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B S T R A C T

onmodal analysis typically uses square-integrated quantities to characterize amplification of disturbances. However, such measures may be misleading in
iscoelastic fluids, where polymer stresses can be strongly amplified over a small region. Here, we show that when using a localized measure of disturbance
mplification, spanwise-constant polymer-stress fluctuations can be more amplified than streamwise-constant polymer-stress fluctuations, which is the opposite
f what is observed when a square-integrated measure of disturbance amplification is used. To demonstrate this, we consider a model problem involving two-
imensional pressure-driven inertialess channel flow of an Oldroyd-B fluid subject to a localized time-periodic body force. Nonmodal analysis of the linearized
overning equations is performed using recently developed well-conditioned spectral methods that are suitable for resolving sharp stress gradients. It is found
hat polymer-stress fluctuations can be amplified by an order of magnitude while there is only negligible amplification of velocity fluctuations. The large stress
mplification arises from the continuous spectrum of the linearized problem, and may put the flow into a regime where nonlinear terms are no longer negligible,
hereby triggering a transition to elastic turbulence. The results suggest an alternate mechanism that may be useful for understanding recent experimental
bservations of elastic turbulence in microchannel flows of viscoelastic fluids.
. Introduction

A Newtonian fluid can transition from laminar to turbulent flow
hen inertial forces become sufficiently large compared to viscous

orces. In contrast, viscoelastic fluids can exhibit turbulent-like flow
ven when inertial forces are much weaker than viscous forces [1–4].
his turbulent-like flow state (elastic turbulence) arises when elastic
orces become sufficiently large relative to viscous forces. Elastic tur-
ulence may be helpful for enhancing transport in flows with weak
nertia [5], such as those that arise in drug delivery systems, medical
iagnostic devices, and high-heat-flux integrated circuits [6]. However,
lasticity-driven instabilities in polymer processing operations like ex-
rusion are detrimental to the quality of final products [7,8]. It is
herefore important to understand possible physical mechanisms that
ould trigger a transition to elastic turbulence.

Flows of viscoelastic fluids with curved streamlines can be linearly
nstable in the absence of inertia, and this instability provides a mecha-
ism for initiating the transition to elastic turbulence [1,2]. In contrast,
hannel flows of viscoelastic fluids with straight streamlines (e.g., plane
oiseuille and Couette flows) are predicted to be linearly stable in the
bsence of inertia [7,9–11]. However, such flows appear to be unstable
o finite-amplitude perturbations, and it has been argued that this pro-
ides a mechanism for initiating transition to elastic turbulence [3,4,8].
evertheless, the question of how such finite-amplitude perturbations
rise remains an open one.

∗ Corresponding author.
E-mail address: kumar030@umn.edu (S. Kumar).

Even if standard modal (i.e., eigenvalue) analysis predicts that
a flow is linearly stable, transition to another flow state could be
initiated via a linear mechanism if there is nonmodal amplification of
disturbances. A sufficiently large disturbance amplification could put
the flow into a regime where nonlinear terms are no longer negligible
even if modal analysis predicts that the flow is asymptotically stable.
The effects of these nonlinear terms could then lead to flow transition.
Nonmodal analysis of channel flows of viscoelastic fluids indicates
that velocity and polymer-stress fluctuations can undergo considerable
amplification even when inertial effects are much weaker than elastic
effects, with the largest amplification occurring for streamwise-constant
disturbances [12–17].

Disturbance amplification in nonmodal analysis of channel flows
is typically measured in terms of quantities that are square-integrated
along the channel gap [18–21]. For example, the integral of the square
of the magnitude of the velocity fluctuation vector provides a measure
of the kinetic energy of the velocity fluctuations [18–20]. The objective
of the present paper is to demonstrate that such square-integrated
measures may be misleading in viscoelastic fluids, where polymer
stresses can be highly localized (e.g., [11,22–25]).

To understand why a square-integrated measure may be misleading
for functions that are strongly amplified only in a small region, consider
a function [17,26] whose square yields a Gaussian function with a small
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standard deviation, 𝛼,

2(𝑦) = 1
2
√

𝜋𝛼
e−

𝑦2
4 𝛼 . (1)

The Gaussian function (1) has the property that its peak value increases
with a decrease in 𝛼. For example, when 𝛼 = 0.01, the peak value of
the Gaussian is ∼3, whereas when 𝛼 = 0.005, the peak value is ∼12.

However, no matter how large the peak value of the Gaussian is, its
ntegral is always of unit magnitude, i.e.,

∞

−∞
𝑔2(𝑦) d𝑦 = 1. (2)

he square-integrated measure in (2) does not appropriately weight
he large magnitude of the Gaussian function over a small region that
ccurs when 𝛼 is very small. Similarly, if a polymer-stress fluctuation
s amplified by orders of magnitude over a small region, the square-
ntegrated measure typically used in nonmodal analysis will overlook
he sheer magnitude of the polymer stress that occurs locally. Yet, such
arge polymer stresses and the corresponding gradients could put the
low into a regime where nonlinear terms are no longer negligible, and
his could lead to a flow transition.

Besides being of fundamental interest, the results of the present pa-
er may also be relevant for understanding experimental observations
f elastic turbulence in straight microchannels by Pan et al. and Qin
t al. [3,4]. Pressure-driven flow of a polymer solution having nearly
onstant shear viscosity was observed in a channel of length 3 cm and
ross-section 90 μm × 100 μm. The Reynolds number was ∼0.01, and an
rray of cylinders (diameter ∼ 50 μm) in the entry region of the channel
as used to perturb the flow. Particle tracking velocimetry reveals that

he magnitude of centerline velocity fluctuations can initially decrease
long the channel length before increasing (inset of Figure 3 in [4]),
esulting in a turbulent-like flow far downstream of the cylinders. This
ccurs when the number of cylinders and the Weissenberg number (ra-
io of fluid relaxation time to characteristic flow time) are sufficiently
arge.

Because the magnitude of centerline velocity fluctuations initially
ecreases along the channel length, it was argued that the transition
o elastic turbulence principally involves a nonlinear (finite-amplitude)
nstability rather than a linear mechanism such as modal or nonmodal
rowth of disturbances [3]. If a linear mechanism played an important
ole in the experiments, one might expect velocity fluctuations to
nitially increase along the channel length, rather then first decreasing
efore increasing.

However, it is not clear what causes the finite-amplitude perturba-
ion, and one possibility is that it could arise from a linear mechanism
hat was overlooked in prior work. In particular, if polymer-stress
luctuations are amplified significantly while velocity fluctuations un-
ergo negligible amplification, then the amplified polymer stresses
ould act as a finite-amplitude perturbation that triggers flow transition
ven though the velocity fluctuations (which are typically what are
easured experimentally) do not appear to be significantly amplified.
lthough we do not seek here to provide a definitive explanation of

he experimental observations of Pan et al. [3] and Qin et al. [4],
ur results reveal the presence of such an alternate linear mechanism,
hich involves large amplification of polymer-stress fluctuations over
small region.

To gain insight into the above issues, we consider in this paper a
odel problem involving pressure-driven inertialess channel flow of

n Oldroyd-B fluid subject to a localized time-periodic body force. Our
odel problem allows us to isolate the effects of elasticity from those

f inertia, the finite-extensibility of polymer molecules, and shear-
hinning. Time-periodic body forces are examined to be consistent
ith prior work [16] and because they yield fundamental information
bout the frequency response of the flow. Since the cylinders in the
xperiments of Pan et al. [3] and Qin et al. [4] discussed above exert a
ocalized force on the fluid and create a perturbation to the flow that is
2

Fig. 1. Flow geometry and the steady-state velocity profile for plane Poiseuille flow.

time-periodic [27], our model problem may also provide some insights
into these and related experiments.

One of the key findings of the present paper is that if a localized
measure of disturbance amplification is used, then spanwise-constant
polymer-stress fluctuations can be more amplified than streamwise-
constant polymer-stress fluctuations. This is the opposite of what is
observed if a square-integrated measure of disturbance amplification
is used. Moreover, it is found that when using a localized measure,
stress fluctuations can be amplified by an order of magnitude over a
small region in spanwise-constant (i.e., two-dimensional) flows whereas
amplification of velocity fluctuations is negligible. The issue of whether
streamwise-constant disturbances, spanwise-constant disturbances, or
some other scenario is principally responsible for transition to elastic
turbulence can only be settled by nonlinear calculations. Neverthe-
less, the present work highlights the potential importance of localized
amplification of spanwise-constant stress fluctuations, a mechanism
unique to viscoelastic fluids and one that was overlooked in prior work
that emphasized the use of square-integrated measures of disturbance
amplification [12–17].

Our paper is organized as follows. In Section 2 we present the
problem formulation, and in Section 3 we discuss the numerical meth-
ods used. In Section 4 we compare localized and square-integrated
measures of stress amplification. In Section 5 we identify the role
played by the continuous spectrum of the linearized problem in stress
amplification. We summarize our findings in Section 6, and relegate
technical details to the appendices.

2. Problem formulation

2.1. Governing equations

We consider inertialess pressure-driven flow of an Oldroyd-B fluid
between two parallel planes separated by a distance 2ℎ (Fig. 1). We
scale length with ℎ, velocity with the maximum magnitude of the
steady-state velocity 𝑈0, and time with ℎ∕𝑈0. Pressure is scaled with
𝜇𝑇𝑈0∕ℎ, where 𝜇𝑇 is the effective shear viscosity of the fluid, and
polymer stresses with 𝜇𝑝𝑈0∕ℎ, where 𝜇𝑝 = 𝜇𝑇 −𝜇𝑠 and 𝜇𝑠 is the solvent
viscosity.

Two nondimensional groups result from this scaling that character-
ize the material properties of the fluid. The viscosity ratio, 𝛽 = 𝜇𝑠∕𝜇𝑇 ,
gives the ratio of the solvent to the total viscosity. The Weissenberg
number 𝑊𝑒 = 𝜆𝑝𝑈0∕ℎ, gives the ratio of the fluid relaxation time 𝜆𝑝 to
the characteristic flow time ℎ∕𝑈0.

The equations governing momentum and mass conservation are [28,
29]

−𝛁𝑃 + 𝛽 ∇2𝑽 + ( 1 − 𝛽 )𝛁 ⋅ 𝑻 + 𝑫 = 0, (3a)

𝛁 ⋅ 𝑽 = 0, (3b)



Journal of Non-Newtonian Fluid Mechanics 291 (2021) 104514G. Hariharan et al.

𝜆

where 𝑽 = [𝑈 𝑉 𝑊 ]𝑇 is the velocity vector, 𝑻 is the polymer-stress
tensor, 𝑃 is the pressure, and 𝑫 is the body force. The Oldroyd-B
constitutive equation governs the polymer stress,

𝜕𝑡𝑻 +𝑽 ⋅𝛁𝑻 − 𝑻 ⋅𝛁𝑽 − (𝑻 ⋅𝛁𝑽 )𝑇 = − 1
𝑊𝑒

𝑻 + 1
𝑊𝑒

(

𝛁𝑽 + 𝛁𝑽 𝑇 ) . (3c)

The steady-state velocity and nonzero components of the polymer
stress are given by,

𝑽̄ = [ 𝑈̄ (𝑦) 0 0 ],𝑇 𝑇̄𝑥𝑥 = 2𝑊𝑒 𝑈̄ ′(𝑦),2 𝑇̄𝑥𝑦 = 𝑇̄𝑦𝑥 = 𝑈̄ ′(𝑦),

(4)

where 𝑈̄ (𝑦) = 1 − 𝑦2 for plane Poiseuille flow (Fig. 1), and the prime
refers to a derivative with respect to 𝑦. We consider the dynamics of
fluctuations about the steady-state (4) using a standard decomposition
in (3), 𝑽 = 𝑽̄ + 𝒗, 𝑻 = 𝑻̄ + 𝝉, 𝑃 = 𝑃 + 𝑝, and 𝑫 = 𝑫̄ + 𝒅, where 𝒗,
𝝉, 𝑝 and 𝒅 are fluctuations of the velocity, polymer stress, pressure and
body force, respectively.

Retaining terms that are linear in the fluctuations leads to the
linearized governing equations,

− 𝛁𝑝 + 𝛽 ∇2𝒗 + ( 1 − 𝛽 )𝛁 ⋅ 𝝉 + 𝒅 = 0, (5a)

𝛁 ⋅ 𝒗 = 0, (5b)

− 1
𝑊𝑒

𝝉 + 1
𝑊𝑒

(

𝛁𝒗 + 𝛁𝒗𝑇
)

=

𝜕𝑡𝝉 + 𝑽̄ ⋅ 𝛁𝝉 + 𝒗 ⋅ 𝛁𝑻̄ − 𝑻̄ ⋅ 𝛁𝒗 − 𝝉 ⋅ 𝛁𝑽̄ − (𝑻̄ ⋅ 𝛁𝒗)𝑇 − (𝝉 ⋅ 𝛁𝑽̄ ).𝑇 (5c)

The boundary conditions come from no-slip and no-penetration of the
velocity at the channel walls,

𝒗(±1) = 0. (5d)

We consider the effects of a persistent body force 𝒅 of the form

𝒅(𝑥, 𝑦, 𝑧, 𝑡) = 𝒅(𝑦) 𝛿(𝑥) 𝛿(𝑧) e𝑖 𝜔 𝑡, (5e)

where 𝛿(⋅) is the Dirac delta function, 𝑖 is the imaginary unit, and 𝜔
is the temporal frequency. For simplicity, we now use the symbol 𝒅
to denote the 𝑦-dependence of the body force. The body force in (5e)
is localized in the 𝑥- and 𝑧-directions and is harmonic in time. As we
will see in Section 4 (Figs. 5c and 5d), 𝒅(𝑦), which emerges from our
analysis, is nearly localized at specific points in the 𝑦-direction as well.

2.2. Input–output form of governing equations

The linearized governing equations can be put into a form that re-
lates input and output variables. This is accomplished by first applying
a Fourier transform to (5) in the 𝑥- and 𝑧-directions. Since the resultant
stress and velocity fields must have the same temporal frequency 𝜔 [21]
as the body force in (5e), we substitute 𝒗(𝜿, 𝑦, 𝑡) = 𝒗(𝜿, 𝑦) e𝑖 𝜔 𝑡, 𝝉(𝜿, 𝑦, 𝑡) =
𝝉(𝜿, 𝑦) e𝑖 𝜔 𝑡, and 𝑝(𝜿, 𝑦, 𝑡) = 𝑝(𝜿, 𝑦) e𝑖 𝜔 𝑡 into (5). Here 𝜿 = (𝑘𝑥, 𝑘𝑧) is the
vector of Fourier modes corresponding to the 𝑥- and 𝑧-directions. We
now use the symbols 𝒗, 𝝉, and 𝑝 to denote the amplitude functions,
and for convenience we simply refer to them as the velocity, stress,
and pressure from now on.

The transformed version of (5c) can be used to express the stress in
terms of the velocity. Using that expression to eliminate the stress in
the momentum conservation equations (5a) leads to a representation
of (5) given by

[(𝜿, 𝜔, 𝛽,𝑊𝑒)𝝓(⋅)](𝑦) = [(𝜿)𝒅(⋅)](𝑦), (6a)

𝒗(𝑦) = [𝒗(𝜿)𝝓(⋅)](𝑦), (6b)

𝜏𝑥𝑥(𝑦) = [𝑥𝑥(𝜿, 𝜔,𝑊𝑒)𝝓(⋅)](𝑦). (6c)

The input 𝒅 is the body force in (5a), and 𝝓 = [ 𝑢 𝑣 𝑤 𝑝 ]𝑇 . The output
is either the velocity vector (6b), or the component 𝜏𝑥𝑥 (6c) of the
stress tensor. The quantities , , 𝒗, and 𝑥𝑥 in (6) are block matrices
3

of differential operators in 𝑦 ∈ [−1 1 ] (Appendix A). Note that we
have moved the dependence of the amplitude functions on 𝜿 into these
operators so that 𝒗, 𝝉, and 𝑝 now depend only on 𝑦. The notation
(⋅) is used to emphasize that 𝒅 and 𝝓 are functions. We consider the
velocity vector as the output in (6b) instead of individual components
as this enables us to calculate the maximum value of the kinetic energy
of velocity fluctuations (see (12)). We consider the 𝑥𝑥-component of
the stress in (6c) as we found that it shows the largest amplification
compared to other stress components.

System (6) can be further simplified (Chapter 3 of [21]) by elim-
inating pressure and recasting , , 𝒗, and 𝑥𝑥 into a form where
𝝓 = [ 𝑣 𝜂 ]𝑇 with 𝜂 = 𝑖𝑘𝑧𝑢 − 𝑖𝑘𝑥𝑤 being the wall-normal vorticity. We
refer to the form in which 𝝓 = [ 𝑢 𝑣 𝑤 𝑝 ]𝑇 as the descriptor form, and
the form in which 𝝓 = [ 𝑣 𝜂 ]𝑇 as the evolution form. The descriptor
form is a larger system that involves four variables (𝑢, 𝑣, 𝑤, and 𝑝),
whereas the evolution form involves two variables (𝑣 and 𝜂). However,
a numerical solution (see Section 3) using the descriptor form needs
fewer basis functions compared to the evolution form [30]. We perform
calculations using both forms to confirm our expressions and results.
Expressions for , , 𝒗, and 𝑥𝑥 in (6) in both forms are provided in
Appendix A.

We note that the same set of equations in (6) results from using a
body force that is a sinusoidal function of 𝑥 and 𝑧 in all space,

𝒅(𝑥, 𝑦, 𝑧, 𝑡) = 𝒅(𝑦) e𝑖 𝜔 𝑡+𝑖 𝑘𝑥𝑥+𝑖 𝑘𝑧𝑧. (7a)

Substituting 𝒗(𝑥, 𝑦, 𝑧, 𝑡) = 𝒗(𝑦) e𝑖 𝜔 𝑡+𝑖 𝑘𝑥𝑥+𝑖 𝑘𝑧𝑧, 𝝉(𝑥, 𝑦, 𝑧, 𝑡) = 𝝉(𝑦)
e𝑖 𝜔 𝑡+𝑖 𝑘𝑥𝑥+𝑖 𝑘𝑧𝑧, and 𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝(𝑦) e𝑖 𝜔 𝑡+𝑖 𝑘𝑥𝑥+𝑖 𝑘𝑧𝑧 into (5) yields (6).
Therefore, solutions to (6) can be interpreted as resulting from (a) a
force that is a sinusoidal function of 𝑥 and 𝑧 in all space (7a), or (b)
a force that is localized at one point in the 𝑥- and 𝑧-directions (5e).
The localized interpretation may be useful for making connections to
experiments [3,4] where fixed objects exert a body force on the fluid
that is persistent in time and localized in space.

2.2.1. Modal analysis
The eigensystem of (6) that characterizes modal stability of (5) is

given by pairs of (nonzero) eigenvectors 𝝓(𝑦) and eigenvalues 𝜆, with
𝜔 = −𝑖 𝜆, 𝜆 ∈ C (where C is the set of complex numbers), for which

[(𝜿, 𝜆, 𝛽,𝑊𝑒)𝝓(⋅)](𝑦) = 0. (7b)

System (6) is linearly unstable for a given {𝜿, 𝛽,𝑊𝑒} when Re(𝜆) > 0,
where Re(⋅) is the real part. Prior works have shown that inertialess
Couette flow is linearly stable for all {𝜿,𝑊𝑒} when 𝛽 = 0 [9,10]. For
all other parameters in inertialess plane Couette and Poiseuille flows,
several numerical solutions show that system (6) is linearly stable,
although to the best of our knowledge, there are no rigorous proofs
for linear stability in the full parameter space of {𝜿, 𝛽,𝑊𝑒} [7,11].

One known solution to (7b) is the continuous spectrum [9,11,31],

(𝑦) = − 1
𝑊 𝑒

− 𝑖 𝑘𝑥 𝑈̄ (𝑦), (7c)

which has a negative real part −1∕𝑊𝑒 and is hence linearly stable (here,
𝑈̄ is the steady-state velocity for plane Poiseuille flow (see (4))). The
continuous spectrum varies in 𝑦 according to the continuous function,
𝑈̄ (𝑦), and reverts to a discrete eigenvalue 𝜆 = −1∕𝑊𝑒 when 𝑘𝑥 = 0. As
we will see in Section 5, (7c) plays an important role in inducing large
stress amplification from small-amplitude body forces.

2.2.2. Nonmodal analysis
While modal analysis is centered around finding solutions to (7b),

nonmodal analysis considers the operator [21] −1(𝜿, 𝜔, 𝛽,𝑊𝑒) (see
(6a)) in conjunction with the input body force (𝒅 in (5a)) and a selected
velocity or stress output (see (6b) and (6c), respectively). In particular,
𝒗(𝑦) = [𝒗(𝜔)𝒅(⋅)](𝑦), (8a)
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𝜏𝑥𝑥(𝑦) = [𝑥𝑥(𝜔)𝒅(⋅)](𝑦), (8b)

here 𝒗 and 𝑥𝑥 are the resolvent operators that map the body force
𝒅 in (5a)) to the velocity and stress, respectively,

𝒗(𝜔) = 𝒗−1(𝜔), 𝑥𝑥(𝜔) = 𝑥𝑥(𝜔)−1(𝜔). (8c)

Note that operators 𝒗, , , and 𝑥𝑥 in (8c) were introduced in (6).
We suppress the dependence of the operators on {𝜿, 𝛽,𝑊𝑒} in (8) for
notational convenience.

One measure of the amount of nonmodal amplification in a system
is the resolvent norm [21]. We next discuss the resolvent norm of a
generic resolvent operator  corresponding to an output operator 
in (6) that holds for both the velocity (𝒗 in (6b)) and the stress (𝑥𝑥
in (6c)) outputs in (8),

 (𝜔) = (𝜔)−1(𝜔). (9)

2.3. The resolvent norm

The resolvent norm of operator  in (9) provides a measure of the
maximum value of the square-integrated velocity (6b) (for 𝒗) or the
stress (6c) (for 𝑥𝑥),

∫

1

−1
𝒗†(𝑦)𝒗(𝑦) d𝑦, ∫

1

−1
𝜏†𝑥𝑥(𝑦)𝜏𝑥𝑥(𝑦) d𝑦, (10)

for any square-integrable body force (𝒅 in (5a)) of a unit 𝐿2[−1 1]
norm,

‖𝒅‖22 ∶= ∫

1

−1
𝒅†(𝑦)𝒅(𝑦) d𝑦, (11)

where ‖ ⋅ ‖2 is the 𝐿2[−1 1] norm, and (⋅)† is the adjoint [19,21]. The
square-integrated velocity in (10) yields the kinetic energy of velocity
fluctuations integrated over 𝑦 ∈ [−1 1],

∫

1

−1
𝒗†(𝑦)𝒗(𝑦) d𝑦 = ∫

1

−1
|𝑢(𝑦)|2 + |𝑣(𝑦)|2 + |𝑤(𝑦)|2 d𝑦. (12)

The resolvent norm is given by the principal singular value of
 [21,32], and is formally defined as

max
𝒅 ∈H3×1 , 𝒅≠0

‖ (𝜔)𝒅‖2
‖𝒅‖2

= 𝜎0[ ], (13)

where H is the set of square-integrable functions. The principal singular
value 𝜎0 is computed using a singular value decomposition (SVD) of  ,
as described in Section 3. We will now discuss quantities obtained from
a SVD of  which are typically used in nonmodal analysis, along with
their physical interpretation.

The SVD of 𝒗 in (8a) yields the singular values 𝜎, body forces, and
velocities such that [32]

𝜎 𝒗̂(𝑦) = [𝒗(𝜔)𝒅(⋅)](𝑦). (14)

here 𝒗̂ and 𝒅 are quantities with a unit 𝐿2[−1 1] norm (11). Expres-
ion (14) implies that a body force 𝒅 acting on 𝒗 results in a 𝒗̂ with
n amplification of magnitude 𝜎. Comparing (8a) and (14), the velocity
hat results from the body force 𝒅 in (14) is given by

(𝑦) = 𝜎 𝒗̂(𝑦). (15)

aking the 𝐿2[−1 1] norm (11) of both sides of (15) we have

𝒗‖22 = 𝜎2‖𝒗̂‖22 = 𝜎,2 (16)

here the last equality in (16) holds as 𝒗̂ has a unit 𝐿2[−1 1] norm
see (11)). Together, (16), (11), and (12) indicate that the square of
he largest (i.e., principal) singular value gives the maximum possible
alue of the kinetic energy of velocity fluctuations integrated in the 𝑦-
irection for any square-integrable body force of a unit 𝐿2[−1 1] norm
For a rigorous proof that the largest singular value is the resolvent
orm (13), see [33].)
4

Similar to (14)–(16), the SVD of 𝑥𝑥 in (8b) yields the singular
alues 𝜎, body forces, and stresses such that [32],

𝜏𝑥𝑥(𝑦) = [𝑥𝑥(𝜔)𝒅(⋅)](𝑦), (17)

here 𝜏𝑥𝑥 is a quantity with a unit 𝐿2[−1 1] norm. Similar to (15), we
ave by using (8b) and (17),

𝑥𝑥(𝑦) = 𝜎 𝜏𝑥𝑥(𝑦), (18)

nd taking the 𝐿2[−1 1] norm (11) of both sides of (18) we arrive at

𝜏𝑥𝑥‖
2
2 = 𝜎.2 (19)

rom (19), (10), and (11), the largest singular value from the SVD of
𝑥𝑥 gives the maximum possible value of the square-integrated stress
or any square-integrable body force of unit 𝐿2[−1 1] norm [32].

.4. Localized amplification

As noted earlier, nonmodal analysis typically quantifies disturbance
mplification in terms of quantities that are square-integrated along the
hannel width (see (10)). However, such measures overlook quantities
hat are highly amplified over a small region as discussed in Section 1.
n this paper, we quantify localized amplification as follows,

(𝑦∗) ∶= |𝒗(𝑦)|max, 𝜏𝑥𝑥(𝑦∗) ∶= |𝜏𝑥𝑥(𝑦)|max, (20)

here 𝑦∗ is the location at which the maximum occurs for a given body
orce. Note that 𝒗(𝑦) and 𝜏𝑥𝑥(𝑦) are calculated using the SVD and (15)
nd (18).

Prior works on nonmodal analysis [12–16] show that the maximum
onmodal amplification (as given by (10)) occurs when 𝑘𝑥 = 0 in (6).
his corresponds to streamwise-constant disturbances, and system (6)
hen 𝑘𝑥 = 0 is frequently referred as the two-dimensional three-

omponent (2D3C) model [13–16,34]. In the present work, we find that
ocalized amplification (as defined in (20)) is more prominent when
𝑧 = 0 and the stress, velocity, and body force are restricted to the (𝑥, 𝑦)-
lane. This corresponds to spanwise-constant disturbances, and will be
eferred to as the 2D model. We consider here only these two models
nd not a full 3D model owing to numerical limitations (see Chapter 3
f [35]).

. Numerical methods

The SVD of  in (9) is determined by using an eigenvalue decom-
osition [36–38],
[

0 †

† 0

] [

𝝓
𝝍

]

= 𝛾
[

 0
0 †

] [

𝝓
𝝍

]

, (21)

here we suppress the dependence on {𝜿, 𝜔,𝑊𝑒, 𝛽, 𝑦} for brevity. The
igenvalues 𝛾 = ± 𝜎 yield the singular values, and 𝝍 is the vector of
djoint variables corresponding to 𝝓 in (6).

The eigenvalue problem (21) consists of differential (infinite-
imensional) operators that act on continuous functions, 𝝓 and 𝝍 . The
perators in (21) are discretized using two well-conditioned spectral
ethods: the spectral integration method [36,39,40], and the ultras-
herical method [41]. We now briefly discuss spectral methods and
heir well-conditioned variants.

Spectral methods express a variable in a differential equation in a
asis of orthogonal polynomials like the Chebyshev polynomials, e.g.,

(𝑦) =
∞
∑′

𝑖=0
𝑢𝑖 𝑇𝑖(𝑦), (22)

here 𝑢𝑖 are the unknown spectral coefficients to be solved for, 𝑇𝑖(𝑦)
re the 𝑖th Chebyshev polynomials of the first kind, and ∑′ denotes
summation whose first term is halved (this convention is commonly
sed in a Chebyshev basis [40,42]).

Expressions for higher derivatives of the variable 𝑢(𝑦) are derived
y using a Chebyshev differentiation operator [40]. The differentiation
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operator produces ill-conditioned matrix approximations to differential
operators in (21) [42] that yield erroneous results for calculations of
the resolvent norm (13) at moderate to large 𝑊𝑒 [32,36] (also see
Chapter 3 of [35]).

The recently developed well-conditioned ultraspherical [41] and
spectral integration [39] methods avoid using the differentiation op-
erator. For example, the spectral integration method avoids the differ-
entiation operator by expressing the highest derivative in a differential
equation with a Chebyshev basis, and expressing lower derivatives with
an integration operator. The highest derivative of 𝑢 in (5) is of second
rder, hence the second derivative of 𝑢 is expressed as

d2𝑢
d𝑦2

=
𝑁
∑′

𝑖=0
𝑢(2)𝑖 𝑇𝑖(𝑦). (23)

Expressions for lower derivatives of 𝑢 in (23) are obtained using the
recurrence relation for the integration of Chebyshev polynomials [40],

d𝑢
d𝑦

=
𝑁
∑′

𝑖=0
𝑢(1)𝑖 𝑇𝑖(𝑦) + 𝑐0, (24)

where 𝑐0 is a constant of integration and

(1)
𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2𝑖

(

𝑢(2)𝑖−1 − 𝑢(2)𝑖+1

)

, 0 < 𝑖 < 𝑁,

1
2 𝑢

(2)
1 , 𝑖 = 0,

1
2𝑁 𝑢(2)𝑖−1, 𝑖 = 𝑁.

(25)

he constants of integration can be computed using the boundary
onditions in (5d).

Similarly, the ultraspherical method expresses a variable and its
erivatives in a basis of ultraspherical polynomials [41],

d𝑛𝑢
d𝑦𝑛

=
𝑁
∑

𝑘=1
𝑘 𝑢(𝑛)𝑘

d𝑛−1𝐶 (1)
𝑘−1(𝑦)

d𝑦𝑛−1
, (26)

here 𝐶 (𝛼)
𝑘 is the 𝑘th ultraspherical polynomial of the 𝛼 kind. The

erivatives of ultraspherical polynomials in (26) are related through
he recurrence relation [41],

d𝐶 (𝛼)
𝑘

d𝑦
=

{

2 𝛼 𝐶 (𝛼+1)
𝑘−1 , 𝑘 ≥ 1,

0, 𝑘 = 0,
(27)

hich forms a well-conditioned mapping between the variable and its
erivatives, unlike the differentiation operator used in conventional
pectral methods [41].

The spectral integration method is implemented in Matlab [36]
also see Chapter 3 of [35]) to derive finite-dimensional approximations
o (21) in both the evolution and descriptor forms (see (6) and Ap-
endix A). The ultraspherical discretization in Chebfun [41,43] is used
o derive a finite-dimensional approximation in the evolution form (see
ppendix A.1). As these well-conditioned methods are relatively new,
e are currently not aware of how to use the ultraspherical method
ith the descriptor form. For all calculations reported in this paper,

he corresponding velocity and stress from the SVD (see (14) and (17))
re resolved to machine precision by using up to 15,000 basis functions
ith these well-conditioned spectral methods.

These two approaches (evolution form with the ultraspherical
ethod, descriptor and evolution forms with the spectral integration
ethod; see (6) and Appendix A) produce the same singular values (a

ew representative validations are given in Appendix B), confirming
he accuracy of our results. Furthermore, at large 𝑊𝑒 for 2D3C Couette
low, our results agree with the 𝑊𝑒 and 𝑊𝑒2 scaling of the velocity 𝒗
nd stress 𝜏𝑥𝑥 singular values (Appendix B) reported in Figures 3 and
of [15].
5

. Localized and square-integrated amplification of the stress

In this section, we show that spanwise-constant stress fluctuations
2D model) can be more amplified than streamwise-constant stress fluc-
uations (2D3C model) when a localized measure of disturbance ampli-
ication (see (20)) is used. This is in contrast to what happens when
square-integrated measure of disturbance amplification (see (10)) is

sed [12,14–16]. We consider square-integrated amplification in Sec-
ion 4.1, and localized amplification in Section 4.2. We fix the viscosity
atio to a representative value of 𝛽 = 0.5, and the frequency to 𝜔 = 0. In

Section 5, we discuss the influence of 𝜔 in more detail. The streamwise
and spanwise wavenumbers (𝑘𝑥 and 𝑘𝑧, respectively) are set to fixed
values as the results are qualitatively similar for other values.

4.1. Square-integrated amplification

Fig. 2 shows the principal singular values as a function of 𝑊𝑒 for
the 2D3C model (𝑘𝑥 = 0, 𝑘𝑧 = 1) with 𝛽 = 0.5 and 𝜔 = 0. Fig. 2a shows
he velocity singular values obtained from the SVD of 𝒗 (see (14)),
nd there is a linear growth with 𝑊𝑒 when 𝑊𝑒 >∼20. Recall that the
ingular value provides a square-integrated measure of the velocity or
he stress amplification, as discussed in Section 2.3 (see (10), (16) and
19)).

Fig. 2b shows the stress singular values obtained from the SVD of 𝑥𝑥
see (17)). We observe in Fig. 2b that the stress singular value grows
uadratically with 𝑊𝑒. The 𝑊𝑒 and 𝑊𝑒2 scaling of the velocity and
tress singular values in Figs. 2a and 2b, respectively, are in agreement
ith the scaling arguments of Jovanović and Kumar [15].

Fig. 3 shows the principal singular values as a function of 𝑊𝑒 for
he 2D model (𝑘𝑥 = 1, 𝑘𝑧 = 0) with 𝛽 = 0.5 and 𝜔 = 0. Fig. 3a shows
he velocity singular values computed from the SVD of 𝒗 (see (14)).
he singular value grows at relatively small 𝑊𝑒 (<∼ 5) and then decays
t larger 𝑊𝑒. As discussed in Section 2.3, the principal singular value
ives the maximum possible kinetic energy of the velocity fluctuations
or any square-integrable body force. We conclude from Fig. 3a that
his maximum energy decreases with an increase in fluid elasticity for
arge enough 𝑊𝑒.

The stress singular values in Fig. 3b (the maximum possible square-
ntegrated stress (10)) computed from the SVD of 𝑥𝑥 (see (17)) show a
ifferent trend. The singular value grows with an increase in 𝑊𝑒 until
𝑒 ∼ 20, and then plateaus at large 𝑊𝑒.
As noted earlier, square-integrated measures are typically used in

onmodal analysis to characterize amplification of disturbances. From
his perspective, the 2D3C model would exhibit a larger amplification
han the 2D model at high 𝑊𝑒 since the principal singular values of
he 2D3C model grow with 𝑊𝑒 whereas those of the 2D model do
ot. However, if a localized measure of disturbance amplification is
mployed, then the 2D model can show more amplification as we will
emonstrate next.

.2. Localized amplification

Fig. 4a shows 𝜏𝑥𝑥 (see (17) and (18)) corresponding to the principal
ingular value for the 2D3C model using the same parameters as
n Fig. 2b with 𝑊𝑒 = 100. Fig. 4b shows 𝜏𝑥𝑥 corresponding to the
rincipal singular value for the 2D model using the same parameters
s in Fig. 3b with 𝑊𝑒 = 100. Fig. 4c enlarges the region near 𝑦 = 1
n Fig. 4b for clarity.

The principal singular value for the 2D3C model (𝜎0 = 9422.386;
ig. 4a) is about a thousand times greater than that for the 2D model
𝜎0 = 6.033; Fig. 4b). However, the peak magnitude of the stress (see
18) and (20)) for the 2D3C model (Fig. 4a) is 𝜎0 |𝜏𝑥𝑥|max ≈ 9422.386 ×
.01 ≈ 94.22. In contrast, for the 2D model (Figs. 4b and 4c) 𝜎0 |𝜏𝑥𝑥|max ≈
.033 × 300 ≈ 1810; this is about twenty times larger than that of the
D3C model.
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Fig. 2. Principal singular values of (a) 𝒗 in (14) and (b) 𝑥𝑥 in (17) for the 2D3C model with 𝛽 = 0.5, 𝑘𝑧 = 1, and 𝜔 = 0. The solid lines denote singular values, and the dashed
lines show the scaling with 𝑊𝑒.
Fig. 3. Principal singular values of (a) 𝒗 in (14) and (b) 𝑥𝑥 in (17) for the 2D model with 𝛽 = 0.5, 𝑘𝑥 = 1, and 𝜔 = 0. The solid lines denote singular values, and the dashed line
in (b) shows the magnitude of the singular value when 𝑊𝑒 = 500.
In Fig. 4, both, the 2D3C and 2D models have body forces with unit
𝐿2[−1 1] norms (11), but the 2D model generates larger localized stress
amplification compared to the 2D3C model under the same conditions.
Therefore, we conclude from Fig. 4 that if we use a localized measure
of disturbance amplification (see (20)) instead of a square-integrated
measure (see (10)), the 2D model produces greater stress amplification
compared to the 2D3C model. It should also be observed from Figs. 4b
and 4c that the stress is highly localized near the channel boundaries. In
addition, the velocity amplification is relatively weak as can be inferred
from Fig. 3a.

Figs. 5a and 5b show the components of the velocity 𝒗 = [𝑢 𝑣]𝑇

corresponding to the principal singular value of the 2D model. The mag-
nitude of the velocity is (0.1). This is about five orders of magnitude
weaker than the maximum value of the stress, which as noted earlier
is 𝜎0 |𝜏𝑥𝑥|max ≈ 6.033 × 300 ≈ 1810 (Figs. 4b and 4c).

Our results thus demonstrate that polymer-stress fluctuations can be
significantly amplified even if velocity fluctuations undergo negligible
amplification. These amplified stresses and the corresponding gradients
could put the system into a regime where nonlinear terms are no longer
negligible, and this could lead to a flow transition. Such a mechanism
might not be apparent from experimental observations, where velocity
rather than stress fluctuations are typically measured. Because the
stress fluctuations are highly localized, this alternative linear mech-
anism would be overlooked when using a square-integrated measure
of disturbance amplification, which predicts that streamwise-constant
fluctuations are most amplified. However, by using a localized measure
6

of disturbance amplification, we find instead that spanwise-constant
fluctuations are most amplified.

Figs. 5c and 5d show the 𝑥- and 𝑦-components of the body force
that induce the velocities in Figs. 5a and 5b, and the stress in Figs.
4b and 4c. The magnitude of the 𝑥-component of the body force
in Fig. 5c is significantly larger compared to the 𝑦-component in Fig. 5d.
However, both components of the body force are localized near 𝑦 = ±1,
which are the same locations where the stress is localized (Figs. 4b
and 4c). Since the maximum magnitude of the body force is (100)
and the maximum value of the stress fluctuation is (1000), the stress
fluctuation is amplified by an order of magnitude.

In Fig. 6 we plot in physical space contours of the kinetic energy
𝑢2 + 𝑣,2 and the square of the stress 𝜏2𝑥𝑥 that result from the body force
shown in Figs. 5c and 5d. Recall that the persistent body force we use
(see (5e)) is localized in 𝑥 and 𝑧. Plots in physical space are obtained
by applying an inverse Fourier transform to the velocity and stress
by linearly sampling 24 wavenumbers from 𝑘𝑥,min = −2.5 to 𝑘𝑥,max =
2.29, and using 6000 Chebyshev basis functions in the 𝑦-direction. Red
represents regions of high magnitude, and blue represents regions of
low magnitude as indicated in the color bars.

We observe in Fig. 6a that the kinetic energy, 𝑢2+𝑣,2 has a peak value
near the channel center at 𝑦 = 0 of (10−3). This is consistent with the
observations in Figs. 5a and 5b where the magnitude of the velocity in
Fourier space is the largest near the channel center (𝑦 = 0) and smaller
near the channel walls (𝑦 = ±1). Figs. 6b, 6c and 6d consider the square
of the stress, 𝜏2 . Fig. 6b is almost entirely blue, which corresponds to
𝑥𝑥
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Fig. 4. The quantity 𝜏𝑥𝑥 (see (18)) corresponding to the principal singular value from the SVD of 𝑥𝑥 in (17) for the (a) 2D3C (𝑘𝑧 = 1), and (b,c) 2D (𝑘𝑥 = 1) models with 𝑊𝑒 = 100,
𝛽 = 0.5, and 𝜔 = 0. Solid lines denote the real parts and dashed lines denote the imaginary parts of 𝜏𝑥𝑥. Panel (c) enlarges panel (b) near 𝑦 = 1.
Fig. 5. The (a,b) velocity components 𝒗 = [𝑢 𝑣]𝑇 , and (c,d) 𝑥- and 𝑦-components of the body force 𝒅, corresponding to the principal singular value from the SVD of 𝑥𝑥 in (17)
of 2D model with 𝑊𝑒 = 100, 𝛽 = 0.5, 𝑘𝑥 = 1, and 𝜔 = 0. Solid lines denote the real parts and dashed lines denote the imaginary parts of the velocity and body force.
near-zero values. This is because the stress is highly localized near the
walls (𝑦 = ±1). This can be observed in Figs. 6c and 6d, where Fig. 6b
is enlarged in the regions near 𝑦 = −1 and 𝑦 = +1 respectively. Both
𝑢2 + 𝑣2 and 𝜏2𝑥𝑥 are also localized around 𝑥 = 0, with a weak presence
upstream and downstream.

The color bars in Figs. 6b, 6c and 6d indicate that the square of
the stress reaches a value of (106). This large value is prominent
7

near the channel walls at 𝑦 = ±1, as seen in Figs. 6c and 6d. Fur-
thermore, the kinetic energy ((10−3) in Fig. 6a) and the square of
the stress ((106) in Figs. 6b, 6c and 6d) have a disparity of about
nine orders of magnitude, again highlighting that stress fluctuations can
undergo considerably more amplification even when there is negligible
amplification of velocity fluctuations.
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Fig. 6. The steady-state (a) kinetic energy 𝑢2 + 𝑣,2 and (b,c,d) squared stress 𝜏2𝑥𝑥 that result from a persistent body force in the 2D model of the form in (5e) with a frequency
𝜔 = 0 and a variation in 𝑦 shown in Figs. 5c and 5d. Here, 𝑊𝑒 = 100 and 𝛽 = 0.5. Panel (c) enlarges panel (b) near 𝑦 = −1, and panel (d) enlarges panel (b) near 𝑦 = 1. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
5. Role of continuous spectrum in stress amplification

In this section we demonstrate that localized amplification of the
stress (Figs. 4b and 4c) arises from the continuous spectrum 𝜆(𝑦) =
−𝑖 𝑘𝑥 𝑈̄ (𝑦) − 1∕𝑊𝑒 (see (7c)) of the linearized problem. Note that the
continuous spectrum reverts to a discrete eigenvalue 𝜆 = −1∕𝑊𝑒
by setting 𝑘𝑥 = 0. It should be noted that although the continuous
spectrum arises from a modal analysis, which is not what is being done
in the present work, we retain the term here for simplicity since 𝜆(𝑦)
appears in our nonmodal analysis.

The expression for 𝜏𝑥𝑥 for the full 3D system (see (6c) and (A.3))
is given by

𝜏𝑥𝑥 = 𝑐1,11D𝑢 + 𝑐0,11𝑢 + 𝑐1,12D𝑣 + 𝑐0,12𝑣, (28)

where D ∶= d∕d𝑦. Note that this expression also holds for the 2D model
since (28) is 𝑘𝑧- and 𝑤-independent, where 𝑤 is the 𝑧-component of 𝒗.
The expression for 𝜏𝑥𝑥 for the 2D3C model can be derived by setting
𝑘𝑥 = 0 in (28).

To illustrate key points, we focus on the first term, 𝑐1,11 in (28),

𝑐1,11D𝑢 =
2
(

𝑊𝑒 𝑐(𝑦)𝑇̄𝑥𝑦(𝑦) + 𝑈̄ ′(𝑦)
)

𝑊𝑒 𝑐(𝑦)2
D𝑢. (29)

where

𝑐(𝑦) = 𝑖 𝜔 + 1∕𝑊𝑒 + 𝑖 𝑘𝑥 𝑈̄ (𝑦). (30)

Note that 𝑐(𝑦) = 𝑖𝜔 − 𝜆(𝑦) where 𝜆(𝑦) is the continuous spectrum
(see (7c)).
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Eq. (29) can be rearranged as

𝑐1,11D𝑢 =
2 𝑇̄𝑥𝑦(𝑦)

𝑖 𝜔 + 1
𝑊𝑒 + 𝑖 𝑘𝑥 𝑈̄ (𝑦)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑔1(𝑦,𝜔,𝑘𝑥 ,𝑊𝑒)

D𝑢 +
2 𝑈̄ ′(𝑦)

𝑊𝑒(𝑖 𝜔 + 1
𝑊𝑒 + 𝑖 𝑘𝑥 𝑈̄ (𝑦))2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑔2(𝑦,𝜔,𝑘𝑥 ,𝑊𝑒)

D𝑢. (31)

In (31), 𝑇̄𝑥𝑦 and 𝑈̄ ′(𝑦) are the same, i.e., 𝑇̄𝑥𝑦 = 𝑈̄ ′(𝑦) (see (4)), but we
retain them separately to identify which couplings between base-state
and fluctuation quantities give rise to them. The contribution from 𝑇̄𝑥𝑦
in (31) comes from 𝑻̄ ⋅ 𝛁𝒗 in (5c), and that from 𝑈̄ ′(𝑦) in (31) comes
from 𝝉 ⋅𝛁𝑽̄ in (5c). In what follows, we will focus on 𝑔1 since 𝑔2 exhibits
similar behavior. Indeed, all the functions 𝑐1,11, 𝑐0,11, 𝑐1,12, and 𝑐0,12
in (28) contain 𝑐(𝑦) or its powers in the denominator (see (A.4)) and
thus exhibit behavior similar to 𝑔1 in (31).

We next plot 𝑔1 in (31) to understand its role in generating localized
amplification in 𝜏𝑥𝑥 (Figs. 4b and 4c). Fig. 7 shows 𝑔1 under the same
conditions as Fig. 4, i.e., with 𝑊𝑒 = 100, 𝑘𝑥 = 1, and 𝜔 = 0. Note that
𝑔1 in (31) is 𝑘𝑧- and 𝛽-independent.

For the 2D model, we observe from Figs. 7a and 7b that 𝑔1 shows
localized amplification near 𝑦 = ±1. Fig. 7b enlarges Fig. 7a near 𝑦 = 1
for clarity, and we observe that 𝑔1 has a maximum magnitude of ∼400.
Furthermore, the locations of localized amplification of 𝜏𝑥𝑥 in Figs. 4b
and 4c are near 𝑦 = ±1, and this is where 𝑔1 is also locally amplified in
Figs. 7a and 7b.

In Fig. 7c we plot 𝑔1 for the 2D3C model (𝑘𝑧 = 1, in which
case 𝑔1(𝑦) = −2𝑊𝑒 𝑈̄ ′(𝑦)), and we observe a smooth function without
prominent localized amplification. This is again similar to the 2D3C
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Fig. 7. The function 𝑔1 in (31) with 𝑊𝑒 = 100, and 𝜔 = 0 (a,b) 𝑘𝑥 = 1, and (c) 𝑘𝑧 = 1. The solid lines mark the real parts and the dashed lines mark the imaginary parts of 𝑔1.
Panel (b) enlarges panel (a) near 𝑦 = 1.
Fig. 8. The quantity 𝜏𝑥𝑥 corresponding to the principal singular value from the SVD of 𝑥𝑥 in (17) with 𝑊𝑒 = 40, 𝛽 = 0.5, and 𝑘𝑥 = 1, and (a) 𝑦∗ = 0, (b) 𝑦∗ = ±0.2, (c) 𝑦∗ = ±0.4,
(d) 𝑦∗ = ±0.6, (e) 𝑦∗ = ±0.8, and (f) 𝑦∗ = ±1. For given values of 𝑘𝑥 and 𝑦∗, 𝜔 is calculated from (33). The solid lines mark the real parts and the dashed lines mark the imaginary
parts of 𝜏𝑥𝑥. The dashed–dotted lines mark 𝑦 = 𝑦∗.
case in Fig. 4a, where 𝜏𝑥𝑥 is a smooth function without prominent
localized amplification.

To gain further insight into the origin of the localized amplification
of 𝑔1 (Figs. 7a and 7b), we separate the real and imaginary parts of 𝑔1
in (31), yielding

𝑔1(𝑦) =
2 𝑇̄𝑥𝑦(𝑦)(1∕𝑊𝑒 − 𝑖 (𝜔 + 𝑘𝑥𝑈̄ (𝑦)))

1∕𝑊𝑒2 + (𝜔 + 𝑘𝑥𝑈̄ (𝑦))2
. (32)

For a finite numerator, the function 𝑔1 in (32) reaches its largest
magnitude when its denominator is at its minimum. As the denominator
is a sum of two squares in (32), it is minimized when 𝑦 = 𝑦∗ such that

𝜔 + 𝑘𝑥𝑈̄ (𝑦∗) = 0. (33)

The location 𝑦 = 𝑦∗ would then correspond to the place where we
expect the magnitude of 𝑔 in (32), and thus the stress amplification,
9

1

to be maximized. Note that 𝜔 + 𝑘𝑥𝑈̄ (𝑦) is the imaginary part of 𝑐(𝑦)
(see (30)), and recall that 𝑐(𝑦) = 𝑖𝜔 − 𝜆(𝑦) where 𝜆(𝑦) is the continuous
spectrum (see (7c)).

Eq. (33) can be used to identify where localized amplification occurs
(𝑦∗) for given values of 𝜔 and 𝑘𝑥. For example, for the case shown
in Fig. 7, substituting 𝜔 = 0 and 𝑘𝑥 = 1 in (33) yields 𝑦∗ = ±1 since
the base-state streamwise velocity 𝑈̄ vanishes at the channel walls. As
seen in Figs. 7a and 7b, 𝑔1 is locally amplified near 𝑦∗ = ±1, and as
seen in Figs. 4b and 4c, the stress is locally amplified there as well.
Note that for the 2D3C model, 𝑘𝑥 = 0, and as a consequence, there are
no longer specific points 𝑦∗ where (33) is satisfied. This is consistent
with the relatively weak localized amplification observed in Figs. 7c
and 4a.

We now consider what happens for different values of 𝜔. To do this
we pick several values of 𝑦∗ ∈ [−1, 1] in the channel, fix 𝑘𝑥 = 1 (with
𝑊𝑒 = 40 and 𝛽 = 0.5), and calculate 𝜔 from (33). We then use this value
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of 𝜔 and compute a SVD of 𝑥𝑥 in (17). In Fig. 8, the solid and dashed
ines mark the real and imaginary parts of 𝜏𝑥𝑥 (see (17)) corresponding
o the principal singular value from the SVD of 𝑥𝑥, and the dashed-
otted lines mark 𝑦 = 𝑦∗. If the dashed-dotted lines match the locations
here localized amplification occurs for 𝜏𝑥𝑥, this would further support

he idea that (33), which is related to the continuous spectrum, can be
sed to identify where localized stress amplification occurs.

Figs. 8b–8f show excellent agreement between the predictions of
33) and the numerical results for values of 𝑦∗ away from the channel
enterline, thus demonstrating the key role that the continuous spec-
rum plays in localized stress amplification. We note that the case where
∗ = 0 shown in Fig. 8a is an exception. This can be understood by
ecognizing that the numerator of 𝑔1 in (31) vanishes when 𝑦 = 𝑦∗ = 0
ince 𝑇̄𝑥𝑦 = 𝑈̄ ′(𝑦) = −2𝑦. Further discussion of this case can be found
n [35]. We also see from Fig. 8 that as the frequency increases in
agnitude, the location of the amplification moves toward the channel

enter. In addition, the amplitude of the magnification is generally
arger for smaller frequency magnitudes.

Although we have presented results for 𝑘𝑥 = 1, similar behavior
as been observed at other values of 𝑘𝑥 as well [35]. The localized

stress amplification we have uncovered arises from coupling between
base-state and fluctuation quantities, as was pointed out when de-
scribing (31). However, computational limitations have prevented us
from fully exploring the (𝑘𝑥, 𝜔, 𝑊𝑒) parameter space, so we cannot
draw more detailed conclusions at this time regarding which couplings
are most prominent in various regions of the parameter space. Note
that the stress functions from the SVD (see (18)) become increasingly
steep with an increase in 𝑘𝑥 (> 3) and need a large number of basis
functions for good resolution, making SVD (17) prohibitively expensive.
Nevertheless, it is clear from the above discussion that the continuous
spectrum plays a key role in generating localized stress amplification.

Finally, we note that as 𝑊𝑒 → ∞, the minimum value of the
denominator of (32) is 0, in which case |𝜏𝑥𝑥|max → ∞ at specific
points 𝑦 = 𝑦∗ in the channel (from (33)). This arises from the infinite
extensibility of the Hookean dumbbells used to represent polymer
molecules in the Oldroyd-B constitutive equation. Although the singular
values for the 2D model were observed to plateau with large 𝑊𝑒
in Fig. 3b, the peak magnitude of the function |𝜏𝑥𝑥|max → ∞ as 𝑊𝑒 → ∞.
n contrast, localized amplification is not as prominent for the 2D3C
odel, as discussed above. However, the singular values themselves

end to infinity as 𝑊𝑒 → ∞ as seen in Fig. 2b. Accounting for the
inite extensibility of the polymer molecules (e.g., by using the FENE-
R constitutive equation) may put bounds on the level of disturbance
mplification but is not expected to lead to qualitative changes in the
esults observed here based on prior nonmodal analysis of viscoelastic
hannel flows [16].

. Conclusions

Our results demonstrate that in channel flows of viscoelastic fluids
ubject to a localized time-periodic body force, spanwise-constant
olymer-stress fluctuations can undergo enormous amplification. This
mplification is highly localized in space, and was overlooked in prior
tudies that used square-integrated measures of disturbance amplifi-
ation, which are typically applied in nonmodal analysis. By using a
ocalized measure of disturbance amplification, we find that spanwise-
onstant stress fluctuations are more amplified than streamwise-
onstant stress fluctuations. This amplification appears to arise from the
ontinuous spectrum of the linearized problem, with the amplification
ocation depending on the frequency of the body force.

Our findings may be useful for understanding the experimental
bservations of Pan et al. and Qin et al. [3,4] involving microchannel
lows of viscoelastic fluids. In those experiments, the cylinders that
erturb the flow create a localized, time-periodic disturbance, and
he magnitude of velocity fluctuations decreases downstream before
ncreasing. Although there is significant stress amplification in our
10
model problem, we find that there is negligible amplification of velocity
fluctuations, which seems consistent with the experiments. The large
stress amplification we observe could put the flow into a regime where
nonlinear terms are no longer negligible, and this could trigger a
transition to elastic turbulence.

The large localized stress amplification we observe is unexpected,
unique to viscoelastic fluids, and represents an alternate linear mech-
anism by which finite-amplitude perturbations can be generated. Our
results also provide fundamental information about the frequency re-
sponse of inertialess viscoelastic channel flows. Definitively unraveling
the full mechanisms through which elastic turbulence is generated in
such flows will require nonlinear simulations, an outstanding challenge
in non-Newtonian fluid mechanics. The well-conditioned spectral meth-
ods we apply here may be especially well-suited for this task because
of their ability to resolve sharp stress gradients.
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Appendix A. Operators governing channel flow of an Oldroyd-B
fluid

The equations governing channel flow of an Oldroyd-B fluid (5)
can be recast to the representation in (6) as discussed in Section 2.1.
System (6) can be expressed in two forms, the evolution form (where
the pressure is eliminated), and the descriptor form (where the pressure
is not eliminated). In this section we present the operators , , 𝒗, and
𝑥𝑥 in (6) in both forms.

A.1. Evolution form

The state variables for the evolution form [21] are the wall-normal
velocity and vorticity, 𝝓 = [ 𝑣 𝜂 ]𝑇 in (6). The boundary conditions are

𝑣(±1) = [D𝑣(⋅)](±1) = 𝜂(±1) = 0. (A.1)

The operator-valued matrices , , 𝒗, and 𝑥𝑥 are detailed in this
section.  is of size 2 × 2 with elements

(1, 1) =

( 4
∑

𝑛=0
𝑎𝑛,11(𝑦, 𝜔)D𝑛

)

,

(1, 2) = 0,

(2, 1) =

( 2
∑

𝑛=0
𝑎𝑛,21(𝑦, 𝜔)D𝑛

)

,

(2, 2) =

( 2
∑

𝑛=0
𝑎𝑛,22(𝑦, 𝜔)D𝑛

)

,

where the dependence on 𝜔 enters through the 𝑐(𝑦) in (30), and the
nonzero coefficients 𝑎𝑛,𝑖𝑗 are given by

𝑎4,11 = −
(1 − 𝛽)
𝑊𝑒 𝑐(𝑦)

− 𝛽,

𝑎3,11 =
2(1 − 𝛽) 𝑐′(𝑦)

−
2𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄𝑥𝑦(𝑦) ,
𝑊𝑒 𝑐(𝑦)2 𝑐(𝑦)
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𝑎

w

𝑐

𝑎2,11 =
(1 − 𝛽) 𝑐′′(𝑦)
𝑊𝑒 𝑐(𝑦)2

+
2𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄𝑥𝑦(𝑦)𝑐′(𝑦)

𝑐(𝑦)2
−

4𝑖(1 − 𝛽) 𝑘𝑥 𝑐′(𝑦)𝑈̄ ′(𝑦)
𝑊𝑒 𝑐(𝑦)3

−
2(1 − 𝛽) 𝑐′(𝑦)2

𝑊𝑒 𝑐(𝑦)3
+

2(1 − 𝛽) 𝑘2

𝑊𝑒 𝑐(𝑦)
+

(1 − 𝛽) 𝑘2𝑥 𝑇̄𝑥𝑥(𝑦)
𝑐(𝑦)

−
2(1 − 𝛽) 𝑘2𝑥 𝑇̄𝑥𝑦(𝑦)𝑈̄

′(𝑦)

𝑐(𝑦)2
−

4(1 − 𝛽) 𝑘2𝑥 𝑈̄
′(𝑦)2

𝑊𝑒 𝑐(𝑦)3

−
3𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄ ′

𝑥𝑦(𝑦)

𝑐(𝑦)
+

2𝑖(1 − 𝛽) 𝑘𝑥 𝑈̄ ′′(𝑦)
𝑊𝑒 𝑐(𝑦)2

+ 2𝛽 𝑘2,

𝑎1,11 = −
4𝑖(1 − 𝛽) 𝑘𝑥 𝑐′′(𝑦)𝑈̄ ′(𝑦)

𝑊𝑒 𝑐(𝑦)3
+

8(1 − 𝛽) 𝑘2𝑥 𝑇̄𝑥𝑦(𝑦)𝑐
′(𝑦)𝑈̄ ′(𝑦)

𝑐(𝑦)3

+
12(1 − 𝛽) 𝑘2𝑥 𝑐

′(𝑦)𝑈̄ ′(𝑦)2

𝑊𝑒 𝑐(𝑦)4
−

2(1 − 𝛽) 𝑘2𝑥 𝑐
′(𝑦)

𝑊𝑒 𝑐(𝑦)2

+
2𝑖(1 − 𝛽) 𝑘𝑥 𝑐′(𝑦)𝑇̄ ′

𝑥𝑦(𝑦)

𝑐(𝑦)2

−
8𝑖(1 − 𝛽) 𝑘𝑥 𝑐′(𝑦)𝑈̄ ′′(𝑦)

𝑊𝑒 𝑐(𝑦)3
+

12𝑖(1 − 𝛽) 𝑘𝑥 𝑐′(𝑦)2𝑈̄ ′(𝑦)
𝑊𝑒 𝑐(𝑦)4

−
2(1 − 𝛽) 𝑘2𝑧 𝑐

′(𝑦)
𝑊𝑒 𝑐(𝑦)2

+
2𝑖(1 − 𝛽) 𝑘2 𝑘𝑥 𝑇̄𝑥𝑦(𝑦)

𝑐(𝑦)
−

2𝑖(1 − 𝛽) 𝑘3𝑥 𝑇̄𝑥𝑥(𝑦)𝑈̄
′(𝑦)

𝑐(𝑦)2

−
4𝑖(1 − 𝛽) 𝑘3𝑥 𝑇̄𝑥𝑦(𝑦)𝑈̄

′(𝑦)2

𝑐(𝑦)3
+

(1 − 𝛽) 𝑘2𝑥 𝑇̄
′
𝑥𝑥(𝑦)

𝑐(𝑦)

−
2(1 − 𝛽) 𝑘2𝑥 𝑇̄

′
𝑥𝑦(𝑦)𝑈̄

′(𝑦)

𝑐(𝑦)2
−

4(1 − 𝛽) 𝑘2𝑥 𝑇̄𝑥𝑦(𝑦)𝑈̄
′′(𝑦)

𝑐(𝑦)2

−
8(1 − 𝛽) 𝑘2𝑥 𝑈̄

′(𝑦)𝑈̄ ′′(𝑦)
𝑊𝑒 𝑐(𝑦)3

,

0,11 =
(1 − 𝛽) 𝑘2 𝑐′′(𝑦)

𝑊𝑒 𝑐(𝑦)2
+

(1 − 𝛽) 𝑘2𝑥 𝑇̄𝑥𝑥(𝑦)𝑐
′′(𝑦)

𝑐(𝑦)2

+
4(1 − 𝛽) 𝑘2𝑥 𝑇̄𝑥𝑦(𝑦)𝑐

′′(𝑦)𝑈̄ ′(𝑦)

𝑐(𝑦)3

+
𝑖(1 − 𝛽) 𝑘𝑥 𝑐′′(𝑦)𝑇̄ ′

𝑥𝑦(𝑦)

𝑐(𝑦)2
−

2𝑖(1 − 𝛽) 𝑘2 𝑘𝑥 𝑇̄𝑥𝑦(𝑦)𝑐′(𝑦)

𝑐(𝑦)2

+
4𝑖(1 − 𝛽) 𝑘2 𝑘𝑥 𝑐′(𝑦)𝑈̄ ′(𝑦)

𝑊𝑒 𝑐(𝑦)3
−

2(1 − 𝛽) 𝑘2 𝑐′(𝑦)2

𝑊𝑒 𝑐(𝑦)3

+
4𝑖(1 − 𝛽) 𝑘3𝑥 𝑇̄𝑥𝑥(𝑦)𝑐

′(𝑦)𝑈̄ ′(𝑦)
𝑐(𝑦)3

+
12𝑖(1 − 𝛽) 𝑘3𝑥 𝑇̄𝑥𝑦(𝑦)𝑐

′(𝑦)𝑈̄ ′(𝑦)2

𝑐(𝑦)4
+

(1 − 𝛽) 𝑘2𝑥 𝑐
′(𝑦)𝑇̄ ′

𝑥𝑥(𝑦)
𝑐(𝑦)2

−
2(1 − 𝛽) 𝑘2𝑥 𝑇̄𝑥𝑥(𝑦)𝑐

′(𝑦)2

𝑐(𝑦)3
+

4(1 − 𝛽) 𝑘2𝑥 𝑐
′(𝑦)𝑇̄ ′

𝑥𝑦(𝑦)𝑈̄
′(𝑦)

𝑐(𝑦)3

+
8(1 − 𝛽) 𝑘2𝑥 𝑇̄𝑥𝑦(𝑦)𝑐

′(𝑦)𝑈̄ ′′(𝑦)

𝑐(𝑦)3
−

12(1 − 𝛽) 𝑘2𝑥 𝑇̄𝑥𝑦(𝑦)𝑐
′(𝑦)2𝑈̄ ′(𝑦)

𝑐(𝑦)4

−
2𝑖(1 − 𝛽) 𝑘𝑥 𝑐′(𝑦)2𝑇̄ ′

𝑥𝑦(𝑦)

𝑐(𝑦)3
−

(1 − 𝛽) 𝑘4

𝑊𝑒 𝑐(𝑦)
−

(1 − 𝛽) 𝑘2 𝑘2𝑥 𝑇̄𝑥𝑥(𝑦)
𝑐(𝑦)

−
2(1 − 𝛽) 𝑘2 𝑘2𝑥 𝑇̄𝑥𝑦(𝑦)𝑈̄

′(𝑦)

𝑐(𝑦)2
+

𝑖(1 − 𝛽) 𝑘2 𝑘𝑥 𝑇̄ ′
𝑥𝑦(𝑦)

𝑐(𝑦)

−
2𝑖(1 − 𝛽) 𝑘2 𝑘𝑥 𝑈̄ ′′(𝑦)

𝑊𝑒 𝑐(𝑦)2

−
2𝑖(1 − 𝛽) 𝑘3𝑥 𝑇̄

′
𝑥𝑥(𝑦)𝑈̄

′(𝑦)
𝑐(𝑦)2

−
2𝑖(1 − 𝛽) 𝑘3𝑥 𝑇̄𝑥𝑥(𝑦)𝑈̄

′′(𝑦)
𝑐(𝑦)2

−
4𝑖(1 − 𝛽) 𝑘3𝑥 𝑇̄

′
𝑥𝑦(𝑦)𝑈̄

′(𝑦)2

𝑐(𝑦)3
−

8𝑖(1 − 𝛽) 𝑘3𝑥 𝑇̄𝑥𝑦(𝑦)𝑈̄
′(𝑦)𝑈̄ ′′(𝑦)

𝑐(𝑦)3

−
2(1 − 𝛽) 𝑘2𝑥 𝑇̄

′
𝑥𝑦(𝑦)𝑈̄

′′(𝑦)

𝑐(𝑦)2
− 𝛽𝑘4,

𝑎2,21 = −
𝑖(1 − 𝛽) 𝑘𝑧 𝑈̄ ′(𝑦)

,

11

𝑊𝑒 𝑐(𝑦)2 𝑢
𝑎1,21 =
𝑖(1 − 𝛽) 𝑘𝑧 𝑇̄𝑥𝑦(𝑦)𝑐′(𝑦)

𝑐(𝑦)2
+

4𝑖(1 − 𝛽) 𝑘𝑧 𝑐′(𝑦)𝑈̄ ′(𝑦)
𝑊𝑒 𝑐(𝑦)3

+
3(1 − 𝛽) 𝑘𝑥 𝑘𝑧 𝑇̄𝑥𝑦(𝑦)𝑈̄ ′(𝑦)

𝑐(𝑦)2

+
4(1 − 𝛽) 𝑘𝑥 𝑘𝑧 𝑈̄ ′(𝑦)2

𝑊𝑒 𝑐(𝑦)3
−

2𝑖(1 − 𝛽) 𝑘𝑧 𝑈̄ ′′(𝑦)
𝑊𝑒 𝑐(𝑦)2

,

𝑎0,21 = −
(1 − 𝛽) 𝑘𝑥 𝑘𝑧 𝑇̄𝑥𝑥(𝑦)𝑐′(𝑦)

𝑐(𝑦)2
−

4(1 − 𝛽) 𝑘𝑥 𝑘𝑧 𝑇̄𝑥𝑦(𝑦)𝑐′(𝑦)𝑈̄ ′(𝑦)

𝑐(𝑦)3

−
𝑖(1 − 𝛽) 𝑘𝑧 𝑐′(𝑦)𝑇̄ ′

𝑥𝑦(𝑦)

𝑐(𝑦)2
+

2𝑖(1 − 𝛽) 𝑘2𝑥 𝑘𝑧 𝑇̄𝑥𝑥(𝑦)𝑈̄
′(𝑦)

𝑐(𝑦)2

+
4𝑖(1 − 𝛽) 𝑘2𝑥 𝑘𝑧 𝑇̄𝑥𝑦(𝑦)𝑈̄

′(𝑦)2

𝑐(𝑦)3
+

𝑖(1 − 𝛽) 𝑘2𝑥 𝑘𝑧 𝑈̄
′(𝑦)

𝑊𝑒 𝑐(𝑦)2

+
2(1 − 𝛽) 𝑘𝑥 𝑘𝑧 𝑇̄𝑥𝑦(𝑦)𝑈̄ ′′(𝑦)

𝑐(𝑦)2
+

𝑖(1 − 𝛽) 𝑘3𝑧 𝑈̄
′(𝑦)

𝑊𝑒 𝑐(𝑦)2
,

𝑎2,22 = −
(1 − 𝛽)
𝑊𝑒 𝑐(𝑦)

− 𝛽,

𝑎1,22 =
(1 − 𝛽) 𝑐′(𝑦)
𝑊𝑒 𝑐(𝑦)2

−
2𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄𝑥𝑦(𝑦)

𝑐(𝑦)
−

𝑖(1 − 𝛽) 𝑘𝑥 𝑈̄ ′(𝑦)
𝑊𝑒 𝑐(𝑦)2

,

𝑎0,22 =
𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄𝑥𝑦(𝑦)𝑐′(𝑦)

𝑐(𝑦)2
+

(1 − 𝛽) 𝑘2

𝑊𝑒 𝑐(𝑦)

+
(1 − 𝛽) 𝑘2𝑥 𝑇̄𝑥𝑥(𝑦)

𝑐(𝑦)
+

(1 − 𝛽) 𝑘2𝑥 𝑇̄𝑥𝑦(𝑦)𝑈̄
′(𝑦)

𝑐(𝑦)2

−
𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄ ′

𝑥𝑦(𝑦)

𝑐(𝑦)
+ 𝛽𝑘2,

here 𝑐(𝑦) = 𝑖 𝜔 + 1∕𝑊𝑒 + 𝑖 𝑘𝑥 𝑈̄ (𝑦) (see (30)).
The operators 𝒗 (for the velocity output) and  are given by [19]

𝒗 =
1
𝑘2

⎡

⎢

⎢

⎣

𝑖 𝑘𝑥 D −𝑖 𝑘𝑧
𝑘2 0

𝑖 𝑘𝑧 D 𝑖 𝑘𝑥

⎤

⎥

⎥

⎦

,  =
[

−𝑖 𝑘𝑥 D −𝑘2 −𝑖 𝑘𝑧 D
𝑖 𝑘𝑧 0 −𝑖 𝑘𝑥

]

. (A.2a)

For the stress output 𝜏𝑥𝑥, 𝑥𝑥 is a 1 × 2 block-matrix operator with

𝑥𝑥(1, 1) =

( 2
∑

𝑛=0
𝑐𝑛,11(𝑦, 𝜔)D𝑛

)

,

𝑥𝑥(1, 2) =

( 1
∑

𝑛=0
𝑐𝑛,12(𝑦, 𝜔)D𝑛

)

,

(A.2b)

where the nonzero coefficients 𝑐𝑛,𝑖𝑗 are given by

𝑐2,11 =
2𝑖𝑘𝑥 𝑇̄𝑥𝑦(𝑦)

𝑘2 𝑐(𝑦)
+

2𝑖𝑘𝑥 𝑈̄ ′(𝑦)
𝑘2 𝑊𝑒 𝑐(𝑦)2

,

𝑐1,11 = −
2𝑘2𝑥 𝑇̄𝑥𝑥(𝑦)
𝑘2 𝑐(𝑦)

−
2𝑘2𝑥

𝑘2 𝑊𝑒 𝑐(𝑦)
+

2𝑘2𝑧 𝑇̄𝑥𝑦(𝑦)𝑈̄
′(𝑦)

𝑘2 𝑐(𝑦)2
+

4𝑈̄ ′(𝑦)2

𝑊𝑒 𝑐(𝑦)3
,

𝑐0,11 =
2𝑖𝑘𝑥 𝑇̄𝑥𝑥(𝑦)𝑈̄ ′(𝑦)

𝑐(𝑦)2
+

4𝑖𝑘𝑥 𝑇̄𝑥𝑦(𝑦)𝑈̄ ′(𝑦)2

𝑐(𝑦)3
+

2𝑖𝑘𝑥 𝑈̄ ′(𝑦)
𝑊𝑒 𝑐(𝑦)2

−
𝑇̄ ′
𝑥𝑥(𝑦)
𝑐(𝑦)

−
2𝑇̄ ′

𝑥𝑦(𝑦)𝑈̄
′(𝑦)

𝑐(𝑦)2
,

𝑐1,12 = −
2𝑖𝑘𝑧 𝑇̄𝑥𝑦(𝑦)

𝑘2 𝑐(𝑦)
−

2𝑖𝑘𝑧 𝑈̄ ′(𝑦)
𝑘2 𝑊𝑒 𝑐(𝑦)2

,

0,12 =
2𝑘𝑥 𝑘𝑧 𝑇̄𝑥𝑥(𝑦)

𝑘2 𝑐(𝑦)
+

2𝑘𝑥 𝑘𝑧 𝑇̄𝑥𝑦(𝑦)𝑈̄ ′(𝑦)

𝑘2 𝑐(𝑦)2
+

2𝑘𝑥 𝑘𝑧
𝑘2 𝑊𝑒 𝑐(𝑦)

.

A.2. Descriptor form

The state variables of the descriptor form are the velocity and
pressure, i.e., 𝝓 = [ 𝑢 𝑣 𝑤 𝑝 ]𝑇 in (6). The boundary conditions are

(±1) = 𝑣(±1) = 𝑤(±1) = [D𝑣(⋅)](±1) = 0.
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In this representation the operator-valued matrix  is of size 4 × 4 with
omponents

(𝑖, 𝑗) =

( 2
∑

𝑛=0
𝑎𝑛,𝑖𝑗 (𝑦, 𝜔)D𝑛

)

,

here the nonzero coefficients 𝑎𝑛,𝑖𝑗 are given by

2,11 = −
(1 − 𝛽)
𝑊𝑒 𝑐(𝑦)

− 𝛽,

𝑎1,11 =
(1 − 𝛽)

(

𝑐′(𝑦) − 𝑖𝑘𝑥
(

3𝑊𝑒 𝑐(𝑦)𝑇̄𝑥𝑦(𝑦) + 2𝑈̄ ′(𝑦)
))

𝑊𝑒 𝑐(𝑦)2
,

𝑎0,11 =
(1 − 𝛽) 𝑘𝑥 𝑇̄𝑥𝑦(𝑦)

(

2𝑘𝑥 𝑈̄ ′(𝑦) + 𝑖𝑐′(𝑦)
)

𝑐(𝑦)2

+
(1 − 𝛽)

(

2𝑘2𝑥 + 𝑘𝑥 𝑊𝑒
(

2𝑘𝑥 𝑇̄𝑥𝑥(𝑦) − 𝑖𝑇̄ ′
𝑥𝑦(𝑦)

)

+ 𝑘2𝑧
)

𝑊𝑒 𝑐(𝑦)
+ 𝛽𝑘2,

2,12 = −
(1 − 𝛽)

(

𝑊𝑒 𝑐(𝑦)𝑇̄𝑥𝑦(𝑦) + 2𝑈̄ ′(𝑦)
)

𝑊𝑒 𝑐(𝑦)2
,

𝑎1,12 =
(1 − 𝛽) 𝑇̄𝑥𝑦(𝑦)𝑐′(𝑦)

𝑐(𝑦)2
+

4(1 − 𝛽) 𝑐′(𝑦)𝑈̄ ′(𝑦)
𝑊𝑒 𝑐(𝑦)3

−
𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄𝑥𝑥(𝑦)

𝑐(𝑦)

−
4𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄𝑥𝑦(𝑦)𝑈̄ ′(𝑦)

𝑐(𝑦)2
−

4𝑖(1 − 𝛽) 𝑘𝑥 𝑈̄ ′(𝑦)2

𝑊𝑒 𝑐(𝑦)3
−

𝑖(1 − 𝛽) 𝑘𝑥
𝑊𝑒 𝑐(𝑦)

−
2(1 − 𝛽) 𝑈̄ ′′(𝑦)

𝑊𝑒 𝑐(𝑦)2
,

0,12 =
𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄𝑥𝑥(𝑦)𝑐′(𝑦)

𝑐(𝑦)2
+

4𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄𝑥𝑦(𝑦)𝑐′(𝑦)𝑈̄ ′(𝑦)

𝑐(𝑦)3

+
𝑖(1 − 𝛽) 𝑘𝑥 𝑐′(𝑦)

𝑊𝑒 𝑐(𝑦)2
−

(1 − 𝛽) 𝑐′(𝑦)𝑇̄ ′
𝑥𝑦(𝑦)

𝑐(𝑦)2

+
2(1 − 𝛽) 𝑘2𝑥𝑇̄𝑥𝑥(𝑦)𝑈̄

′(𝑦)
𝑐(𝑦)2

+
4(1 − 𝛽) 𝑘2𝑥𝑇̄𝑥𝑦(𝑦)𝑈̄

′(𝑦)2

𝑐(𝑦)3

+
2(1 − 𝛽) 𝑘2𝑥𝑈̄

′(𝑦)
𝑊𝑒 𝑐(𝑦)2

−
2𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄𝑥𝑦(𝑦)𝑈̄ ′′(𝑦)

𝑐(𝑦)2
+

(1 − 𝛽) 𝑘2𝑧𝑈̄
′(𝑦)

𝑊𝑒 𝑐(𝑦)2
,

𝑎1,13 = −
𝑖(1 − 𝛽) 𝑘𝑧

(

𝑊𝑒 𝑐(𝑦)𝑇̄𝑥𝑦(𝑦) + 𝑈̄ ′(𝑦)
)

𝑊𝑒 𝑐(𝑦)2
,

𝑎0,13 =
(1 − 𝛽) 𝑘𝑥 𝑘𝑧

(

𝑊𝑒 𝑐(𝑦)𝑇̄𝑥𝑥(𝑦) + 𝑐(𝑦) +𝑊𝑒 𝑇̄𝑥𝑦(𝑦)𝑈̄ ′(𝑦)
)

𝑊𝑒 𝑐(𝑦)2
,

0,14 = 𝑖𝑘𝑥,

1,21 = −
𝑖(1 − 𝛽) 𝑘𝑥
𝑊𝑒 𝑐(𝑦)

,

0,21 =
(1 − 𝛽) 𝑘2𝑥𝑇̄𝑥𝑦(𝑦)

𝑐(𝑦)
,

𝑎2,22 = −
2(1 − 𝛽)
𝑊𝑒 𝑐(𝑦)

− 𝛽,

𝑎1,22 =
2(1 − 𝛽) 𝑐′(𝑦)
𝑊𝑒 𝑐(𝑦)2

−
3𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄𝑥𝑦(𝑦)

𝑐(𝑦)
−

2𝑖(1 − 𝛽) 𝑘𝑥 𝑈̄ ′(𝑦)
𝑊𝑒 𝑐(𝑦)2

,

𝑎0,22 =
2𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄𝑥𝑦(𝑦)𝑐′(𝑦)

𝑐(𝑦)2
+

(1 − 𝛽) 𝑘2𝑥𝑇̄𝑥𝑥(𝑦)
𝑐(𝑦)

+
2(1 − 𝛽) 𝑘2𝑥𝑇̄𝑥𝑦(𝑦)𝑈̄

′(𝑦)

𝑐(𝑦)2

+
(1 − 𝛽) 𝑘2𝑥
𝑊𝑒 𝑐(𝑦)

−
𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄ ′

𝑥𝑦(𝑦)

𝑐(𝑦)
+

(1 − 𝛽) 𝑘2𝑧
𝑊𝑒 𝑐(𝑦)

+ 𝛽𝑘2,

𝑎1,23 = −
𝑖(1 − 𝛽) 𝑘𝑧
𝑊𝑒 𝑐(𝑦)

,

𝑎0,23 =
(1 − 𝛽) 𝑘𝑥 𝑘𝑧𝑇̄𝑥𝑦(𝑦)

𝑐(𝑦)
,

𝑎 = 1,
12

1,24
𝑎0,31 =
(1 − 𝛽) 𝑘𝑥 𝑘𝑧
𝑊𝑒 𝑐(𝑦)

,

𝑎1,32 = −
𝑖(1 − 𝛽) 𝑘𝑧
𝑊𝑒 𝑐(𝑦)

,

𝑎0,32 =
(1 − 𝛽) 𝑘𝑧

(

𝑘𝑥 𝑈̄ ′(𝑦) + 𝑖𝑐′(𝑦)
)

𝑊𝑒 𝑐(𝑦)2
,

𝑎2,33 = −
(1 − 𝛽)
𝑊𝑒 𝑐(𝑦)

− 𝛽,

𝑎1,33 =
(1 − 𝛽) 𝑐′(𝑦)
𝑊𝑒 𝑐(𝑦)2

−
2𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄𝑥𝑦(𝑦)

𝑐(𝑦)
−

𝑖(1 − 𝛽) 𝑘𝑥 𝑈̄ ′(𝑦)
𝑊𝑒 𝑐(𝑦)2

,

𝑎0,33 =
𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄𝑥𝑦(𝑦)𝑐′(𝑦)

𝑐(𝑦)2
+

(1 − 𝛽) 𝑘2𝑥𝑇̄𝑥𝑥(𝑦)
𝑐(𝑦)

+
(1 − 𝛽) 𝑘2𝑥𝑇̄𝑥𝑦(𝑦)𝑈̄

′(𝑦)

𝑐(𝑦)2

+
(1 − 𝛽) 𝑘2𝑥
𝑊𝑒 𝑐(𝑦)

−
𝑖(1 − 𝛽) 𝑘𝑥 𝑇̄ ′

𝑥𝑦(𝑦)

𝑐(𝑦)
+

2(1 − 𝛽) 𝑘2𝑧
𝑊𝑒 𝑐(𝑦)

+ 𝛽𝑘2,

0,34 = 𝑖𝑘𝑧.

he expressions for  and 𝒗 are given by

 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝒗 =
⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎥

⎥

⎦

,

and for the stress output 𝜏𝑥𝑥, 𝑥𝑥 is a 1 × 4 block-matrix operator given
by

𝑥𝑥(𝑖, 𝑗) =

( 1
∑

𝑛=0
𝑐𝑛,𝑖𝑗 (𝑦, 𝜔)D𝑛

)

, (A.3)

where the nonzero coefficients 𝑐𝑛,𝑖𝑗 are given by

𝑐1,11 =
2
(

𝑊𝑒 𝑐(𝑦)𝑇̄𝑥𝑦(𝑦) + 𝑈̄ ′(𝑦)
)

𝑊𝑒 𝑐(𝑦)2
,

𝑐0,11 =
2𝑖𝑘𝑥

(

𝑊𝑒 𝑐(𝑦)𝑇̄𝑥𝑥(𝑦) + 𝑐(𝑦) +𝑊𝑒 𝑇̄𝑥𝑦(𝑦)𝑈̄ ′(𝑦)
)

𝑊𝑒 𝑐(𝑦)2
,

𝑐1,12 =
2𝑈̄ ′(𝑦)

(

𝑊𝑒 𝑐(𝑦)𝑇̄𝑥𝑦(𝑦) + 2𝑈̄ ′(𝑦)
)

𝑊𝑒 𝑐(𝑦)3
,

𝑐0,12 =
2𝑖𝑈̄ ′(𝑦)

(

𝑘𝑥 𝑊𝑒 𝑇̄𝑥𝑥(𝑦) + 𝑘𝑥 + 𝑖𝑊𝑒 𝑇̄ ′
𝑥𝑦(𝑦)

)

𝑊𝑒 𝑐(𝑦)2

+
− 𝑐(𝑦)2𝑇̄ ′

𝑥𝑥(𝑦) + 4𝑖𝑘𝑥 𝑇̄𝑥𝑦(𝑦)𝑈̄ ′(𝑦)2

𝑐(𝑦)3
.

(A.4)

ppendix B. Validation

In this section we present a few representative calculations that
alidate our numerical discretization presented in Section 3. Fig. B.1
hows calculations for 2D Couette flow with 𝛽 = 0.5, 𝜔 = 0, and 𝑘𝑥 = 1
sing three approaches: the ultraspherical method with the evolution
orm (see Appendix A.1), the spectral integration method with the de-
criptor form (see Appendix A.2), and the spectral integration method
ith the evolution form (see Appendix A.1) using 150 basis functions in
ach case. Fig. B.1a shows singular values of 𝒗 in (14), and Fig. B.1b

shows singular values of 𝑥𝑥 in (17). We find good agreement in the
results obtained from the three approaches. Furthermore the singular
values of 𝒗 in Fig. B.1a agree quantitatively with the results of Lieu
and Jovanović, Figure 8a in [32].

Next we plot the principal singular values from the SVD of 𝒗 (14)
and 𝑥𝑥 (17) for 2D3C Couette flow with 𝛽 = 0.5, 𝑘𝑧 = 1, and 𝜔 = 0
in Fig. B.2. We present results that use the ultraspherical method, al-
though we have confirmed that the spectral integration method (using
both the descriptor and evolution forms) produces identical results.
Fig. B.2a shows singular values of 𝒗 in (14) as a function of 𝑊𝑒, and we
observe that the singular values scale linearly with 𝑊𝑒 (as indicated by
the dashed line). Fig. B.2b shows singular values of 𝑥𝑥 in (17) scaling

2
as 𝑊𝑒 on a log–log plot, as indicated by the dashed line. These scalings
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Fig. B.1. Principal singular values of (a) 𝒗 in (14) and (b) 𝑥𝑥 in (17) of 2D Couette flow of an Oldroyd-B fluid with 𝛽 = 0.5, 𝑘𝑥 = 1, and 𝜔 = 0. Spectral integration 1 uses the
descriptor form in Appendix A.2, and Spectral integration 2 uses the evolution form in Appendix A.1. The ultraspherical method uses the evolution form.
Fig. B.2. Principal singular values of (a) 𝒗 in (14) and (b) 𝑥𝑥 in (17) of 2D3C Couette flow of an Oldroyd-B fluid with 𝛽 = 0.5, 𝑘𝑧 = 1, and 𝜔 = 0. The solid lines mark singular
values, and the dashed lines show the slope of their scaling with 𝑊𝑒 [15].
of the velocity and the stress singular values with 𝑊𝑒 are in agreement
with Figures 3 and 4 in [15].
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