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Spatio-temporal impulse responses in channel flow of viscoelastic fluids
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Abstract—The study of non-modal amplification of dis-
tributed body forces in channel flows of viscoelastic fluids
has provided useful insight into the mechanisms that may
govern the initial stages of transition to elastic turbulence.
However, distributed body forces are not easy to implement
in experiments and there is a need to examine amplification
of localized body forces. In this work, we use the linearized
governing equations to examine such amplification in channel
flow of viscoelastic fluids. We first identify the wall-normal
location at which the impulsive excitations experience the
largest amplification and then analyze the kinetic energy of the
fluctuations and the resulting flow structures. For a viscoelastic
fluid at low Reynolds numbers, the largest amplification occurs
for impulses located near the channel wall. Flow structures
that evolve from the localized body force at the optimal
location stretch out in the streamwise direction in a viscoelastic
fluid, unlike a Newtonian fluid in which disturbances merely
diffuse in space due to low inertia. For viscoelastic fluids, we
observe the development of vortical structures away from the
source of impulsive excitation. This feature is less prominent in
Newtonian fluids and it may provide a mechanism for triggering
the initial stages of transition to elastic turbulence.

I. INTRODUCTION

Dilute polymer solutions can transition to a turbulent-like
flow state (elastic turbulence) at low Reynolds numbers [1].
Elastic turbulence has many favourable and unfavourable
technological implications. Elastic turbulence has high po-
tential for enhancing mixing [2] and heat transport [3] in
microfluidic flows. It can also be used to produce nonlinear
effects to build micro-scale control devices like nonlinear
flow resistors and flow memory devices like flip-flops anal-
ogous to those in electric circuitry [4]. However, elastic
turbulence is undesired in certain industrial applications, such
as polymer processing and coating flows [5], [6].

Elastic turbulence was thought to have originated from
linear instability of curved streamlines; however recent ex-
perimental evidence suggests that elastic turbulence can oc-
cur in straight-channels as well [7]-[9]. Straight streamlines
are linearly stable to small amplitude perturbations [5] and
therefore the underlying mechanism for transition to elastic
turbulence in straight channel flows remains unclear.

In order to understand the initial stages of transition
to elastic turbulence in straight channels, there have been
many efforts to examine non-modal amplification of external
disturbances [10]-[14]. Non-modal analysis considers the
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possibility that disturbances may be amplified at short times
even though they may decay at long times, i.e., even if
the system is linearly stable. Disturbances that experience
linear non-modal amplification can produce finite-amplitude
disturbances that may excite non-linear flow states [15]-[19].

Previous work on non-modal analysis of viscoelastic
channel flows have shown that external forces that are
either stochastic [10], [11], [13] or deterministic [12], [14]
experience significant non-modal amplification, and that
the amount of amplification increases with an increase in
viscoelastic effects. In all cases, streamwise constant flow
structures became increasingly prominent with an increase
in viscoelastic effects.

Most previous analysis considered distributed body forces
owing to their analytical tractability. Distributed body forces
are nonetheless hard to configure in experiments. Even if
a method is devised to induce a well-configured distributed
body force in an experiment, it is still difficult to segregate
the different stages that lead to elastic turbulence, and
to specifically discriminate between linear and nonlinear
effects. In contrast, localized body forces can be readily
approximated in experiments and in numerical analysis.
Furthermore, flow transition due to a localized point force
can be analyzed systematically in experiments to provide
clear insight into the different stages towards transition to
turbulence [20]-[22]. From the point of view of analysis,
results from a localized point force is equivalent to examining
the impulse response of the system.

This paper is organized as follows. In Section II we present
governing equations for the channel flow of viscoelastic flu-
ids. In Section III we describe the numerical methods used in
this work. In Section IV we discuss methods used to quantify
the amount of kinetic energy of velocity fluctuations. The
kinetic energy of velocity fluctuations is used characterize the
degree of non-modal amplification. In Section V we identify
the optimal location to induce the localized body force.
The impulse at the optimal location produces the largest
amplification of the kinetic energy of velocity fluctuations. In
Section VI we present flow structures that arise from exciting
the flow at the optimal location.

II. PROBLEM FORMULATION

We consider pressure-driven plane Poiseuille flow of a
viscoelastic fluid with relaxation time A and density p. The
flow geometry and coordinate system are shown in Fig. 1.
Length is scaled with the half-channel width h, velocity with
the maximum velocity in the channel Uy, and time with
h/Uy. Pressure is scaled with npUy /h, where np = 1,41 is
the total shear viscosity with 7, and 1, denoting the polymer
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Fig. 1: Flow geometry showing the steady-state velocity
profile for plane Poiseuille flow.

and solvent contributions to nr. Polymer stresses are scaled
with n,Uo/h.

This scaling leads to three non-dimensional groups: the
viscosity ratio, 8 = 15/(n, + 1s), the Weissenberg number,
We = AUp/h, and the Reynolds number, Re = hpUpy/nr.
The viscosity ratio provides a measure of the solvent con-
tribution to the shear viscosity, the Weissenberg number
gives the ratio of the relaxation time of the polymer to the
characteristic flow time, h/Ujy, and the Reynolds number is
the ratio of the inertial forces to viscous forces.

The dimensionless momentum and mass conservation
equations are

Re(0;V +V -VV) = -VP4+3V*V +(1-5)V-T,
(la)

V.V =0, (1b)

where V is the velocity vector, P is the pressure, and T’
is the polymer contribution to stress tensor. The polymer
contribution to the stress tensor is modeled using the finitely
extensible nonlinear elastic Chilcott Rallison (FENE-CR)
constitutive equation [23]. The Oldroyd-B and FENE type
constitutive equations come from a statistical averaging of
forces on polymer molecules, where each polymer molecule
is modeled as binary beads connected by an elastic spring
[24], [25]. The Oldroyd-B model assumes that the beads are
connected by a linear spring. The linear spring allows for an
unrealistic infinite extensibility of polymer molecules. The
FENE model corrects this assumption by using a finitely
extensible nonlinear spring instead of a linear spring. The
FENE-CR model exhibits a constant shear viscosity in ad-
dition to accounting for finite extensibility of the polymer
molecules. This isolates the influence of fluid elasticity from
a mix of elastic and shear thinning effects.

The conformation tensor is the mean of the dyadic product
of the end-to-end vector of the finitely extensible dumbbell
that is the basis of the FENE-CR model. The polymer stress
tensor 7' is related to the conformation tensor R by

HR+V -VR—R-VV —(R-VV)T = -T (lo
f _
weB-D=T, @9

where I is the identity tensor and f quantifies the nonlinear

spring interaction,

L? -3

= L2 —trace(R)’

(Ie)

We note that R and L2 are scaled with kT/c, and k,
T, and c are the Boltzmann constant, absolute temperature,
and spring constant of the dumbbells, respectively. As L —
00, the FENE-CR model simplifies to the Oldroyd-B model.
Furthermore, as 8 — 1 or as We — 0 the system reduces to
the Navier-Stokes equations.

The steady-state solution of system (1) is determined by

V=[0Uy 0 0], (2a)
) 1+2 (WeU'(y)/f)? WeU'(y)/f O
R = We U'(y)/ f 1 01,
0 0 1
(2b)
where
Uly)=1-y? L[*=1L*-3, (20)
- 1 We U'(y) ?
f_5 1+\/l+8(L ) (2d)

The steady-state velocity has the same parabolic profile as a
Newtonian fluid because of the absence of shear-thinning
effects in the FENE-CR constitutive equation. We note,
however, that there is a first normal stress difference in the
FENE-CR model.

Equations Governing Fluctuations about the Mean Flow

The linearized equations that govern the evolution of
fluctuations about the steady-state (2) are given by

Re v = —Vp+(1-B8)V -1+ BV

! ! (3a)
—Re(V-Vv+v-VV)+d,
V.v =0, (3b)
or =7r-VV+R-Vo+ (r-VV)'
+(R-V)' —v-VR-V -Vr—r, (3¢)
T = % (r + f(IE_PI)trace(r)) . (3d)

Here, v, p, r, and T denote velocity, pressure, conformation
tensor, and stress tensor fluctuations about their respective
base profiles, V, P, R, and T. We denote the components
of the velocity fluctuation vector by v = [u v w]?, where
u, v, and w represent the streamwise (x), wall-normal (y),
and spanwise (z) velocities, respectively.

From (1d) and (3d) it may appear that the stress tensor,
T, and its fluctuation, 7, can become infinite when We = 0.
However, this is not the case. By eliminating R and 7
from (1) and (3), it can be shown that the stress tensor
reverts to that of a Newtonian fluid at We = 0. It is essential
for any valid polymeric constitutive equation that the system
simplifies to that of a Newtonian fluid as We — 0 [24], [25].
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The body forcing d in (3a) is used to excite flow fluctua-
tions. In this work, we use an impulsive body force,

d(x7yaz7t) = 6(1’,y72’,t) €;, (4)

where, e; is a unit vector in the i™ coordinate direction and
d(z,y,z,t) is the Dirac delta function in space and time.

System (3) can be recast into the state-space represen-
tation by eliminating pressure and expressing the velocity
fluctuations in terms of wall-normal velocity v and vorticity
n = 0,u — Oyw. This is done by taking the divergence
of (3a) to get an explicit expression for p. Substituting this
expression for p to (3a) yields the equation for the wall-
normal velocity and the equation for 7 is determined by the
y-component of the curl of (3a). Finally, the stress tensor
can be eliminated in favor of the conformation tensor using
relations (3¢) and (3d).

After the above algebraic manipulations, and after taking
a Fourier transform in the x- and z-directions, we obtain the
evolution form for the linearized equations parametrized by
wavenumbers k = (kz, k),

o0Y(y,k,t) = A(K)Y(y,k,t) + B(k)d(y, k1),
¢(y7’<’7t) = C(K’) 'l/"(vaﬁt)a 5)

where the state vector ¢ and output vector ¢ are given by
T
v = [rTvn],
T
¢ = [uvwl],
and r is the vector of the six (symmetric) components of the

conformation tensor. The operators A(k), B(k), and C (k)
in (5) will be detailed elsewhere due to space constraints.

III. NUMERICAL METHOD

The y-dependence is numerically approximated using a
Chebyshev collocation technique with N collocation points
to reduce (5) to a system of ordinary differential equations
(ODEs) in time. Calculations are carried out using a Matlab
Differentiation Matrix Suite of Weidmann and Reddy [26].
This discretization necessitates a finite approximation of the
Dirac delta function in the wall-normal direction. We use the
approximation

1 —(y—v0)?
do(y) = 27\/&6 e,

In this work, we set € = 1/2000. We found that this value
is sufficiently small to represent an impulse as the results do
not change significantly on further reducing e¢. The impulse
response of the viscoelastic system is studied for different
values of yq to identify the optimal location. The forcing
term in the evolution model (5) is then given by,

B(H’) d(y7 K, t) = F; (y7 K’) 6(t)>

e > 0. (6a)

(6b)
where
Fi(y,k) = B(k)do(y)e:
The finite-dimensional approximation to (5) is given by
Opp(k,t) = A(K)Y(k, t) + Fi(k) 6(1),
¢k, 1) = C(R)Y(K,1),

(60)

)

where ¢(k,t) and ¢(k,t) are complex-valued vectors with
8N and 3N entries, respectively, A(k), C(k) are finite-
dimensional approximations of the corresponding operators
in (5), and F;(k) is the discrete approximation to F';(y, k)
in (6b).

The solution to (7) with zero initial conditions arising
from the impulsive excitation in the i" coordinate direction
is given by [27],

t
bmt) = Cx) [ APIRmSas

= O(k)eA P E (k).

Thus, the impulse response is directly obtained from the
matrix exponential at a given time and the inverse Fourier
transform in wall-parallel directions yields solution in phys-
ical space.

I'V. KINETIC ENERGY OF VELOCITY FLUCTUATIONS

The integral of kinetic energy of velocity fluctuations
in the wall-normal direction can be evaluated by using a
weighted inner product of the output with itself

1
[/1|ui|2+|vﬂ+|wﬂdy (ko t) = (68 Tt (%,

= Ei(l"\'/, t),
)

where () represents the complex conjugate transpose, and
I,, is a diagonal matrix of the appropriate integration weights
for the Chebyshev collocation points. We recall that the
subscript ¢ denotes the input direction of the impulsive
excitation (see (4)).

We further define the numerical approximation to the
integral of the kinetic energy over the wall-normal direction
and over all time as

00 1
el Py e ) = B
t=0Jy=—1
(10a)

We note that for stable systems, it is not necessary to
explicitly integrate over all time to evaluate E;(k). They
can be estimated using solutions to the operator Lyapunov
equations [18],

A(R)Xi(k) + Xi(r)AT (k) = —Fy(k)F(k),  (10b)
where (-)' represents the finite-dimensional approximations
to the adjoints of operators that appear in (5). Adjoints
are defined with respect to a weighted inner product that
determines the kinetic energy of the system [18], [28].
Solution to (10b) yields X; and the kinetic energy can be
determined as

Ei(k) = trace(X;(r)CT(k)C(k)). (10c)
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Fig. 2: Kinetic energy integrated in the wall-normal direction and time, with an impulse in the spanwise direction, calculated
using (10). We consider a (a) viscoelastic fluid and a (b) Newtonian fluid. Parameters used for the viscoelastic fluid are
We = 50, L = 100 and 8 = 0.5. The maximum value of the kinetic energy is indicated by the black dots.

V. SENSITIVITY TO THE LOCATION OF THE IMPULSE

The location of the impulse in the (z,z)-plane is im-
material because the z- and z-directions are translationally
invariant. However, the sensitivity of the flow may vary
with the choice of the location of the impulse in the wall-
normal direction. We next examine how the sensitivity of
a viscoelastic channel flow changes with the wall-normal
location of impulsive forcing.

Due to the symmetry of plane Poiseuille flow, we only
consider the lower half of the channel. We first calculate
the kinetic energy averaged over the wall-normal direction
and time (using relation (10)) with respect to k, and k. for
different values of yq. For example, Fig. 2 shows the kinetic
energy for an impulsive excitation in the spanwise direction
for yg = —0.75, Re = 50 for a viscoelastic fluid (Fig. 2a)
and a Newtonian fluid (Fig. 2b). The maximum value of the
kinetic energy over all values of k, and k, is marked by
the black dots in Fig. 2. In Fig. 3, we examine how these
maximum values depend on the location of the impulse, yg.

We restrict ourselves to results pertaining to the spanwise
impulsive excitation as we found the largest energy ampli-
fication for disturbances excited in the spanwise direction.
A more detailed analysis of impulsive excitations in other
directions will be reported elsewhere.

We see in Fig. 3 that the introduction of viscoelasticity
increases the kinetic energy of velocity fluctuations for an
impulsive excitation at any location. Larger amplification of
disturbances in viscoelastic fluids indicates their greater sen-
sitivity at relatively low values of the Reynolds number, and
this may be related to observed transition at low Reynolds
numbers. The largest discrepancy between corresponding
kinetic energies occurs for the impulse in the spanwise
direction at a location yy = —0.75, whose corresponding
energies are plotted in Fig. 2. We see from the colorbars
in Fig. 2 that at the location with largest amplification, the
viscoelastic fluid amplifies disturbances six times more when
compared to the Newtonian fluid.

We note that for yg = —0.75 the maximum value of the
kinetic energy occurs at (k, ~ 107!, k, ~ 10%) in Fig. 2a,

0 " =
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04 o +
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Fig. 3: Maximum energy induced by the impulse as a
function of y. Parameters used for the viscoelastic fluid are
We = 50, L = 100 and 8 = 0.5. The Newtonian fluid
corresponds to We = 0.

and at (k, ~ 1074, k, ~ 10°) in Fig. 2b. These values
change as we change yo.

VI. FLOW STRUCTURES IN PHYSICAL SPACE

Having analyzed energy, we now show flow structures that
evolve by inducing an impulsive excitation in the spanwise
direction at the optimal location of the viscoelastic fluid.
Flow structures in physical space provide a view into patterns
that result from a localized point force, and can suggest
potential mechanisms that govern the initial stages of transi-
tion to turbulence at low Reynolds numbers. Flow structures
presented here are obtained by the spectral method described
in Section III. Time series of flow structures are therefore
direct numerical simulations on the linearized FENE-CR
fluid with an impulsive point force. We note that we do not
step in time; rather, we exploit linearity to directly obtain
flow structures at a given time using the matrix exponential
(see (8)).

Fig. 4 shows three-dimensional isosurface plots of the
streamwise velocity with an impulsive excitation in the span-
wise direction at yg = —0.75. We analyze the streamwise
velocity as we found that the streamwise fluctuation velocity
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Fig. 4: Isosurface plots of the streamwise velocity at £, ymq,/10 at Re = 50. Red denotes regions of high velocity and
green denotes regions of low velocity. Panels correspond to a viscoelastic fluid at (a) 1, and (c) 6 time units, and a Newtonian
fluid at (b) 1 and (d) 6 time units, with parameters L = 100, 8 = 0.5 and We = 50 for the viscoelastic fluid.

is most amplified when compared to the wall-normal and
spanwise fluctuation velocities.

Fig. 4a and Fig. 4c show the time-evolution for a vis-
coelastic fluid, and Fig. 4b and Fig. 4d illustrate the time-
evolution for a Newtonian fluid. We noticed from Fig. 2a that
the viscoelastic fluid produces more oblique wave structures
(ky ~ 1071, k, ~ 10%) when compared to the Newtonian
fluid in Fig. 2b in which streamwise-constant structures are
most prominent (k, ~ 1074, k. ~ 10°). Consistently, we
see in Fig. 4c that at early times, the disturbance in the
viscoelastic fluid is more oblique, showing a wavy nature in
all three directions. At later times (Fig. 4c) the wave packet
stretches out in the streamwise direction and is also found to
spread across the channel in the wall-normal (y) direction. In
contrast, the impulse-induced wave packet in the Newtonian
fluid merely diffuses in space slowly (by observing the scales
in the z-axis) with a slight amount of translation in the
streamwise direction.

Flow structures can be further analyzed by looking at
three-dimensional streamtubes of the fluctuation velocity
vector. Fig. 5 shows three-dimensional streamtubes that
originate from the plane y = 0.5 for a viscoelastic fluid
and a Newtonian fluid.

Fig. 5b and Fig. 5d show the top and isometric views of
streamtubes for a Newtonian fluid, and Fig. 5a and Fig. 5c
show the top and isometric views for a viscoelastic fluid at

t = 6. We see in Fig. 5a and Fig. Sc that the viscoelastic fluid
generates two pairs of counter-rotating vortices at z = +1
that spread out in the wall-normal direction with an oblique
inclination.

In contrast, we do not find significant evolution of vortical
structures in the Newtonian fluid (in Fig. 5b and Fig. 5d), in
fact, streamtubes for the Newtonian fluid at ¢ = 6 (Fig. 5b
and Fig. 5d) were found to be almost as they were at initial
times (Figures for initial times is not shown here). The time-
evolution of the vortical structures observed here is distinct
to the viscoelastic fluid. Vortex breakdown is a well-known
mechanism for transition to turbulence in Newtonian fluids
at high Reynolds numbers [29]. Analyzing the existence of a
breakdown and corresponding transition cannot be captured
within the linearized dynamics, and would need consider-
ation of nonlinear effects. However, within the linearized
dynamics, we find the development of vortical structures that
may be related to the initial stages of transition to elastic
turbulence.
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