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We investigate the nonmodal physical mechanisms responsible for transient growth in
a hypersonic laminar boundary layer and in the interaction of this boundary layer with an
incident oblique shock wave. The optimal disturbances and growth curves are computed
using an adjoint looping approach. We validate this iterative approach by applying it to
several parallel boundary layers that have been studied before in great detail. For these
parallel flows, the lift-up effect is generally the dominant transient growth mechanism.
However, for a Mach 5.92 spatially developing boundary layer, the inviscid Orr mechanism
and convective instabilities are responsible for the large transient response. Furthermore,
the optimal initial condition corresponding to the oblique shock wave/boundary layer in-
teraction could be related to both the inviscid Orr mechanism and the lift-up effect. Tilted
streamwise streaks that oppose the mean shear are present in the upstream boundary
layer, and centrifugal instability near the apex of the separation bubble creates small vor-
tices that grow into elongated streamwise structures with time. Due to the strong spatial
non-normality of the oblique shock wave/boundary layer interaction, one cannot obtain
an accurate lower bound of the transient growth using the direct or adjoint information
separately. Therefore, the nonmodal technique, which takes advantage of both the direct
and adjoint operators, is an elegant solution to this problem.

Nomenclature

(u, v, w) streamwise, wall-normal, and
spanwise velocity components

(x, y, z) Cartesian coordinates
α streamwise wavenumber
q̄ vector of base flow variables
β spanwise wavenumber
τ viscous shear stress tensor
I identitiy matrix
q vector of system variables
q′ vector of perturbation variables
u velocity vector
δ displacement thickness
` alternate length scale
ε filter strength
γ ratio of specific heats

q̂ vector of amplitude variables
κ coefficient of heat conductivity
λ second viscosity coefficient
T fixed time interval
µ dynamic viscosity
ν kinematic viscosity
ω temporal frequency
φ viscous dissipation
ρ density
θ incident shock angle
a speed of sound
E disturbance energy
G optimal transient energy growth
i imaginary unit
L domain length
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M Mach number
n number of points
p pressure
Pr Prandtl number
Re Reynolds number
s entropy
T temperature
t time
W weighting matrix

Subscripts
0 stagnation
∞ freestream value
E with respect to energy norm
s Sutherland value
in inflow value

Superscripts

∗ complex conjugate
+ viscous units
H complex conjugate transpose
T transpose

Abbreviatons
ACE actively controlled expansion
DPLR data-parallel line relaxation
GSA global stability analysis
KEC kinetic energy consistent
LNS linearized Navier-Stokes
LU lower upper
PSE parabolized stability equations
SWBLI shock wave/boundary layer interaction

I. Introduction

In order to improve the performance of a hypersonic vehicle, the stability of high-speed boundary layers
and shock wave/boundary layer interactions (SWBLIs) has to be understood. More specifically, a deeper
understanding of these flows and the development of better prediction tools can drastically reduce heat loads
and skin friction drag on a vehicle’s surface. Previous work has focused mainly on the exponential growth
of perturbations corresponding to unstable eigenmodes for boundary layers1−3 and SWBLIs4−7 in different
flow configurations. It has recently been demonstrated that nonmodal physical mechanisms in the flow can
lead to a large transient growth of perturbations despite their eventual asymptotic decay.8 Furthermore,
this amplification could be strong enough to trigger nonlinear interactions that ultimately breakdown into
turbulent flow (bypassing modal instabilities).9,10

The application of nonmodal growth analyses first appeared in the low-speed or incompressible regime.11

Butler and Farrell12 found by applying an optimal perturbation technique about plane channel flow that
small disturbances, specifically elongated streamwise structures that oppose the specified mean shear flow,
grow rapidly and robustly. These disturbances are often associated with the inviscid Orr mechanism.13 The
linear growth of initially small disturbances can eventually become nonlinear and lead to what is called bypass
transition.9 This can be seen with the presence of streamwise streaks on a Blasius boundary layer.14,15 A
more recent paper by Tempelmann et al.16 showed that the physical mechanism driving nonmodal growth in
three-dimensional boundary layers consists of the Landahl lift-up effect17,18 and the Orr mechanism. Using
the temporal framework, Hanifi et al.19 applied transient growth analysis to compressible boundary layers
for the first time. They showed that the optimal disturbances in compressible boundary layers are similar
to those in the incompressible regime. Several other studies have applied transient growth analysis in the
spatial framework,20 while focusing on the inclusion of nonparallel flow effects.21−23

Optimal spatial and transient growth analyses have recently been applied to hypersonic flows. Bitter and
Shepherd8 investigated the importance of modal and nonmodal growth mechanisms in flat-plate hypersonic
boundary layers. They also studied the effects of Mach number and wall cooling on these processes. By using
both the temporal and spatial framework, they showed that the optimal disturbances consist of streamwise
vortices, which develop into streaks of high velocity and temperature. Additional sub-optimal disturbances
were found that had nonzero frequency and grew more rapidly than the optimal ones. Paredes et al.24

utilized the parabolized stability equations (PSE) to study optimal transient growth in compressible zero-
pressure-gradient boundary layer flows at Mach numbers ranging from 3 to 10. They found that as the Mach
number increases, the differences between the optimal gain computed about a Navier-Stokes mean flow and
a self-similar boundary layer approximation becomes significant. Paredes et al.25 performed an optimal
transient growth analysis about a laminar flow based on the solution of the Navier-Stokes equations over
a 7◦ half-angle variable-bluntness cone at zero angle of attack. Their main conclusion is that disturbances
initiated near the juncture between the nosetip and the frustum exhibit a greater transient amplification for
larger values of nosetip bluntness. They also suggest that wall roughness might be able to induce optimal
initial perturbations.
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Literature related to the application of spatial or transient growth analysis to SWBLIs is relatively sparse.
A recent study by Guiho et al.26 investigated the interaction of an oblique shock wave with a laminar Mach
2.15 boundary layer by means of numerical simulation and global stability analysis (GSA). They showed
that the unsteadiness of a SWBLI is mainly associated with instabilities arising from the shear layer. In this
study, they also looked at the receptivity of their SWBLI to a white noise excitation. They concluded by
suggesting a SWBLI behaves similar to a selective noise amplifier in that its dynamics are driven mainly by
receptivity mechanisms and a nonmodal transient response. Dwivedi et al.27 measured the spatial growth of
streamwise streaks in a Mach 5.92 SWBLI using an adjoint looping PSE-based algorithm. In this conference
paper, they highlight the importance of centrifugal instability to the development of streamwise streaks and
large spatial growth in a SWBLI. Sartor et al.28 experimentally and theoretically examined unsteadiness
in transonic shock wave/turbulent boundary layer interactions. They briefly showed that these types of
interactions can potentially lead to large transient growth.

Our work focuses on applying an optimal transient growth analysis to a Mach 5.92 nonparallel laminar
boundary layer as well as to the interaction of that boundary layer with an oblique shock wave. This will
shed light on the different types of modal and nonmodal disturbances an experimentalist can measure in an
oblique SWBLI laboratory setup. It also provides some insight on the topic of whether nonmodal growth
mechanisms can excite nonlinear interactions that lead to transition (bypassing modal instabilities). We
compute the optimal disturbances and growth curves using an adjoint looping approach in time.29 This
iterative approach is validated against the results of Hanifi et al.,19 which looked at parallel boundary layer
profiles. For every flow configuration, we illustrate and describe the physical mechanism that causes the
transient growth. We also determine if it is related to the Landahl lift-up effect17,18 or the inviscid Orr
mechanism13 both of which present in many boundary layer flows. Finally, we want to compare the relative
magnitude and dominant spanwise wavenumber of the optimal transient energy growth of a SWBLI to that
of a nonparallel boundary layer.

II. Problem formulation

A. Flow configuration

In this study, we simulate a hypersonic laminar boundary layer and the interaction of that boundary layer
with an oblique shock wave. Figure 1 shows a schematic of a canonical SWBLI. High-speed freestream
flow enters at the left boundary and flows over a flat plate situated along the bottom boundary. For this
configuration, the leading edge of the flat plate is upstream of the left boundary and produces a bow shock
that persists throughout the domain. At the inflow, the boundary layer has displacement thickness δin and
slowly grows as it develops downstream (refer to Shrestha et al.30 for details). Also, an oblique shock wave
enters the domain through the left boundary well above both the bow shock and the boundary layer. Such
an oblique shock wave might result from placing a turning wedge in the freestream a distance upstream. The
incident oblique shock wave propagates at an angle θ until it impinges on the boundary layer. The adverse
pressure gradient of the impinging shock causes the boundary layer to separate from the wall and form a
recirculation bubble. For simulations of just the hypersonic laminar boundary layer, the incident shock and
recirculation bubble do not appear, but the bow shock is still present.

Figure 1: Schematic of an oblique shock wave (red) impinging on a Mach 5.92 boundary layer.
The adverse pressure gradient associated with the incident shock causes the boundary layer
to separate from the wall, forming a recirculation bubble (blue).

We consider freestream flow conditions matching experiments performed in the ACE Hypersonic Wind
Tunnel at Texas A&M University.31 Between the bow shock and the incident shock, the freestream Mach
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number, temperature, and pressure are M∞ = 5.92, T∞ = 53.06 K, and p∞ = 308.2 Pa, respectively. A
Reynolds number of Re = ρ∞u∞δin/µ∞ = 9660 based on the undisturbed boundary layer displacement
thickness δin = 2.1 mm at the inflow is used in the present study. This corresponds to a unit Reynolds
number of 4.6 × 106 m−1. Here ρ∞, u∞, and µ∞ denote the freestream density, velocity, and dynamic
viscosity, respectively. A Cartesian coordinate system is utilized hereafter with x, y, and z denoting the
streamwise, wall-normal, and spanwise directions, respectively.

B. Governing equations

The compressible Navier-Stokes equations are used to mathematically model the dynamics of a nonparallel
boundary layer and an oblique SWBLI at hypersonic speeds. These equations govern the evolution of the
system state q = [p; uT; s]T, where p, u, and s are the non-dimensional fluid pressure, velocity vector,
and entropy, respectively.32,33 After nondimensionalization with respect to the displacement thickness δin,
freestream velocity u∞, density ρ∞, and temperature T∞, these equations are written as

∂p

∂t
+ u · ∇p+ ρa2∇ · u =

1
Re

[
1

M2
∞Pr
∇ · (µ∇T ) + (γ − 1)φ

]
, (1a)

∂u

∂t
+

1
ρ
∇p+ u · ∇u =

1
Re

1
ρ
∇ · τ, (1b)

∂s

∂t
+ u · ∇s =

1
Re

1
ρT

[
1

(γ − 1)M2
∞Pr
∇ · (µ∇T ) + φ

]
. (1c)

The time scales are normalized by δin/u∞ and pressure with ρ∞u
2
∞. For an ideal fluid, the density ρ

and temperature T are related to pressure p through the equation of state γM2
∞p = ρT . The freestream

Mach number is defined as M∞ = U∞/a∞, where a∞ =
√
γp∞/ρ∞ is the speed of sound in the freestream.

Furthermore, γ = 1.4 is the assumed constant ratio of specific heats.
We define entropy as s = ln(T )/[(γ − 1)M2

∞]− ln(p)/(γM2
∞) so that s = 0 when p = 1 and T = 1. The

viscous stress tensor τ is written in terms of the identity matrix I, velocity vector u, and dynamic viscosity
µ to yield the following expression

τ = µ[∇u+ (∇u)T − 2
3

(∇ · u)I]. (2)

The viscous dissipation is defined as φ = τ :∇u. Note that the operator : represents a scalar or double dot
product between two tensors. Furthermore, the second viscosity coefficient is set to λ = −2µ/3. In order to
compute the dynamic viscosity µ, Sutherland’s law is used with Ts = 110.3 K as follows

µ(T ) = T 3/2 1 + Ts/T∞
T + Ts/T∞

. (3)

The Prandtl number is set to Pr = µ(T )/κ(T ) = 0.72, where κ(T ) is the coefficient of heat conductivity.

C. Linearized model

To investigate the behavior of small fluctuations about various base flows, system (1) is linearized by de-
composing the state variables q = q̄ + q′ into steady and fluctuating parts. By keeping only the first-order
terms in q′, the linearized Navier-Stokes (LNS) equations are obtained

∂p′

∂t
+ ū · ∇p′ + u′ · ∇p̄ + ρ̄ā2∇ · u′ + γ(∇ · ū)p′ =

1
Re

{
1

M2
∞Pr
∇ · (µ̄∇T ′ + µ′∇T̄ )

+ (γ − 1)
[
τ̄ :∇u′ + τ′ :∇ū

]}
,

(4a)

∂u′

∂t
+

1
ρ̄
∇p′ − ρ′

ρ̄2
∇p̄+ ū · ∇u′ + u′ · ∇ū =

1
Re

{
1
ρ̄
∇ · τ′ − ρ′

ρ̄2
∇ · τ̄

}
, (4b)
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∂s′

∂t
+ ū · ∇s′ + u′ · ∇s̄ =

1
Re

1
ρ̄T

{
1

(γ − 1)M2
∞Pr

[
∇ · (µ̄∇T ′ + µ′∇T̄ )− p′

p̄
∇ · (µ̄∇T̄ )

]
+ τ̄ :∇u′ + τ′ :∇ū− p′

p̄
τ̄ :∇ū

}
.

(4c)

The overbars and primes denote the base flow and fluctuating parts, respectively. Moreover, the equation
of state is linearized to obtain ρ′/ρ̄ = p′/p̄−T ′/T̄ . The expression T ′ = (γ− 1)M2

∞(T̄ s′+p′/ρ̄) is derived by
linearizing the definition of entropy and substituting in the equation of state. The perturbed viscous stress
tensor is given by

τ′ = µ̄[∇u′ + (∇u′)T − 2
3

(∇ · u′)I] + µ′[∇ū+ (∇ū)T − 2
3

(∇ · ū)I], (5)

and the perturbed dynamic viscosity is given by µ′ = (∂µ̄/∂T̄ )T ′. We verified the accuracy of this charac-
teristic formulation in Hildebrand et al.7 by comparing our results from GSA to Malik’s stability analysis34

of parallel high-speed boundary layers.
Global modes of the linear system (4) take the form

q′(x, y, z, t) = q̂(x, y)ei(βz−ωt), (6)

where β is the nondimensional spanwise wavenumber and ω is the temporal frequency. Substitution of (6)
into (4) yields the eigenvalue problem

Aq̂ = −iωq̂. (7)

The operator A, known as the Jacobian operator, includes all terms in system (4) that do not involve a
time derivative. The Jacobian operator gives the linear variation of the residual (i.e., terms without a time
derivative) of the original nonlinear system (1) with respect to the state variables, taken about a base flow.

D. Adjoint looping method

Previous studies have predominately used a modal singular value decomposition to compute the transient
growth in a variety of different flow configurations (including boundary layers,8,19 supersonic jets,33 and
open channel flows35). This involves taking a non-normal superposition of the eigenvalues and eigenvectors
of a system. One major problem with using a singular value decomposition is that for certain flows it takes
thousands of eigenmodes to reach a converged solution.36 Therefore, this way of computing the transient
growth can be extremely memory intensive.

In this study, we use an iterative approach that utilizes the Jacobian operator A and its adjoint AH to
compute the transient growth.29 For a discussion on adjoint operators and their properties see the review
by Luchini and Bottaro.37 We define the disturbance energy as

E =
∫∫ [

ρ̄u′iu
′∗
i

2
+
M2
∞|p′|2

2
+

(γ − 1)M2
∞|s′|2

2

]
dxdy, (8)

where ∗ signifies the complex conjugate. This useful measure for compressible flows is positive definite
and monotone nonincreasing.38 It is independently derived in Hanifi et al.19 by eliminating conservative
compression work transfer terms. The expression (8) induces the following inner product (q1, q2)E = qH

2 Wq1

for two system states q1 and q2, where W = 1/2 diag[M2, ρ̄, ρ̄, ρ̄, γ(γ − 1)M2]∆x∆y. We define G(t) to be
the largest amplification at time t such that

G(t) = max
||q(t)||2E
||q(0)||2E

, (9)

where q(0) and q(t) represent the initial and final states, respectively. The adjoint looping method uses a
reformulation of the optimal energy growth G(t) in terms of a variational principle.39 Standard optimization
techniques can then be employed to arrive at the optimal initial and final states in an iterative manner. The
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optimization process should respect the constraints given by the LNS equations (4). These constraints are
enforced via Lagrange multipliers.40

During one cycle of this iterative process, the LNS equations (4) are integrated forward in time using a
given initial condition. After a fixed time interval t = T , the output of this integration q(T ) is converted
into a terminal condition q̃(T ) for the adjoint equations. Next, we solve the adjoint equations backward in
time to produce a state q̃(0) from which a new initial condition q(0) for the direct problem is obtained. This
procedure is repeated until convergence. Figure 2 shows a detailed sketch of the adjoint looping method
including the updates between each time integration scheme. The final result is the initial condition that
maximizes the amplification of energy over a time interval 0 ≤ t ≤ T , from which the maximum transient
growth G(t) is readily determined.39 Similar adjoint looping techniques have been successfully implemented
in various complex boundary layer flows.41,42

Figure 2: A detailed sketch of the adjoint looping method used in this study.

E. Numerics

We solve the compressible Navier-Stokes equations in conservative form for the base flow calculations of
the nonparallel boundary layers and oblique SWBLIs.30 A stable low-dissipation scheme based upon the
kinetic energy consistent (KEC) method developed by Subbareddy and Candler43 is implemented for the
inviscid flux computation. In this numerical method, the flux is split into a symmetric (or non-dissipative)
portion and an upwind (or dissipative) portion. The inviscid flux is premultiplied by a shock-detecting
switch, which ensures that dissipation occurs only around shocks.44 A fourth-order centered KEC scheme
is employed for the present study. Viscous fluxes are modeled with second-order central differences. Time
integration is performed using an implicit second-order Euler method with point relaxation to maintain
numerical stability.45 The implicit system is also solved using the full matrix data-parallel line relaxation
(DPLR) method, which has good parallel efficiency.46

For the transient growth calculations, the LNS equations (4) are discretized by fourth-order centered
finite differences applied on a stretched mesh. This results in a large sparse matrix.53 Time integration
is performed using an implicit first-order Euler method. The inversion step is computed by finding the
LU decomposition of the shifted sparse matrix with the massively parallel SuperLU package.48 We use a
Newton-Raphson method to converge the residual of each base flow in accordance with system (1) to machine
zero. This mitigates any error introduced by going from a conservative formulation45 to a nonconservative
or characteristic formulation32 when computing the transient growth. A numerical filter is used to add
minor amounts of scale-selective artificial dissipation to damp spurious modes associated with the smallest
wavelengths allowed by the mesh. We introduce the numerical filter by adding terms of the form ε(∂4q/∂x4)
and ε(∂4q/∂y4). Here, the filter strength ε is set to 0.0125, its smallest value such that the Newton-Raphson
method still converges. Sponge layers are employed at the top, left, and right boundaries of the nonparallel
boundary layer and oblique SWBLI flows to absorb outgoing information with minimal reflection.49
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III. RESULTS

A. Parallel boundary layers

To verify our adjoint looping method, we run a few test cases that are presented in Hanifi et al.19 The
base flow is locally parallel and consists of a boundary layer profile that satisfies the Mangler-Levy-Lees
transformation. We model the bottom boundary as an adiabatic wall. Furthermore, we employ periodicity
at the left and right boundaries of the domain. A sponge layer is placed along the top boundary, which
we treat as a freestream outlet. Further, we use a stretched grid with (nx, ny) = (101, 301) and y+ = 0.6
for every case. We define a new length scale ` =

√
ν∞x/u∞, where ν∞ is the kinematic viscosity in the

freestream. For these parallel boundary layer calculations only, we use a Prandtl number of Pr = 0.7 and a
stagnation temperature of T0 = 333 K.

Figure 3: Base flow profiles of a locally parallel Mach 2.5 boundary layer with Re` = 3000.

Figure 4: Envelope of the optimal transient energy growth for a locally parallel Mach 2.5
boundary layer with Re` = 3000, α = 0.06, and β = 0.1.

First, we consider the case where M∞ = 2.5, Re = 3000, α = 0.06, and β = 0.1. Here, the Reynolds
number is with respect to the length scale `, and we denote α as the nondimensional streamwise wavenumber.
Figure 3 shows the boundary layer profiles for this case. We generate a two-dimensional parallel flow by
copying these boundary layer profiles in the streamwise direction. To calculate the streamwise domain
length, we use the relation Lx = 2π/α. We compute the optimal transient energy growth of this parallel
boundary layer flow with the adjoint looping approach described in Section IID. The given initial condition
to start the iterative process in Figure 2 is a randomly generated flow field with unit energy norm. To make
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sure the given randomly generated initial condition has wavenumber α = 0.06 only, we perform fast Fourier
transforms (FFTs) in the streamwise direction and keep only the coefficients corresponding to the specified
nondimensional streamwise wavenumber. After, we transform back to physical space.

Figure 4 compares the transient growth G(t) that results from the adjoint looping approach to the singular
value decomposition used in Hanifi et al.19 Note that G(t) is an envelope of all possible optimal responses,
since the optimum initial condition q(0) depends on the finite time interval t considered. The iterative
procedure in Figure 2 takes approximately 5-6 iterations to converge (see Appendix) to just a single value of
G(t). Therefore, to trace out the entire envelope, we have to repeat this procedure for many different time
intervals t (represented by blue dots in Figure 4). We see fairly good agreement between the two transient
growth envelopes in Figure 4 computed from different methods. The slight disagreement around t = 450
could be due to very small numerical error contaminating the solution such that we are not constrained to a
single streamwise wavenumber. Hanifi et al.19 solves for the transient growth G(t) in one spatial dimension
so there is no way of resolving more than one streamwise wavenumber. Regardless, both methods converge
to the same envelope shape with the global instability19 starting to take over at t = 1000.

Figure 5: Envelope of the optimal transient energy growth for a locally parallel Mach 2.5
boundary layer with Re` = 300, α = 0.0, and β = 0.1.

We repeat the same transient growth analysis for the case where M∞ = 2.5, Re = 300, α = 0.0, and
β = 0.1. Figure 5 shows the transient growth envelope for this case. Again we compare to the results in
Hanifi et al.19 There is excellent agreement between the adjoint looping method and the singular value
decomposition in Figure 5. Notice there is a clear peak at t = 1750, after which the transient growth
G(t) decreases with increasing time t. We plot the optimal initial and final states corresponding to the
peak at t = 1750 in Figure 6. The optimal initial condition consists mostly of wall-normal and spanwise
velocities, while the streamwise velocity is negligible. This type of initial state has been seen for many
incompressible9,12 and compressible20,21 flows. The disturbances in Figure 6 have been scaled to have a
maximum of one, but the final state has actually grown by about two orders of magnitude relative to the
initial state.8 In the final state, the streamwise velocity is extremely large compared to the other velocity
components. The physical interpretation of this amplification is the well-known Landahl lift-up effect.17,18

This is where initial streamwise vortices that have relatively small u′ and T ′ decay in time, while elongated
streamwise structures grow rapidly.

Finally, we repeat the same transient growth analysis with M∞ = 2.5, Re = 300, α = 0.0, and β = 0.25.
This case corresponds to the optimal streamwise and spanwise wavenumbers reported in Hanifi et al.19 for
M∞ = 2.5 and Re = 300. We only show the initial and final states in Figure 7 to compare against the
results of Hanifi et al.19 There is great agreement between the two different approaches for the optimal
initial and final states in Figure 7. Notice that the final state has grown three orders of magnitude relative
to the initial state. We see along with the streamwise velocity, the temperature fluctuations are a vital
component to the Landahl lift-up effect17,18 for an adiabatic wall. Since we get good agreement comparing
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the transient growth envelopes as well as the optimal initial and final states from our adjoint looping method
to the results computed by a singular value decomposition in Hanifi et al.,19 we conclude that our method
accurately computes the transient response of high-speed parallel boundary layers.

Figure 6: Optimal (a) initial and (b) final states corresponding to Figure 5, where M∞ = 2.5,
Re` = 300, α = 0.0, and β = 0.1.

Figure 7: Optimal (a) initial and (b) final states for a locally parallel boundary layer with
M∞ = 2.5, Re` = 300, α = 0.0, and β = 0.25.

B. Spatially developing boundary layers

Since the transient growth of parallel boundary layers has been studied before, and we have successfully
verified our adjoint looping method against these studies, we now focus our efforts on investigating the
transient growth of nonparallel boundary layers. Bitter50 recently looked at the propagation of localized
instability wave packets in nonparallel boundary layers. This study included a conventional spatial stability
analysis involving fixed-frequency disturbances, examining the development of Gaussian-shaped packets of
second mode waves that are placed inside the boundary layer, and analyzing the response of planar acoustics
wave packets in the freestream. All of the simulations in Bitter50 show that finite-width wave packets
experience less amplification than the prediction of spatial stability analysis.

In order to conduct an optimal transient growth analysis of nonparallel boundary layers, we first need
to compute a steady two-dimensional base flow. The domain we consider extends 235δin in the streamwise
direction and 36δin in the wall-normal direction. Our domain is discretized by a Cartesian mesh that is
stretched in the wall-normal direction with y+ = 0.6 and uniformly spaced in the streamwise direction. A
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total of nx = 998 and ny = 450 grid points resolve the domain in the streamwise and wall-normal directions,
respectively. The base flow simulations are run for approximately 60 flow-through times with the US3D
hypersonic flow solver51 until the residual is on the order of machine zero. Here a flow-through time is
defined as the time it takes for a fluid particle to traverse the entire streamwise length of the domain,
traveling with the freestream at Mach 5.92.

Figure 8: Base flow contours of streamwise velocity and density for a Mach 5.92 spatially
developing boundary layer with Reδin = 9660.

Figure 8 shows base flow contours of the spatially developing boundary layer we consider in this section.
At the left inlet, we apply boundary layer profiles computed from an earlier study.30 This produces a bow
shock and an entropy layer in close vicinity. The lower boundary is modeled as an adiabatic wall. We enforce
a hypersonic freestream inlet along the top edge of the domain. Furthermore, we impose a characteristic-
based supersonic outlet boundary condition along the right edge of the domain. Notice in Figure 8 that the
boundary layer grows substantially in the streamwise direction.

Figure 9: Contour plots of the transient growth G(β, t) of a Mach 5.92 spatially developing
boundary layer with Reδin = 9660 for streamwise extents equal to (a) 58.75δin, (b) 117.5δin,
(c) 176.25δin, and (d) 235δin.
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Now we compute the optimal transient energy growth of the spatially developing boundary layer in Figure
8 with our adjoint looping method. The given initial condition to start this iterative process is a randomly
generated flow field with unit energy norm like before. For this case, we are no longer constrained to a
single streamwise wavenumber. The iterative process in Figure 2 takes roughly 5-6 iterations to converge
(see Appendix). Figure 9 shows the transient growth over a range of time intervals t, nondimensional
spanwise wavenumbers β, and streamwise domain lengths Lx. We see that as the streamwise extent of the
domain increases, the optimal transient growth becomes significantly larger. This indicates that a Mach
5.92 spatially developing boundary layer is convectively unstable. In other words, localized perturbations
introduced upstream will grow as they convect downstream without causing the system to become globally
(or absolutely) unstable.52,53 Thus, if a high-speed boundary layer is allowed to develop more downstream,
then the response to any upstream initial condition will be much larger. The spanwise wavenumber that
corresponds to the maximum transient growth in Figure 9 decreases from β = 1.95 for Lx = 58.75δin to
β = 0.75 for Lx = 235δin. We also see that the transient growth is sustained for a much longer time if the
streamwise domain length is larger.

Figure 10: Maximum transient energy growth versus spanwise wavenumber for five different
streamwise domain lengths where Lx = 235δin.

Figure 11: Optimal (a) initial and (b) final states corresponding to Figure 10.

Figure 10 displays the maximum transient energy growth versus spanwise wavenumber for several stream-
wise domain lengths. These plots were generated by taking the maximum of G(β, t) in time t and keeping
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only the variation with spanwise wavenumber β. For the range of parameters considered, we know from Fig-
ure 10 that a Mach 5.92 spatially developing boundary layer with Reδin = 9660 can obtain a peak transient
growth of 1680 at t = 175, β = 0.75, and Lx = 235δin. We show the optimal initial and final states at these
conditions in Figure 11. The initial state is comprised of elongated streamwise structures near the left inlet
that are tilted against the mean shear of the boundary layer. Notice that these streamwise streaks in Figure
11(a) have a very shallow angle due to the high-speed nature of the flow. These tilted streamwise streaks will
start to align themselves with the mean shear as time passes causing substantial growth. This is commonly
referred to as the inviscid Orr mechanism.13 It has been shown before by Butler and Farrell12 that these
types of elongated streamwise structures grow rapidly and robustly. We see by comparing Figure 11(a) to
Figure 11(b) that there is significant transient growth. The final state is also comprised of streamwise streaks
that extend to the right outlet.

The lift-up effect is the dominant transient growth mechanism for a Mach 2.5 parallel boundary layer
with streamwise wavenumber α = 0. However, for a Mach 5.92 spatially developing boundary layer, the
Orr mechanism and convective instabilities are responsible for the optimal transient response. For higher
Mach number flows, it is well-known that 2nd-mode instability becomes more prevalent.50 Here, 2nd-mode
instability refers to a trapped acoustic wave inside the boundary layer. An impulse response could provide
more information about what types of convective instabilities are present in this flow.

C. Shock wave/boundary layer interactions

As shown in the previous section, a simple flat plate boundary layer at Mach 5.92 supports significant
transient growth. In this section, we consider a SWBLI at precisely the same conditions, to examine its
effect on transient growth. As we will show, SWBLI alters the mechanisms responsible for transient growth,
and significantly enhances the overall growth that is possible in an otherwise globally stable flow.

We compute a steady two-dimensional base flow of an oblique shock wave/laminar boundary layer inter-
action at Mach 5.92 with the US3D hypersonic flow solver.51 The incident oblique shock wave is introduced
by modifying the inlet boundary layer profile so that the Rankine-Hugoniot jump conditions are satisfied at
the point it enters the domain. We select this point so that the oblique shock impinges upon the wall at a
fixed distance of 119δ∗ from the leading edge. This ensures that the Reynolds number Re at the impingement
point is constant for various shock angles. For this study, we are only interested in an oblique shock angle of
θ = 13◦. The other boundary conditions are explained in Section IIIB because they are used for the spatially
developing boundary layer with no incident oblique shock wave. We also employ the same grid used earlier
for the nonparallel boundary layer.

Figure 12: Contour plots of streamwise velocity and density for a Mach 5.92 SWBLI with an
incident shock angle of θ = 13◦. Here, S and R represent the separation and reattachment
points, respectively. The white contours indicate streamlines inside the recirculation bubble.

Figure 12 depicts the SWBLI base flow with color contours of streamwise velocity and density. We
nondimensionalize x, y, and z by the displacement thickness δin. The incident oblique shock wave causes
the boundary layer to separate from the wall at x ≈ 50. Around this location, we observe that a reflected
shock wave forms. The separated boundary layer causes a recirculation bubble to develop which has nearly
constant density. At the apex of the recirculation bubble, an expansion fan forms and extends up into the
freestream. At x ≈ 155, the flow reattaches to the wall and compression waves coalesce to form a second
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reflected shock. Figure 12(b) also shows a bow shock that enters the domain through the left inlet. This bow
shock is created by the leading edge of the flat plate and it does not interact with the recirculation bubble.

Figure 13: Envelope of the optimal transient energy growth G(t) for a Mach 5.92 SWBLI with
incident shock angle θ = 13◦ and spanwise wavenumber β = 0.75.

Figure 14: Optimal states corresponding to the labels in Figure 13. The initial state is denoted
with (a) and the final state with (d).

Recent work by Dwivedi et al.27 measured the spatial growth of elongated streamwise streaks after the
reattachment point of oblique shock wave/laminar boundary layer interactions using a PSE-based looping
approach. Since the parabolized stability equations require a slowly varying base flow,54 this approach can
not be applied within the recirculation bubble. However, the global adjoint looping method described in
Section IID requires no such assumption. Therefore, it can be applied to the entire two-dimensional steady
base flow in Figure 12. We show the transient growth envelope of this base flow at β = 0.75 in Figure 13.
It is important to note that β = 0.75 is the nondimensional spanwise wavenumber that corresponds to the
optimal transient growth for the spatially developing boundary layer in Figure 8. The maximum value G(t)
obtains is 1.78 × 105 at t = 217 in Figure 13, which is roughly two orders of magnitude larger than the
transient growth seen in Figure 10. After time t = 217, the transient growth G(t) decreases to zero because
the SWBLI is globally stable at these conditions.7 The transient growth G(t) is equal to unity when t = 0
because of its definition written out in equation (9).

We show the optimal initial and final states of the Mach 5.92 SWBLI with θ = 13◦ and β = 0.75 in
Figure 14. There are also two intermediary states plotted, one at t = 100 and the other at t = 175. We
see tilted streamwise streaks near the left inlet in Figure 14(a). These elongated streamwise structures
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align themselves with the mean shear in Figure 14(c) causing substantial transient growth. In Figure 14(b),
perturbations near the apex of the recirculation bubble start to grow dramatically. These perturbations
turn into long streamwise streaks that flow out of the domain in Figures 14(c) and 14(d). Centrifugal
instability significantly contributes to the growth of these perturbations.7 Both the Landahl lift-up effect
and the inviscid Orr mechanism could be responsible for the optimal transient response of a SWBLI. Another
possible growth mechanism is Kelvin-Helmholtz instability since there is a shear layer that forms once the
boundary layer separates. More calculations need to be done in order to determine what growth mechanisms
(including convective instabilities) provide a meaningful contribution.

IV. CONCLUSIONS

We applied a nonmodal optimal transient growth analysis to parallel and nonparallel boundary layers.
Near the end of our paper, we show some preliminary results from applying this transient growth analysis to
oblique shock wave/laminar boundary layer interactions. To compute the optimal transient growth G(t), we
employed an adjoint looping approach (see Figure 2) that is described thoroughly in an annual review paper
by Schmid.39 This approach converges quickly (see Appendix) allowing for several runs needed to trace out
transient growth envelopes and investigate the impact of different streamwise and spanwise wavenumbers.
Convective-type instabilities, the inviscid Orr mechanism,13 and the Landahl lift-up effect,17,18 are found to
be responsible for large transient growth in high-speed boundary layers.

A verification of our adjoint looping method against a few test cases in Hanifi et al.19 provided valuable
insight. This involved computing transient growth envelopes of parallel boundary layers as well as finding
the optimal initial and final states. From Figures 4, 5, and 7, we see that there is good agreement between
our nonmodal adjoint looping method and a modal singular value decomposition. We also found that
the Landahl lift-up effect17,18 is the dominant growth mechanism in a parallel boundary layer flow with
streamwise wavenumber α = 0 agreeing with previous studies.8,19 Since a modal singular value decomposition
about complex boundary layer flows occasionally takes thousands of eigenmodes to converge,36 the nonmodal
adjoint looping approach used in this study provides a nice alternative.

We consider a spatially developing boundary layer in this work as an intermediate step between par-
allel boundary layer flows and transitional SWBLIs. From Figure 10, the transient growth G(t) increases
significantly in a nonparallel boundary layer with longer streamwise domain lengths. This indicates that a
Mach 5.92 spatially developing boundary layer with Re = 9660 is convectively unstable. Therefore, localized
perturbations introduced upstream will grow as they convect downstream without causing the system to be-
come globally (or absolutely) unstable. More specifically, a trapped acoustic wave inside the boundary layer
(or 2nd-mode instability) could be responsible for the large transient growth.50 For a spatially developing
boundary layer, the inviscid Orr mechanism13 also contributes to the optimal transient response. In other
words, tilted streamwise streaks near the inflow align themselves with the mean shear of the boundary layer
as time passes causing substantial growth.

Finally, we compute the optimal transient growth of a Mach 5.92 oblique shock wave/laminar boundary
layer interaction with Re = 9660. Another benefit of the global adjoint looping method is that it lets pertur-
bations propagate upstream and downstream, unlike methods based on the parabolized stability equations.
This allows us to capture the physics associated with the recirculation bubble and understand how it changes
the transient growth. Figure 13 shows that the optimal G(t) is around several orders of magnitude larger
than the transient growth in a spatially developing boundary layer. The optimal initial condition could be
related to both the inviscid Orr mechanism and the lift-up effect. Figure 14(a) shows that tilted streamwise
streaks are present in the upstream boundary layer. Centrifugal instability contributes to the formation of
elongated streamwise structures downstream.7 Since this oblique shock wave/laminar boundary layer inter-
action has several competing nonmodal transient growth mechanisms, more calculations and analyses need
to be performed in the future.

Appendix

Since the adjoint looping approach in Figure 2 only solves for one point on a transient growth curve,
it takes several iterations of this approach to trace out a full envelope (see Figures 4 and 5). In order
to include variations with respect to the streamwise or spanwise wavenumber (see Figure 9), this adjoint
looping approach has to be repeated hundreds of times. We show the convergence history of this iterative
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approach for a Mach 5.92 SWBLI with θ = 13◦ and β = 0.75 at t = 175. Notice that it takes approximately
5-6 iterations to converge to the optimal initial and final states. This corresponds to a wait time of about
2-3 minutes. The convergence for parallel and nonparallel boundary layers is similar. We know that the
convergence depends on the given initial condition. For this study, we use a randomly generated flow field
with unit energy norm, but a Gaussian pulse or another type of initial disturbance could take much longer to
converge. Further, other optimization techniques (for example, conjugate gradient algorithms) could speed
up convergence even more.

Figure 15: Convergence of the adjoint looping method in Figure 2 for a Mach 5.92 SWBLI
with θ = 13◦ and β = 0.75. This corresponds to label (c) in Figure 13.
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