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At a transitional Reynolds number, we examine the instability of an oblique shock
wave impinging on a hypersonic laminar boundary layer. Using global stability analysis
we identify the critical oblique shock angle at which the 2D laminar flow first becomes
unstable to 3D perturbations. The non-dimensional spanwise wavenumber selected at this
bifurcation is β = 0.25. Long streamwise streaks that originate in the shear layer on top of
the recirculation bubble are present in the unstable stationary global mode. We compute
the adjoint eigenmodes to understand how upstream fluctuations affect the direct global
modes of the system, and we see that the least stable stationary global mode is receptive to
forcing inside the boundary layer and along the oblique shock wave. The wavemaker, which
is defined as the sensitivity of an eigenvalue to base flow modification, is then computed.
For every case, the wavemaker resides in the recirculation bubble, but it shifts towards
the reattachment point as the incident shock angle increases. A calculation of the Görtler
number about several 2D base flows revealed that a centrifugal instability cannot be the
sole reason for bifurcation.

I. Introduction

High-speed flows over complex geometries are typically characterized by shock wave/boundary layer
interactions (SWBLI) and have been the subject of many experimental and numerical investigations.1 The
strong adverse pressure gradient created by an oblique shock wave impinging on a laminar boundary layer
can cause it to separate from the wall. Boundary layer separation results in the formation of a recirculation
bubble that can become three-dimensional (3D) and unsteady. Thus, SWBLI provides a mechanism for
transition to turbulence that is different from the usual pathways based on boundary layer instabilities
initiated by Mack modes.2,3 Once a hypersonic boundary layer has transitioned, the skin friction and heat
flux increase by a factor of five to six.4 Additionally, in the case of SWBLI, self-sustained oscillations
supported by the recirculation bubble may produce unsteady loads.

The interaction of a laminar boundary layer with shock waves has been studied using stability theory
and numerical simulations at subsonic and supersonic conditions. For an incompressible separation bubble,
Theofilis et al.5 and Rodriguez & Theofilis6 determined that a region of positive skin-friction inside the
primary bubble results in a bifurcation from two-dimensional (2D) flow to a 3D steady state. Robinet7 used
direct numerical simulations (DNS) of a compressible SWBLI to show that a steady 2D flow bifurcates to
a 3D state in different ways as the oblique shock angle increases depending on the spanwise extent of the
computational domain. For small spanwise domain sizes, the SWBLI bifurcated into a steady 3D flow with
an increase in the shock angle. As the oblique shock angle increases yet further, the flow bifurcated into an
unsteady 3D state. For sufficiently large spanwise extents, however, the 2D flow bifurcated directly to a 3D
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unsteady state. Global stability analysis identified an unstable stationary mode, which explained the first
bifurcation to a steady 3D flow.

There are currently two explanations for the source of low-frequency unsteadiness in an oblique shock
wave/turbulent boundary layer interaction. On one hand, several studies show how shock motion is linked to
the turbulence of an incoming boundary layer. Although not directly related to low-frequency unsteadiness,
Erengil & Dolling8 convey in their experimental work on compression ramps at Mach 5 how small-scale
jittery motion of the shock wave is affected by the passage of fluctuations in static quantities across it.
Ünalmis & Dolling9 propose low-frequency unsteadiness is influenced by the thickening and thinning of the
turbulent boundary layer upstream. More recently, Ganapathisubramani et al.10 show in their experimental
studies that shock motion is affected by long upstream low-speed and high-speed streaks. Wu & Martin11

saw a significant correlation between motion of the separation line surrogate and fluctuations in the upstream
boundary layer with DNS. This agrees well with previous work.10 However, the correlation was lower when
tested with the actual separation line. In the large eddy simulations of Touber & Sandham,12 low-frequency
oscillations are observed when no coherent structures exist upstream. Nichols et al.14 show that turbulent
SBLI can be interpreted as a forced weakly damped oscillator. Lastly, Priebe & Martin13 suggest that
Görtler instability is important for turbulent boundary layers over a compression ramp.

An extensive amount of work suggests the internal mechanism within the recirculation bubble is responsi-
ble for the unsteadiness. Dupont et al.15 points to coherence between wall pressure fluctuations at the foot of
the reflected shock and in the reattachment zone for a turbulent SWBLI. This corresponds to the breathing
character of the separation bubble. A simple model based on entrainment characteristics of the shear layer
as well as the mass recharge within the separation bubble has been proposed.16 This model describes the
unsteady motion of the reattachment point. Pirozzoli & Grasso17 developed an alternative mechanism for
unsteadiness driven by resonance, which involves the interaction of large structures with the incident shock.
They thought this would produce acoustic disturbances that travel upstream to the separation point and
lead to the low-frequency motion of the reflected shock. Studies by Touber & Sandham12 as well as Sansica
et al.18 show there is no need for upstream forcing to obtain an unsteady response. However, they also reveal
that upstream disturbances do provide a broad source of unsteady low-frequency motion. In a recent review,
Clemens & Narayanaswamy19 argue the upstream and internal mechanism are always active independent of
the interaction strength.

Literature related to an oblique shock wave impinging on a laminar boundary layer at hypersonic speeds
is sparse. Benay et al.20 performed a study of SWBLI in a hollow cylinder flare model at Mach 5. A
local linear stability analysis complemented this experimental and numerical investigation. For this flow
configuration, oblique modes are the most unstable. More recently, Sandham et al.21 carried out a numerical
and experimental study on SWBLI at Mach 6. It is suggested that the transition process develops from second
or Mack mode instabilities superimposed on streamwise streaks.

Our focus in this work is to more closely examine the bifurcation of an initially 2D flow to a 3D steady
state that occurs for an oblique shock wave/laminar boundary layer interaction at Mach 5.92. The spanwise
wavenumber selected at this bifurcation is characterized with global stability analysis about 2D base flows.
The US3D hypersonic flow solver22 is used to calculate the steady base flows. We compute the adjoint
eigenmodes to understand how upstream fluctuations affect the direct global modes of the system. This can
help explain the impact of turbulence on a SWBLI and the global modes specifically. The sensitivity of an
eigenvalue to base flow modification or the wavemaker is calculated using direct and adjoint information.
This reveals the spatial origin of the stability modes. We compute the Görtler number associated with curved
streamlines taken from the DNS base flows to assess the possibility of centrifugal instability.13

II. Problem formulation

A. Flow configuration

We consider an oblique shock wave/laminar boundary layer interaction for this study. The flow configuration
is depicted in Figure 1. We set the freestream Mach number, temperature, and pressure to the values of
M∞ = 5.92, T∞ = 53.06 K, and p∞ = 308.2 Pa, respectively. These values exactly match experiments
performed in the ACE Hypersonic Wind Tunnel at Texas A&M University.23 We use a Reynolds number of
Re = ρ∞U∞δ

∗/µ∞ = 9660, based on the undisturbed boundary layer displacement thickness δ∗ at the inlet.
This corresponds to a unit Reynolds number of 4.6 × 106 m−1 close to transition. Here, ρ∞, U∞, and µ∞
denote the freestream density, velocity, and dynamic viscosity, respectively. Note that the freestream values
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are taken upstream of the bow shock and the incident shock. To enable a comprehensive analysis about
the stability of this flow field, we simulate a range of incident shock angles θ from 12 to 13.4 degrees. We
utilize a Cartesian coordinate system in this study with x, y, and z denoting the streamwise, wall-normal,
and spanwise directions, respectively.

Figure 1: A detailed schematic adapted from Robinet7 of our 2D computational domain. Here
Lsep and Lint denote the separation and interaction lengths, respectively.

B. Governing equations

The compressible Navier-Stokes equations are used to mathematically model the dynamics of an oblique shock
wave/laminar boundary layer interaction at hypersonic speeds. These equations govern the evolution of the
system state q = [p; uT; s]T, where p, u, and s are the fluid pressure, velocity, and entropy, respectively.24,25

After non-dimensionalization with respect to the displacement thickness δ∗, freestream velocity U∞, density
ρ∞, and temperature T∞, these equations are

∂p

∂t
+ u · ∇p+ ρc2∇ · u =

1

Re

[
1

M2
∞Pr
∇ · (µ∇T ) + (γ − 1)φ

]
, (1a)

∂u

∂t
+

1

ρ
∇p+ u · ∇u =

1

Re

1

ρ
∇ · τ, (1b)

∂s

∂t
+ u · ∇s =

1

Re

1

ρT

[
1

(γ − 1)M2
∞Pr
∇ · (µ∇T ) + φ

]
. (1c)

For an ideal fluid, the density ρ and temperature T are related to pressure p through the equation of state
γM2
∞p = ρT . We define the Mach number M∞ = U∞/c∞, where c∞ =

√
γp∞/ρ∞ is the speed of sound in

the freestream. Further, γ = 1.4 is the assumed constant ratio of specific heats.
We define entropy as s = ln(T )/[(γ − 1)M2

∞]− ln(p)/(γM2
∞) so that s = 0 when p = 1 and T = 1. The

viscous stress tensor τ can be written in terms of the identity matrix I, velocity vector u, and dynamic
viscosity µ to yield the following expression

τ = µ[∇u+ (∇u)T − 2

3
(∇ · u)I]. (2)

The viscous dissipation is defined as φ = τ : ∇u. Note the operator : represents a scalar or double dot
product between two tensors. We set λ/µ = −2/3 with λ denoting the second viscosity coefficient. In order
to compute the dynamic viscosity µ, we used Sutherland’s law with Ts = 110.3 K as follows

µ(T ) = T 3/2 1 + Ts/T∞
T + Ts/T∞

. (3)
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The Prandtl number is set to a constant value Pr = µ(T )/κ(T ) = 0.72, where κ(T ) is the coefficient of heat
conductivity. We can recast system (1) into the form ∂q/∂t = F (q), where F is the differential non-linear
Navier-Stokes operator.

C. Linearized model

To investigate the behavior of small fluctuations about various base flows, we linearize system (1) by decom-
posing the state variables q = q̄+q′ into steady and fluctuating parts. By keeping only the first-order terms
in q′, we arrive at the linearized Navier-Stokes equations

∂p′

∂t
+ ū · ∇p′ + u′ · ∇p̄ + ρ̄c̄2∇ · u′ + γ(∇ · ū)p′ =

1

Re

{
1

M2
∞Pr
∇ · (µ̄∇T ′)

+ (γ − 1)
[
τ̄ :∇u′ + τ′ :∇ū

]}
,

(4a)

∂u′

∂t
+

1

ρ̄
∇p′ − ρ′

ρ̄2
∇p̄+ ū · ∇u′ + u′ · ∇ū =

1

Re

{
1

ρ̄
∇ · τ′ − ρ′

ρ̄2
∇ · τ̄

}
, (4b)

∂s′

∂t
+ ū · ∇s′ + u′ · ∇s̄ =

1

Re

1

ρ̄T

{
1

(γ − 1)M2
∞Pr

[
∇ · (µ̄∇T ′)− p′

p̄
∇ · (µ̄∇T̄ )

]
+ τ̄ :∇u′ + τ′ :∇ū− p′

p̄
τ̄ :∇ū

}
.

(4c)

Here the overbars and primes denote the base flow and fluctuating parts, respectively. We linearize the
equation of state to obtain ρ′/ρ̄ = p′/p̄ − T ′/T̄ . The expression T ′ = (γ − 1)M2

∞(T̄ s′ + p′/ρ̄) comes from
linearizing the definition of entropy and substituting in the equation of state. We neglect fluctuations in the
dynamic viscosity or set µ′ = 0. This assumption is reasonable due to the fact that µ′ is significantly smaller
than the other fluctuating quantities.

Global modes of the linear system (4) take the form

q′(x, y, z, t) = q̂(x, y)ei(βz−ωt), (5)

where β is the non-dimensional spanwise wavenumber and ω is the temporal frequency. We can represent
system (4) abstractly as equation (6a). Furthermore, the Jacobian operator given by A = ∂F/∂q|q̄ cor-
responds to the linearization of the Navier-Stokes operator F about the base flow q̄. Now an eigenvalue
problem of the form Aq̂ = −iωq̂ can be solved numerically.

In addition to the eigenvalues and their associated eigenfunctions, we are also interested in their sen-
sitivity to slight changes in the base flow.26 We define the spatial region of maximum sensitivity as the
wavemaker27,28 because it corresponds to the location where an instability originates. The wavemaker can
be computed after solving the adjoint problem. If q+ represents the adjoint state variables, and we define
A+ as the adjoint of operator A, then we arrive at system (6b). Notice the equations below are similar

∂q′

∂t
= Aq′,

∂q+

∂t
= A+q+. (6a,b)

Thus, the direct and adjoint problems can be solved in an identical manner. Eigenvalue spectra computed
with the direct and adjoint equations should be conjugate symmetric by construction. The corresponding
eigenfunctions are expected to be significantly different. As we will see later, the adjoint perturbations
travel upstream instead of downstream with the flow. We calculated the adjoint operator A+ by applying
integration by parts to system (4).
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D. Numerical methods

For the base flow calculations, we solve the compressible Navier-Stokes equations in conservative form.29

A stable low-dissipation scheme based upon the kinetic energy consistent (KEC) method developed by
Subbareddy and Candler30 is implemented for the inviscid flux computation. In this numerical method, we
split the inviscid flux into a symmetric (or non-dissipative) portion and an upwind (or dissipative) portion.
We premultiply the flux by a shock-detecting switch, which ensures that the dissipation only occurs around
shocks.31 A fourth-order centered KEC scheme is employed for the present study. The viscous fluxes are
modeled with central differences that have second-order accuracy. We perform time integration using an
implicit second-order Euler method with point relaxation to maintain numerical stability.32

The linear system of equations (4) are discretized by fourth-order centered finite differences applied on a
stretched mesh. This results in a large sparse matrix.25 Global modes are extracted by the shift-and-invert
Arnoldi method as implemented by the software package ARPACK.33 The inversion step is computed by
finding the LU decomposition of the shifted sparse matrix using the massively parallel SuperLU package.34

We used a numerical filter to add minor amounts of scale-selective artificial dissipation to damp spurious
modes associated with the smallest wavelengths allowed by the mesh. This filter does not affect the discrete
modes of interest if they are well-resolved.35 The numerical filter is introduced by adding terms of the form
ε(∂4q/∂x4) and ε(∂4q/∂y4). Sponge layers are employed at the top, left, and right boundaries to absorb
outgoing information with minimal reflection.36

III. RESULTS

A. Base flows

In order to conduct a detailed analysis of an oblique shock wave/laminar boundary layer interaction at Mach
5.92, we first need to compute several steady 2D base flows. The only parameter that changes across these
base flows is the incident shock angle. We first obtain the boundary condition without the incident shock
at the left inlet separately for this SWBLI by simulating a zero-pressure-gradient boundary layer developing
over a flat plate.29 Next, we introduce the incident oblique shock wave by enforcing the Rankine-Hugoniot
conditions at a point along the left boundary. We select this point so that the oblique shock impinges upon
the wall at a fixed distance of 119δ∗ from the leading edge. This ensures that the Reynolds number at the
impingement point is constant for various shock angles. The bottom boundary is modeled as an adiabatic
wall. We enforce a hypersonic freestream inlet along the top boundary. Lastly, we impose an outlet boundary
condition along the right edge of the domain.

Figure 2: Contour plots of pressure and entropy for an oblique shock wave/laminar boundary
layer interaction at M∞ = 5.92 with an incident shock angle of θ = 13◦. Here, S and R
represent the separation and reattachment points, respectively.

A stretched grid in the wall-normal direction with y+ = 0.6 is employed to accurately capture sharp
gradients associated with the thin boundary layer. Here y+ refers to the non-dimensional wall distance in
viscous units.4 To resolve small traveling waves throughout the domain, we use uniform mesh spacing in
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the streamwise direction. At a single frequency, long wavelengths in the freestream are connected to short
wavelengths inside the recirculation bubble because of the large velocity difference. We resolved the domain
by nx = 998 and ny = 450 grid points in the streamwise and wall-normal directions, respectively. This
resolution is sufficient according to a recent grid convergence study.29

We ran the base flow simulations for approximately sixty flow through times with the US3D hypersonic
flow solver,22 until the residual was on the order of machine zero. A base flow with θ = 13◦ is shown in
Figure 2. We non-dimensionalize x, y, and z by the displacement thickness δ∗. Notice the presence of
an incident shock, a bow shock, compression waves, and an expansion fan in the pressure contours. We
clearly see how the boundary layer develops in the streamwise velocity contours. This case is unstable to 3D
fluctuations, which we will see later. It is, however, stable for fluctuations with a spanwise wavenumber of
β = 0. Therefore, by enforcing two-dimensionality upon our simulations, we can converge to an exact steady
state solution to the base flow equations (1) that is unstable to small fluctuations.

Figure 3: Contours of streamwise velocity for an oblique shock wave/laminar boundary layer
interaction at M∞ = 5.92 with four incident shock angles. Here, streamlines are superimposed
on one of the velocity fields.

Figure 4: The skin-friction coefficient Cf in the streamwise direction located one grid point
above the wall for a SWBLI at M∞ = 5.92 with various incident shock angles.
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To visualize how the SWBLI changes with the incident shock angle, we plot contours of streamwise
velocity for several base flows in Figure 3. The recirculation bubble gets significantly larger as the incident
shock angle increases from 12◦ to 13.4◦. Here Lsep = 74 for θ = 12◦ and Lsep = 126 for θ = 13.4◦, where
each quantity has been non-dimensionalized by the displacement thickness δ∗. The recirculation bubble also
becomes less symmetric as the incident shock angle increases.

Figure 4 shows the wall skin-friction coefficient for a range of incident shock angles from 12◦ to 13.4◦.
Notice that the skin-friction coefficient is entirely positive inside the bubble. This is not always the case as
shown in Theofilis et al.5 for an incompressible regime. It is suggested in Rodriguez & Theofilis6 that the
presence of a secondary bubble, or negative wall skin-friction coefficient, inside the primary bubble leads to
a bifurcation of the flow to a 3D steady state. We will focus our attention on incident shock angles θ ≤ 13.4◦

and find that in the compressible regime this bifurcation occurs well before a secondary bubble forms. Here,
the streamwise length of the recirculation bubble increases almost linearly with the oblique shock angle.37

B. Global mode analysis

To determine the critical incident shock angle at which the flow first becomes unstable, we apply global
stability analysis over a range of shock angles and spanwise wavenumbers. For example, Figure 5 shows
an eigenvalue spectrum resulting from global mode analysis with a shock angle of θ = 13◦ at a spanwise
wavenumber β = 0.1. Frequencies are expressed in non-dimensional form as Strouhal numbers defined as
St = fδ∗/U∞ for this study. The real and imaginary parts of the complex frequency St = Str + iSti denote
the temporal frequency and growth rate, respectively.

In the shift-and-invert Arnoldi method33 used to compute the eigenvalue spectrum, shifts are positioned
along the real axis to capture the least stable modes. Twenty eigenvalues are converged at each shift. We
spaced shifts close together so that a portion of the spectrum converged at each shift partially overlaps with a
portion converged at neighboring shifts. Modes corresponding to redundant eigenvalues extracted by nearby
shifts agree well with one another, providing one check of the Arnoldi method. More eigenvalues can be
found using additional shifts or increasing the number of eigenvalues sought at each shift.

Figure 5: The eigenvalue spectrum of a SWBLI at M∞ = 5.92 with an incident shock angle
of θ = 13◦ and spanwise wavenumber β = 0.1.

Every eigenvalue in Figure 5 has a negative growth rate, which means the system is globally stable. Figure
6 displays two eigenmodes and the position of three sponge layers. Mode 1 corresponds to the least stable
zero frequency eigenvalue. Notice that a significant portion of the perturbation lies within the recirculation
bubble for this stationary global mode. We also see a streamwise streak that extends downstream until it
gets driven to zero by the right sponge layer. Mode 2, which corresponds to an oscillatory eigenvalue, has
a lot of structure within the recirculation bubble. Notice that the real streamwise velocity perturbation in
global mode 2 contains positive and negative components near the front portion of the bubble. This mode
is structurally similar to the other surrounding oscillatory eigenmodes (not shown). For both global modes,
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the long streamwise streak appears to originate near the apex of the recirculation bubble. There is also a
small amount of the perturbation that surrounds a few shock waves.

Figure 6: Stable global modes labeled in Figure 5 colored by the real part of the streamwise
velocity perturbation. Here, the dashed lines indicate the start of three different sponge layers.

Next, we increase the spanwise wavenumber to β = 0.25 and repeat the same analysis, keeping the
shock angle fixed at θ = 13◦. Figure 7 shows the eigenvalue spectrum at these conditions. We see that one
stationary eigenmode has a positive growth rate, which means the system is globally unstable. Robinet7

found a similar unstable stationary mode for an oblique shock wave/laminar boundary layer interaction at
Mach 2.15. Figure 8 displays the least stable zero frequency eigenmode in 3D. This unstable global mode
also contains long streamwise streaks similar to those shown in Figure 6 at a lower spanwise wavenumber.
These elongated structures are still clearly coupled to the shear layer on top of the recirculation bubble.
Finally, repeating global stability analysis for a spanwise wavenumber β = 0.5, we find that the eigenvalue
spectrum becomes globally stable again.

Figure 7: The eigenvalue spectrum of a SWBLI at M∞ = 5.92 with an incident shock angle
of θ = 13◦ and spanwise wavenumber β = 0.25.

While θ = 13◦ supported global instability over a range of spanwise wavenumbers, stability analysis
of incident shock angles θ = 12.6◦ and θ = 12.8◦ revealed these cases to be globally stable at all spanwise
wavenumbers. Increasing the shock angle to θcrit = 12.9◦, however, resulted in instability at a single spanwise
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wavenumber βcrit = 0.25. Figure 9 shows the maximum growth rate versus spanwise wavenumber for angles
ranging from θ = 12.6◦ to θ = 13◦. Above the critical shock angle θcrit = 12.9◦, the 2D flow bifurcates to
a 3D steady state with spanwise wavenumber βcrit = 0.25. The least stable global mode for every incident
shock angle and spanwise wavenumber is zero frequency. Thus, the flow will never become unsteady at these
conditions. We see that β = 0.25 results in the largest growth rate for every shock angle. As the spanwise
wavenumber approaches zero, we expect the system to become fully stable because the base flows are 2D
and the 3D component of the perturbation gets smaller. The system stabilizes for spanwise wavenumbers
above β = 0.5, which has been seen before.6,7

Figure 8: The unstable global mode, or more specifically q̂ei(0.25z) +c.c., in Figure 7 visualized
by the real part of the normalized, non-dimensional streamwise velocity perturbation. Red
denotes a positive velocity while blue is negative.

Figure 9: The maximum growth rate versus spanwise wavenumber for an oblique shock
wave/laminar boundary layer interaction at M∞ = 5.92 with four incident shock angles.

C. Sensitivity analysis

In the previous section, we found that the 2D oblique shock wave/boundary layer interaction bifurcates to
a 3D steady state at θ = 12.9◦. To further interpret the physical mechanism responsible for bifurcation, we
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consider the sensitivity of the unstable mode to base flow modification. This also allows us to assess the
robustness of our results and to understand the spatial origin of the stability modes.

First, we compute the adjoint modes to study how upstream fluctuations affect the direct global modes
of the SWBLI. An adjoint eigenmode indicates where the flow is most receptive to forcing.28 We solve
the adjoint system (6b) with the continuous approach. Here integration by parts is used to derive the
equations, which are then discretized. This allows for proper incorporation of the boundary conditions.
Adjoint modes also allow us to quantify sensitivity of an eigenspectrum to changes in the base flow. We
consider the shock angle θ = 13◦ with spanwise wavenumber β = 0.25 initially. Moreover, the stretched grid
with (nx, ny) = (998, 450) was again employed for this analysis. Figure 10 illustrates the unstable adjoint
global mode that corresponds to the direct mode shown in Figure 8 with contours of streamwise velocity
perturbation. The spatial separation of the direct and adjoint global modes shown in Figures 8 and 10
indicate significant convective non-normality. For a comprehensive discussion on non-normal operators and
their properties see Schmid and Henningson.38

Figure 10: The unstable global mode, or more specifically q̂+ei(0.25z) + c.c., in Figure 7 visu-
alized by the real part of the normalized, non-dimensional streamwise velocity perturbation.
Red denotes a positive velocity while blue is negative.

Notice that in Figure 10 long streaks are present inside the boundary layer extending from the inlet
downstream to the recirculation bubble. There is also a component of the perturbation that resides along
the incident shock in the freestream. This means that the unstable eigenmode is receptive to forcing in the
boundary layer and around the incident shock. We do not show the adjoint eigenvalue spectrum because it
is exactly conjugate symmetric to the direct eigenvalue spectrum in Figure 7. If the grid size is adequate to
resolve the small scales, then we know that the continuous adjoint and direct eigenspectra will be conjugate
symmetric.27 We see similar results for the stable global modes at θ = 13◦ and β = 0.25 as well as with
modes at other incident shock angles and spanwise wavenumbers not shown here.

Mathematically, an upper bound for the deviation of an eigenvalue ∂ωj associated with the linear operator
A due to a structural perturbation P (such as that created by changing the base flow slightly) is given by
|∂ωj | ≤ ||q′j ||E ||P ||E‖|q

+
j ||E from Schmid and Henningson.38 Here q′j and q+

j are the direct and adjoint
eigenmodes corresponding to the deviation ∂ωj , respectively. The subscript E denotes an energy norm
based on the standard definition of weighted norms.39 Here, P has the strongest effect when ||q′j ||E ||q

+
j ||E

is large. In physical terms, this is the region of space where the direct and adjoint global modes overlap.28

An eigenvalue is generally insensitive to modifications of the base flow outside this region. Therefore, we
define the wavemaker as ||q′j ||E ||q

+
j ||E , since this quantity provides an upper boundary on the sensitivity of

an eigenvalue to base flow modification.27

We show the wavemaker for incident shock angles ranging from θ = 12◦ to θ = 13.4◦ in Figure 11. We
hold the spanwise wavenumber to a constant value of 0.25. Notice that for every case the wavemaker is
located far away from the top, left, and right boundary. Therefore, any changes to the three sponge layers or
domain size should not have a significant impact on the global mode dynamics. For an incident shock angle
of θ = 12◦, we see that the wavemaker resides in the recirculation bubble. It is evenly distributed between the

10 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IN
N

E
SO

T
A

 o
n 

Se
pt

em
be

r 
30

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

43
12

 



separation and reattachment points. As the shock angle increases to θ = 13.4◦, we see the wavemaker shift
to the back portion of the recirculation bubble near reattachment. This behavior is directly connected to the
change in symmetry of the recirculation bubble seen in Figure 3. Therefore, the bifurcation at θ = 12.9◦ is
likely a product of the recirculation bubble and wavemaker being skewed toward reattachment. Remember
that streamlines close to the recirculation bubble have significantly more curvature over the back portion
than over the front for θ ≥ 12.9◦. The wavemaker is similar for the other relevant global modes at different
incident shock angles and spanwise wavenumbers. One can use structural sensitivity analysis to understand
how to optimally modify the base flow inside the wavemaker to alter the stability characteristics of an oblique
shock wave/laminar boundary layer interaction, but this is left to a future study.

Figure 11: The wavemaker for an oblique shock wave/laminar boundary layer interaction with
four incident shock angles. Every case is associated with the least stable global mode at a
spanwise wavenumber of β = 0.25. A dividing streamline is superimposed on each case.

D. Görtler instability

Since the global mode shapes and base flow sensitivity analysis indicate the importance of regions in the flow
where streamlines have significant curvature, we investigate Görtler instability40 as a possible mechanism
driving the bifurcation. Long streamwise streaks seen in Figures 6 and 8 also suggest the presence of Görtler
vortices. To quantify this effect, we define the radius of curvature for streamlines with the expression below.41

R =
‖ū‖

∇ψ · (ū · ∇ū)
(7)

Here, ‖ū‖ represents the Euclidean norm of the base flow velocity, and ψ is the streamfunction such that
ū =∇×ψ where ψ = [0 0 ψ]. We express the streamline curvature as κ = ε(x/δ∗)/R with ε denoting the
viscous scale.42 In this study, we define the Görtler number as

G =
√
κ/ε. (8)

Figure 12 shows the Görtler number G as a function of streamwise location evaluated from base flows with
θ = 12◦, θ = 12.6◦, θ = 13◦, and θ = 13.4◦. This is applied to the streamline with a wall-normal distance of
1.5δ∗ at the inlet. For compressible flow, Görtler vortices likely become important when G > 0.6 according
to Hall & Malik.43 Notice in Figure 12 that the Görtler number surpasses this critical value near separation
and reattachment in every base flow.

We see for θ = 12◦ that the Görtler number is equally large upstream and downstream of the recirculation
bubble. As the incident shock angle grows, the Görtler number decreases at the separation point and
increases near reattachment. This is expected because the curvature of streamlines along the back portion
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of the recirculation bubble increases with growing shock angle. The largest value of G is roughly 1.9, which
happens near the reattachment point for θ = 13.4◦. Furthermore, there is a clear relationship between the
asymmetry of the recirculation bubble, the position of the wavemaker, and the Görtler number. We do know
that centrifugal instability is responsible for amplifying the streamwise streaks in the SWBLI. Since the
Görtler number surpasses its critical value for base flows with an incident shock angle less than θ = 12.9◦,
however, we know that Görtler instability cannot be solely responsible for the bifurcation. The formation of
streamwise streaks at all shock angles, even though they are temporally damped, gives further evidence to
this conclusion.

Figure 12: Plots of Görtler number versus streamwise location for several 2D base flows. We
only display G when the streamlines are concave.

IV. CONCLUSIONS

An oblique shock wave impinging on a laminar boundary layer at Mach 5.92 has been investigated. We
computed 2D base flows with the US3D compressible flow solver22 at incident shock angles ranging from
12◦ to 13.4◦. As the shock angle increases, the recirculation bubble becomes significantly larger and more
asymmetric. At the largest shock angle (θ = 13.4◦), streamlines close to the recirculation bubble have
significantly more curvature over the back portion of the bubble than over the front portion. There is a
bifurcation of the initially 2D flow to a 3D steady state at θcrit = 12.9◦. The non-dimensional spanwise
wavenumber selected at this bifurcation is βcrit = 0.25, which we found using global stability analysis
applied about the steady base flows. Long streamwise streaks that originate in the shear layer on top of the
recirculation bubble are present in the unstable stationary global mode.

We compute the adjoint eigenmodes to understand how upstream fluctuations affect the direct global
modes of the oblique shock wave/laminar boundary layer interaction. The spatial separation of the direct and
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adjoint global modes shown in Figures 8 and 10 indicate significant convective non-normality.38 We see from
Figure 10 that the unstable adjoint global mode has long streaks present inside the boundary layer extending
from the inlet downstream to the recirculation bubble. There is also a component of the perturbation that
resides along the incident shock in the freestream. Thus, the least stable stationary global mode is receptive
to forcing in the boundary layer and along the oblique shock wave. The wavemaker is computed for incident
shock angles ranging from 12◦ to 13.4◦. For every case, the wavemaker resides in the recirculation bubble,
but it shifts towards the reattachment point as the incident shock angle increases. This analysis highlighted
regions of the flow with significant streamline curvature as important to the dynamics of instability.

We compute the Görtler number associated with curved streamlines taken from the base flows to assess
the possibility of centrifugal instability.13 The Görtler number surpassed its critical value near separation
and reattachment for every base flow. As the oblique shock angle grows, we see the Görtler number decrease
at the separation point and increase near reattachment. Furthermore, there is a distinct relationship between
the asymmetry of the recirculation bubble, the position of the wavemaker, and the Görtler number. We do
know that centrifugal instability is responsible for amplifying the streamwise streaks in the SWBLI. Since
the Görtler number surpasses its critical value for base flows with θ ≤ 12.9◦, we know that Görtler instability
can not be solely responsible for the bifurcation.
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15Dupont, P., Debiève, J.-F., Dussauge, J.-P., Ardissonne, J. P., and Haddad, C., “Unsteadiness in shock wave/boundary
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16Piponniau, S., Dussauge, J.-P., Debiève, J.-F., and Dupont, P., “A simple model for low-frequency unsteadiness in

shock-induced separation, Journal of Fluid Mechanics, Vol. 629, 2009, pp. 87-108.
17Pirozzoli, S. and Grasso, F., “Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction

at M = 2.25, Physics of Fluids, Vol. 18, No. 6, 2006, pp. 1-17.
18Sansica, A., Sandham, N. D., and Hu, Z., “Forced response of a laminar shock-induced separation bubble,” Physics of

Fluids, Vol. 26, No. 9, 2014, pp. 1-14.
19Clemens, N. T. and Narayanaswamy, V., “Low-frequency unsteadiness of shock wave/turbulent boundary layer interac-

tions,” Annual Review of Fluid Mechanics, Vol. 46, 2014, pp. 469-492.

13 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IN
N

E
SO

T
A

 o
n 

Se
pt

em
be

r 
30

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

43
12

 



20Benay, R., Chanetz, B., Mangin, B., Vandomme, L., and Perraud, J., “Shock wave/transitional boundary-layer interac-
tions in hypersonic flow,” AIAA Journal, Vol. 44, No. 6, 2006, pp. 1243-1254.
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