcirc x = (x1 − x2)2+· · ·+ (xn−1 − xn)2+ (xn − x1)2,
xTQave x = (x1 − xave)2+· · ·+ (xn − xave)2,

with xave := (1/n)
∑
i xi. Indeed, the latter quadratic form

is commonly used and corresponds to Q = I − 11T /n.

The circulant assumption on T and Q allows us to find
closed-form expressions for P0, K, and H ,

P0 = HQ, K = H2Q(T − 11T /n),
H = (I − (T − 11T /n)(T − 11T /n)T )−1.

To obtain these expressions, we have used the fact that all
circulant matrices of the same dimension commute. Since
the set of circulant matrices of dimension n is closed under
the operations of summation, multiplication, and inversion,
the matrices P0, K, and H are also circulant.

Proposition 3: Under the assumption of circulant T and
Q, there exists a solution U∗, D∗ to problem (8) which has
the property that U∗ is circulant and D∗ is a scalar multiple
of the identity.

Proof: The proof follows from the observation that both
the objective and the constraints in (8) are shift invariant. We
omit the details due to space limitations.

Proposition 3 states that (8) always has a circulant solution
U . Thus, without sacrificing performance we can reduce the
dimension of the search space by restricting U to the class
of circulant matrices. Under the assumption of circulant U ,
problem (8) simplifies to

minimize trace(KT (U − d T ))
subject to U1 = d1, U ≥ 0

d ≤ 1/n, U circulant,

where the optimization variables are the matrix U and the
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scalar d. In this setting, all nodes are allocated the same
amount of weight with which to make new links, and each
can choose to either make many small links or just a few
large ones.

Next, we exploit the circulant structure of all matrices
involved in the above problem to further simplify its for-
mulation. Let µ, τ , κ, respectively denote the first columns
of U , T , K. Then the objective function in the preceding
program becomes

trace(KTU − dKTT ) = nκT (µ− d τ),

and the constraints can be rewritten as

1Tµ = d, µ ≥ 0, d ≤ 1/n.

We thus have

minimize κT (µ− d τ)
subject to 1Tµ = d, µ ≥ 0, d ≤ 1/n,

or equivalently

minimize (κ− ϕ)Tµ
subject to ‖µ‖`1 ≤ 1/n, µ ≥ 0,

(10)

where
ϕ := (τTκ)1.

Problem (10) is a linear program and can be solved
efficiently for very large systems. Not surprisingly, the
solution µ∗ is sparse.

Proposition 4: Problem (10) has a sparse solution µ∗

that satisfies card(µ∗) ≤ 1.

Proof: The proof is similar to that of Prop. 2.

Our extensive numerical experiments evidence that the
solution of (10) always corresponds to the generation of
long-range links; see Section V for examples. We thus make
the following conjecture.

Conjecture 5: Under the assumption of circulant T and
Q, any solution U∗ of optimization problem (8) corresponds
to the generation of long-range links.

Indeed, we can prove the conjecture for the special case
of circulant symmetric T and Q and in the limit of large n.

V. ILLUSTRATIVE EXAMPLES

We illustrate the sparse and long-range properties of the
optimal weak links through some illustrative examples. For
all computations we used CVX, a package for specifying
and solving convex programs [24], [25].

Example 1: Consider a graph with n = 10 and nearest
neighbor interactions described by the circulant matrix T
with first column τ ,

τ =
[
10
20

3
20 0 0 0 0 0 0 0 7

20

]T
.

Let Q = I − 11T /n. It can be seen from Fig. 1 that the
optimal µ is given by

µ∗ =
[
0 0 0 0 0 1

n 0 0 0 0
]T
,

where the element 1 appears in the 6th entry, and corresponds
to sparse long-range links. Indeed, each node makes a link
to the node farthest away from itself; see Fig. 2. These links
maximally reduce the graph diameter.

1 2 3 4 5 6 7 8 9 10 11
−12

−10

−8

−6

−4

−2

0

2

Fig. 1: The horizontal axis represents the indices of the entries of
a vector in Rn; the first entry repeats at the end to make the plot
symmetric. The continuous plot gives the values of the entries of
κ− ϕ; the circular points give the values of the entries of nµ∗.

Example 2: Consider a graph with n = 10 and with
existing long-range links, described by the circulant matrix
T with first column τ ,

τ =
[
10
20 0 0 0 0 3

20 0 0 0 7
20

]T
.

Let Q = I − 11T /n. Fig. 3 demonstrates that the optimal µ
is given by

µ∗ =
[
0 0 1

2n 0 0 0 0 1
2n 0 0

]T
,

rendering sparse long-range links. It is interesting that the
new links fall exactly in between existing links; see Fig. 4.

Fig. 2: Creation of sparse long-range links (red dashed lines)
corresponds to solution µ∗ in Fig. 1. Each node creates a link to
connect to the farthest node.
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Thus, as in the previous example, the new links are created
such that the diameter of the graph is maximally reduced.

1 2 3 4 5 6 7 8 9 10 11
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Fig. 3: The horizontal axis represents the indices of the entries of
a vector in Rn; the first entry repeats at the end to make the plot
symmetric. The continuous plot gives the values of the entries of
κ− ϕ; the circular points give the values of the entries of nµ∗.

VI. CONCLUDING REMARKS

We study the creation of weak links that maximally
improve the efficiency of reaching consensus in the DeG-
root model. When the amount of resources available for
the creation of new links is small, we employ first-order
perturbation methods to show that the optimal weak links
are sparse. Furthermore, for spatially invariant networks,
we observe that the sparse weak links are also long-range.
We demonstrate the utility of our results via illustrative
examples. Our future work involves providing a proof for
the long-range property of optimal weak links for general
classes of spatially invariant networks.
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cycles in consensus networks,” Systems and Control Letters, vol. 62,
no. 1, pp. 85–96, 2013.

[20] M. Fardad, F. Lin, and M. R. Jovanović, “Design of optimal sparse
interconnection graphs for synchronization of oscillator networks,”
IEEE Trans. Automat. Control, vol. 59, no. 9, pp. 2457–2462, 2014.

[21] M. Fardad, F. Lin, and M. R. Jovanović, “On optimal link creation
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