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The Use of the 7+ Heuristic in Covariance Completion Problems

Christian Grussler, Armin Zare, Mihailo R. Jovanovi¢, and Anders Rantzer

Abstract— We consider a class of structured covariance
completion problems which aim to complete partially known
sample statistics in a way that is consistent with the underlying
linear dynamics. The statistics of stochastic inputs are unknown
and sought to explain the given correlations. Such inverse
problems admit many solutions for the forcing correlations,
but can be interpreted as an optimal low-rank approximation
problem for identifying forcing models of low complexity. On
the other hand, the quality of completion can be improved
by utilizing information regarding the magnitude of unknown
entries. We generalize theoretical results regarding the rx
norm approximation and demonstrate the performance of
this heuristic in completing partially available statistics using
stochastically-driven linear models.

Index Terms— Convex optimization, k-support-norm, low-
rank approximation, nuclear norm regularization, state covari-
ances, structured matrix completion problems.

I. INTRODUCTION

Matrix completion problems emerge in many applications
(cf. [1]-[3]). In this work, we are interested in a class of
structured covariance completion problems which arise as
inverse problems in low-complexity modeling of complex
dynamical systems. A particular class of models that can
be used for this purpose are stochastically-driven linear
models. Motivation for this choice arises in the modeling
of fluid flows where the stochastically-forced linearized
Navier-Stokes equations have proven capable of replicating
structural features of wall-bounded shear flows [4]-[9].

The problem of estimating covariances at the output of
known linear systems has been previously addressed [10]—
[12]. More recently, a modeling and optimization framework
was proposed for designing stochastic forcing models of low
complexity which account for partially observed statistical
signatures [13]. In this setup, the complexity is related to
the rank of input correlation structures [13], [14]. This gives
rise to a class of structured covariance completion problems
that aim to complete partially observed statistical signatures
in a way that is consisted with the assumed linear dynamics.
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In addition, the use of the nuclear norm as a convex surrogate
for rank minimization [15], [16] has allowed for the develop-
ment of efficient customized algorithms that handle large-size
problems [13], [17]. This approach has particularly proven
successful in the low-complexity modeling of turbulent fluid
flows [9].

Recently, various benefits and applications of the so-
called “r+ norm” (also called “k-support-norm”), as a natural
extension of the nuclear norm, have been demonstrated [18]—
[24]. In particular, its relation with the optimal rank r approx-
imation under convex constraints has been investigated [18],
[24]. Herein, we utilize these theoretical results to address the
covariance completion problem as a special case of low-rank
approximation. We demonstrate the ability of this approach
in improving the quality of completion while maintaining (or
even lowering) the complexity of the required forcing model
compared to the nuclear norm relaxation.

The outline of this paper is as follows. In Section II, we
provide a detailed background of the considered covariance
completion problem and motivate the use of the r* norm,
which is formally introduced in Section III-A. Subsequently,
we present two new convex relaxations to our problem
in Section III-B. In Section IV, we provide illustrative
examples to support our theoretical developments and finally
conclude with a summary of contributions in Section V.

II. PROBLEM FORMULATION

Consider the linear time-invariant (LTI) system with state-
space representation

z = Az + Bu

y = Cx (D

where z(t) € C™ is the state vector, y(t) € CP is the output,
u(t) € C™ is a zero-mean stationary stochastic process, A €
C™*"™ is Hurwitz, and B € C™*™ is the input matrix with
m < n. For controllable (A, B), a positive-definite matrix
X qualifies as the steady-state covariance matrix of the state
vector z(t) if and only if the Lyapunov-like equation

AX + XA* = —(BH* + HB"), )

is solvable for H € C™*™ [25], [26]. Equation (2) provides
an algebraic characterization of state covariances of linear
dynamical systems driven by white or colored stochastic
processes. For white noise u with covariance W, H =
BW/2 and (2) simplifies to the standard algebraic Lyapunov
equation

AX + XA* = —BWB". 3)
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The main difference between (2) and (3) is that the right-
hand-side, —B W B* in (3) is negative semi-definite.

We are interested in the setup where the matrix A in (1)
is known but due to experimental or numerical limitations,
only partial correlations between a limited number of state
components are available. Moreover, it is often the case that
the origin and directionality of the stochastic excitation u is
unknown. Interestingly, the solvability of (2) can be shown
to be equivalent to the following rank condition:

AX E*XA g} = rank B* g} . @
This implies that any positive-definite matrix X is admissible
as a covariance of the LTI system (1) if the input matrix B is
full row rank [25], which eliminates the role of the dynamics
inherent in A. Hence, it is desirable to limit the rank of the
input matrix B.

rank

In [13], an optimization framework was developed to
account for partially known sampled second-order statistics
using stochastically-forced LTI models. In this framework,
the complexity of the model is reflected by the rank of the
input matrix B, which is bounded by the rank of [13], [14]

Z = —(AX + X A").
Based on this, the structured covariance completion problem
is given by

minimize
X, Z

)

rank(Z2)

AX + XA* + Z =
(CXC*)oE — G =0
X =0,

in which matrices A, C, E, and G are problem data, and
Hermitian matrices X, Z € C™*"™ are optimization variables.
While the steady-state covariance matrix X is required to
be positive definite, the matrix Z may have both positive
and negative eigenvalues. This is in contrast to the case of
white-in-time input v where the matrix Z is positive semi-
definite. Entries of G represent partially available second-
order statistics and C, the output matrix, establishes the
relationship between entries of the matrix X and partially
available statistics resulting from experiments or simulations.
The symbol o denotes elementwise matrix multiplication and
E is the structural identity matrix,
1, if Gy; is available

Ey =
J { 0’

Due to the non-convexity of the rank function, problem (5)
is difficult to solve. Typically, the nuclear norm, i.e., the sum
of singular values of a matrix, | Z||. := ), 0;(Z), is used
as a proxy for rank minimization [15], [16]. This prompts
the following convex reformulation:

\
o

subject to

(&)

if G;; is unavailable.

minimize || Z||«

X, 7
AX + XA*+ 72 =0
(CXC*)oE — G =0
X =0,

subject to

white colored
noise noise Tinear:
> filter > >
w U system T

Fig. 1: A cascade connection of an LTI system with a linear
filter that is designed to account for the sampled steady-state
covariance matrix X.

The solution is used to construct spatio-temporal filters that
generate colored-in-time forcing correlations that account for
the observed statistics [13], [25], [26]; see Fig. 1.

The nuclear norm is the convex envelope of the rank
function over the unit ball || Z|| < 1 and in conjunction with
incoherence conditions has been utilized to provide theoreti-
cal guarantees for standard matrix completion problems [16].
However, for problem (5), the additional structural constraint
that arises from the Lyapunov-like equation prevents us from
taking advantage of these standard theoretical results. In
addition, even though the nuclear norm heuristic achieves a
low-rank solution for Z with a clear-cut in its singular values,
it may not give good completion of the covariance matrix
X. It is thus important to examine more refined convex
relaxations that may result in better completion.

In [24], it has been demonstrated that when the magnitudes
of unknown entries are significantly smaller than that of the
known ones, the nuclear norm often creates regions of large
entries which deviate from the ground truth. In the next
section, we demonstrate that the r* norm is more suitable
if the objective is to keep both the rank and the Frobenius
norm of the correlation structures small.

IIT. LOW-RANK APPROXIMATION

We next introduce the 7% norm and provide a brief
summary of its properties. A more elaborate presentation of
these theoretical developments can be found in [24].

A. Preliminaries

In the following, let o1(M) > > Omin{m,n} (M)
denote the increasingly sorted singular values of M € R™*™,
counted with multiplicity. Moreover, given a singular value
decomposition M = S G (M) u 0T of M, we
define svd,. (M) := "7, o;(M)u;v] .

Lemma 1: Let M € R™"™™ and 1 < r < ¢q :=
min{m, n}. The  norm of the matrix M

M|, =

is unitarily-invariant and its dual-norm is the r* norm

|M]|« = max (M,X).

Ixll-<1

It holds that
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o Ml < < IMllg = [[M]lp = [[M]lgx < -+ < [[M]|1

o rank(M) <7 if and only if | M||» = ||[M||Fr = || M|+,
where || - || denotes the Frobenius norm.

The nuclear norm and the r* norm coincide for » = 1.
Thus, minimizing || - ||« with » > 1 can have a more
significant influence on decreasing || - || than || - ||1«. This
is also motivated by the following Proposition.

Proposition 1: Let C C R™ ™ be a closed convex set,
then

inf ||M||% > max | inf (D, M) — |DJ?
MeC DeC* |MeC
rank(M)<r (6)
= min | M]Z,
MecC

where C* := {D € R™*™ : Ai4nfC<D,M> > —oo}. Let the
€
maximum and the minimum in (6) be achieved by D* € C*
and M*, respectively.
o If 0,.(D*) # 0,41(D*), then the infimum on the left
equals the maximum on the right and M* = svd,.(D*).

o If 00(D*) =+ = 0745(D") > 0pq541(D*) # 0 for
some s > 1 then rank(M™*) < r + s.

Proof: See [24].

Hence, in an ideal situation, i.e. 0,.(D*) # o,41(D*), r
has a strong correlation with the true rank of the matrix that
one aims to complete. This will be seen in several examples
in Section IV.

We next concentrate on the case of 0,.(D}) = o,41(D}),
i.e., rank(M) > r where we define

M} := argmin ||M|?,
MeC
D: = inf (D, M) — ||D||?
x argmax inf (D, M) — ||ID];

for 1 < r < min{m,n}. Assume that r + 1 < rank(M}) <
rank(M;, ;) and || M ||F > || M}, |- In this very common
situation (cf. Section IV), M, may still be of sufficiently
small rank but too high cost. Conversely, M, ; may have
sufficiently small cost but too high rank. Therefore, a trade-
off between these two solutions is desired, which can be
achieved by allowing for a non-integer valued 7, i.e.

Lr)

Il = ;o$<'> + (r = [r]) o3, (),
where |r]| := max{z € Z : z < r} and [r] := min{z €
Z : z > r}. Letting M and D} be also defined for r € R,
it remains true that rank(M;) < [r] + s if op,(D}) =
- = 0p14s(Df) > 01 4s41(Dy). Moreover, for r € N

and o € [0,1], ||-|2,1_ is given by the convex combination
of |- [IZ and || - [[244.
I Ppma = all- 17 + Q@ = a) |- -

This indicates the usefulness of the real-valued r norm to
achieve the desired trade-off. In conjunction with Lemma 1

it follows that

F(D,r) := inf (D, M) — |D|?

inf
MecC
is concave. Thus, Berge’s Maximum Theorem (see [27, p.
116]) implies that the parameter depending set

C*(r) := argmax (D,M) — |D|?

inf
DecC* MeC

is upper hemicontinuous in r, i.e. for all r € [1, min{m,n}|
and all € > 0, there exists 6 > 0 such that for all ¢ > 1

[t —r| <6 = C*(t) C B (C*(r)),

where B, (C*(r)) :={X :3ID € C*(r) : | X — D|r < €}
Assume for simplicity that D is unique, then it follows that a
sufficiently small increase of r cannot increase s. Therefore,
as for the nuclear regularization [15], one often expects
rank(M;) to look like a staircase function of ¢ € [r,r + 1].

B. Convex reformulation

Based on these theoretical developments, the r* norm can
be employed as a convex proxy for the rank function. This
prompts the following convex relaxation of the covariance
completion problem (5),
12117
AX + XA*+Z =0
(CXC*)oE —G =0
X > 0.

minimize
X, Z

subject to

)

which can be formulated as the semi-definite program (SDP)

minimize  trace(W)
X, 7

. I1-P Z
subject to { 7 W ] =0
trace(P) —n 4+ 17 =0 (8)

AX + XA*+ 72 =0
(CXC*)oE — G =0
X >0 P =0
Problem (8) results from taking the Lagrange dual of the
SDP characterization of the r norm; see [18] for details.

In the next section we present illustrative examples which
demonstrate the benefit of using the r* norm over the nuclear
norm. Based on the discussion in Section III-A, and for a
fair comparison, we also consider the alternative formulation
1Z1% + v 12l
AX + XA*+Z =0
(CXC*)oE —G =0
X > 0.

minimize
X, Z

subject to

)

This formulation has been discussed earlier in [28]. It intends
to mimic the behavior of the r* norm and allows us to
achieve a trade-off using the tuning parameter . Here, || Z||%
is regularized by the nuclear norm of Z and the parameter
~ determines the weight on the nuclear norm.
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IV. EXAMPLES

A. Two-dimensional heat equation

We provide an example to compare the performance of
the relaxation in problem (7) with the performance of the
hybrid objective considered in problem (9). This is based on
the two-dimensional heat equation
H? H?

—T + —T

0x? + Oy

on the unit square. Inputs are introduced through the

Dirichlet boundary conditions of the four edges, i.e., £ =

[& -+ & )T Finite difference discretization of the Laplacian
1

operator on a uniform grid with step-size h = - gives
1

_ﬁ(

T = AT =

AT ~ 4T, —Tij-1),
where T}; is the temperature of the inner grid point on the ith
row and jth column of the mesh. Based on this, the dynamic
matrix A denotes an n? x n? Poisson-matrix and the input
matrix Be := [b;;] € R" %4 models the boundary conditions
as inputs into the state dynamics. Here, b;; = 0 except for

the following cases:

—Tiv1,j — Tijjr —Tima

bip:=1, for i=1,2,....n

bio:=1, for i=n,2n,...,n°

biz:=1, for i=n(n—1)+1,n(n—-1)+2,...,n°
biy:=1, for i=1n+1,....n(n—1)+1

The dynamics of the discretized heat equation have the
following state-space representation

. 1 1
T = ﬁAm + ﬁBgf, (10a)

where 2 € R"* denotes the state. We assume that four input
disturbances are generated by the low-pass filter
£ = —€+d

Here, d denotes a zero-mean unit variance white process.

(10b)

The steady-state covariance of system (10) can be found
as the solution to the Lyapunov equation

AY + YA* + BB* =0

where 1 B 0
A § R _
i=1o 5] a1

and 5 5

{Eéw Yee

Here, the sub-covariance Y., denotes the state covariance
of the discretized heat equation (10a).

We use 16 points to discretize the square region (n =
4), and restrict the input to enter through two sides by
setting the second and fourth columns of B¢ to zero. The
covariance matrix of the state in (10a) is shown in Fig. 2

0.10
0.08
0.06
0.04
0.02

4 8 12 16

Fig. 2: Interpolated colormap of the true steady-state co-
variance X, of the discretized heat equation with =——
indicating the available correlations used in (8) and (9).

(b)

05 T T 11T T T T T

0.4
0.3
0.2
0.1

”X - zMCHF
||EMHF

A 1 R 11| I AT

0
0 4 8 12 16 10-210-'10° 10' 102
r g

Fig. 3: (a) The r-dependence of the relative Frobenius norm
error (percents) between the solution X to (8) and the true
covariance Y., for the discretized 2D heat equation. (b) The
~v-dependence of the relative error between the solution to (9)
and the true covariance.

where black lines indicate known correlations that are used
as problem data. We conduct a parametric study to determine
the influence of r and + on the solutions of (8) and (9).

Figures 3a and 3b respectively show the r-dependence and
~v-dependence of the relative error of solutions to (8) and (9).
For problem (8), minimum relative error is achieved with
r = 2, as expected for a system with two inputs. On the other
hand, v = 8.46 gives the best completion in problem (9).
We note that the optimal solution for (8) results in a relative
error which is about a third smaller (4.83% vs. 7.26%) with
a corresponding matrix Z of lower rank (2 vs. 3).

Figure 4 shows the recovered covariance matrix of the
discretized heat equation resulting from problems (8) and
(9) and for various values of r and . Figures 4a and 4b
correspond to the case of nuclear norm minimization (r = 1)
and optimal covariance completion (r = 2) for problem (8).
On the other hand, Figs. 4c and 4d correspond to the solution
of the Frobenius norm minimization (y = 0) and optimal
covariance completion (y = 8.46) for problem (9). It is
notable that the Frobenius norm minimization does not result
in reasonable completion of the covariance matrix. Moreover,
the nuclear norm creates off-diagonal spots of relatively large
entries where the true covariance matrix is close to zero.
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0.10 0.10
0.08 0.08
0.06 0.06
0.04 0.04
0.02 0.02
16 4 8 12 16
(byr=2
0.10 0.10
0.08 0.08
0.06 0.06
0.04 0.04
0.02 0.02
16 4 8 12 16 16 4 8 12 16
© =0 (d) v = 8.46

Fig. 4: The recovered state covariance matrix of the heat
equation resulting from problem (8) (a, b), and problem (9)
(c,d). @r=1;,(b)r=2;(c)vy=0; (d) v = 8.46.

5 2.0 5 0.10
1.5 0.05
10 Lo 1O 0.00
15 0.5 15 —0.05
’ —0.10
20 20
5 10 15 20 5 10 15 20
(a) Xpp (b) Xoo

Fig. 5: The steady-state covariance matrices of the (a)
position X, and (b) velocity ¥,,,, of masses in MSD system
with n = 20 masses with = indicating available one-point
correlations used in problems (8) and (9).

B. Mass-spring-damper system

We provide an example of a stochastically-forced mass-
spring-damper (MSD) system to demonstrate the utility of
the r* norm in the completion of diagonally dominant
covariance matrices. The state space representation of the
MSD system is given by

j,‘:AZ‘-f—Bgf

(2 0] e[

Here, the state vector contains the position and velocity of
masses, = [p? vT]T, 0 and I are zero and identity
matrices of suitable sizes, and T is a symmetric tridiagonal
Toeplitz matrix with 2 on the main diagonal and —1 on the
first upper and lower sub-diagonals.

Stochastic disturbances are generated by a similar low-
pass filter as in the previous example and the steady-state
covariance matrix of z is partitioned as

Y by
Yow = PP v
|: Z'U;o EU’U :|

(a) (b)
&, 06 T 06 TTTTIT T T 1T T T 11117
=|& 05 05| A
N g 04 0.4 i
A
w|= 0.3 0.3 |
- | T T S W1

0.2

0.2
0 10 20 30 40 10°2 10~! 10° 10t
r
gl

Fig. 6: (a) The r-dependence of the relative error between
the solution X to (8) and the true covariance X, for the
MSD system with n = 20 masses. (b) The y-dependence of
the error between the solution to (9) and the true covariance.

We assume that stochastic forcing affects all masses. For
n = 20 masses, Fig. 5 shows the covariance matrices of
positions X, and velocities X,,. We assume knowledge
of one-point correlations, i.e., diagonal entries of X, and
Y- Note that in this example the covariance matrices are
diagonally dominant, especially .

Again, we study the respective effect of r and v on the
solutions of (8) and (9). As shown in Fig. 6, these depen-
dencies are monotonic and minimization of the Frobenius
norm, which corresponds to solving problem (8) with r = 2n
and problem (9) with v = 0, results in the best covariance
completion (77% recovery). However, in this case the matrix
Z 1is not rank deficient. On the other hand, nuclear norm
minimization, which corresponds to solving (8) with r = 1
and (9) with v = oo, results in the worst completion (46%).

Figure 7 shows the recovered covariance matrices of
position X, and velocity X, resulting from optimization
problems (8) and (9) with various values of r and ~.
While nuclear norm minimization yields poor recovery of
the diagonally dominant covariance matrix of velocities X,
(cf. Fig. 7b), minimization of the Frobenius norm results
in best overall recovery (cf. Figs. 7e and 7f). However, as
aforementioned, lack of a surrogate for rank minimization
leads to a full-rank matrix Z. An intermediate state with
reasonable recovery (73%) can be achieved by solving (8)
with » = 10 (Figs. 7c and 7d) and (9) with v = 0.19
(Figs. 7g and 7h). While the quality of recovery is the same,
the matrix Z which results from solving problem (8) is of
lower rank (10 vs. 18). Moreover, if one intended to get a
solution of rank 18, choosing r = 18 would be successful
here and by Proposition 1 there is no other solution of smaller
Frobenius norm.

V. CONCLUSIONS

It has been shown that the success of the r* norm in
matrix completion problems is closely related to the true rank
and size of unknown entries. To demonstrate this, we focus
on a particular application that involves the completion of
partially known covariances of complex dynamical systems
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| 10
| 1.0 0'8005
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(@) Xpp, r=1 (b) Xy, r=1
5 2.0 5 0.10
15 0.05
10 L0 10 0.00
’ —0.1
20 20 0-10
5 10 15 20 5 10 15 20
(©) Xpp, 7=10 (d) Xy, m=10
5 2.0 5 0.10
15 0.05
o o " \ 0.00
15 0.5 15 —0.05
' —0.10
20 20
5 10 15 20 5 10 15 20
(©) Xpp, =0 ) X, y=0
5 20 5 0.10
15 0.05
15 0.5 15 :8(1)(5)
20 20 '
5 10 15 20 5 10 15 20

(@) Xpp, v =0.19 (h) Xy, v =0.19

Fig. 7: The recovered covariance matrices of position and
velocity in the MSD system with n = 20 masses resulting
from problem (8) (a, b, c, d), and problem (9) (e, f, g, h).
(a,b)r=1; (c, d) r =10; (e, f) v = 0; (g, h) v = 0.19.

via stochastically-forced linear models. In this, stochastic
forcing models of low-complexity are identified that not only
complete the partially-observed statistical signatures, but are
consistent with the linear dynamics. This amounts to solving
a class of structured covariance completion problems which
involve minimizing the rank of the correlation structure of
excitation sources. Relative to the nuclear norm relaxation,
the r* norm exploits an additional degree of freedom which
is useful in the completion of diagonally dominant covari-
ances.
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