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Abstract

Transient growth and resolvent analyses are routinely used to assess
nonasymptotic properties of fluid flows. In particular, resolvent analysis can
be interpreted as a special case of viewing flow dynamics as an open system
in which free-stream turbulence, surface roughness, and other irregularities
provide sources of input forcing. We offer a comprehensive summary of the
tools that can be employed to probe the dynamics of fluctuations around a
laminar or turbulent base flow in the presence of such stochastic or deter-
ministic input forcing and describe how input—output techniques enhance
resolvent analysis. Specifically, physical insights that may remain hidden in
the resolvent analysis are gained by detailed examination of input-output
responses between spatially localized body forces and selected linear com-
binations of state variables. This differentiating feature plays a key role in
quantifying the importance of different mechanisms for bypass transition
in wall-bounded shear flows and in explaining how turbulent jets generate
noise. We highlight the utility of a stochastic framework, with white or col-
ored inputs, in addressing a variety of open challenges including transition
in complex fluids, flow control, and physics-aware data-driven turbulence
modeling. Applications with temporally or spatially periodic base flows are
discussed and future research directions are outlined.
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1. INTRODUCTION

Hydrodynamic stability theory focuses on spectral analysis of the dynamical generator in the lin-
earized Navier-Stokes (NS) equations while seeking the critical Reynolds number at which expo-
nentially growing modes emerge (Schmid & Henningson 2001). Although in many flows predic-
tions agree well with experiments, in wall-bounded shear flows both the critical Reynolds number
and the spatial structure of the least-stable or unstable modes are at odds with experimental obser-
vations. A broader viewpoint, based on nonmodal analysis of the linearized NS equations, provides
reconciliation with experiments and identifies mechanisms for the early stages of subcritical tran-
sition (Schmid 2007).

In the words of Trefethen & Embree (2005), the eigenvalue decomposition gives a square ma-
trix, or an operator, a personality. However, this so-called personality test is conclusive only for
normal (i.e., unitarily diagonalizable) operators. For nonnormal operators, it is the singular value
decomposition (SVD) that offers a robust predictor of personality (Trefethen & Embree 2005).
In wall-bounded shear flows, nonnormality of the linearized dynamical operator introduces cou-
pling of exponentially decaying modes, which explains high sensitivity of the laminar flow (Schmid
2007). The high sensitivity degrades the accuracy of analytical and computational predictions that
do not explicitly account for modeling imperfections. These are typically difficult to model and
may arise from a variety of sources, including surface roughness, thermal fluctuations, and irreg-
ularities in the incoming stream.

The study of dynamical systems with input forcing has a rich history in several branches of
electrical engineering, including circuit theory, communications, signal processing, and control.
In these fields, dynamical systems are decomposed into essential pieces and represented as inter-
connections of input—output blocks. This input-output viewpoint facilitates the analysis, design,
and optimization of complex systems since they can be viewed as simpler subsystems placed in
cascade, parallel, and feedback arrangements with one another. It also allows us to quantify the
influence of modeling imperfections (e.g., background noise or experimental uncertainty, which
is unavoidable in physical systems) on quantities of interest.

In fluid mechanics, input-output analysis addresses the influence of deterministic and stochas-
tic inputs on transient and asymptotic properties of fluid flows. It offers a complementary view-
point to transient growth (Butler & Farrell 1992) and resolvent (Trefethen et al. 1993) analyses
and brings in an appealing robustness interpretation. Specifically, additional insight about the dy-
namics is gained by carrying out SVD of the operator that maps excitation sources (i.e., inputs
such as body-forcing fluctuations) to the quantities of interest (i.e., outputs such as velocity fluc-
tuations). In contrast to the resolvent, this operator is not necessarily a square object; it captures
the effect of different inputs to particular physical quantities and thereby reveals finer physical
aspects (Jovanovi¢ & Bamieh 2005). In wall-bounded shear flows, input—output analysis exposes
a large amplification of disturbances and high sensitivity of the laminar flow to uncertainty in
the geometry or base velocity (Farrell & Ioannou 1993, Trefethen et al. 1993, Bamieh & Dahleh
2001, Jovanovi¢ 2004) and provides insights into structural features of turbulent flows (Hwang &
Cossu 2010a,b; McKeon & Sharma 2010). Additional successful applications range from discov-
ering mechanisms for transition to elastic turbulence in viscoelastic fluids (Hoda et al. 2008, 2009;
Jovanovi¢ & Kumar 2011) to revealing how turbulent jets generate noise (Jeun et al. 2016) and
explaining the origin of reattachment streaks in hypersonic flows (Dwivedi et al. 2019).

This review highlights the merits, effectiveness, and versatility of the input—output framework
for modeling, analysis, and control of fluid flows. We offer a comprehensive summary of the tools
that can be used to probe the dynamics of infinitesimal fluctuations around a given laminar or
turbulent base flow and explain how the framework augments resolvent analysis (Trefethen et al.
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A pressure-driven channel flow (#) between two parallel infinite walls with base flow (U(y), 0, 0), inhomogeneous wall-normal (y), and
homogeneous streamwise and spanwise (x, z) directions; (b) subject to blowing and suction along the walls; and (¢) subject to spanwise

wall oscillations.

1993). We illustrate how the componentwise input—output approach (Jovanovi¢ & Bamieh 2005)
identifies key mechanisms for bypass transition in channel flows of Newtonian and viscoelastic
fluids. We then describe how periodic base flow modifications, induced by streamwise traveling
waves and spanwise wall oscillations, can be designed to, respectively, control the onset of tur-
bulence (Moarref & Jovanovi¢ 2010) and identify the optimal period of oscillation for turbulent
drag reduction (Moarref & Jovanovi¢ 2012). The input-output framework is also well suited for
data-driven turbulence modeling; in contrast to physics-agnostic machine learning techniques,
the tools from control theory and convex optimization allow for strategic use of data in order
to capture second-order statistics of turbulent flows via first-principle models (Zare et al. 2017b,

2020a).

2. INPUT-OUTPUT VIEWPOINT: BEYOND RESOLVENT ANALYSIS

We first review the tools that can be used to probe the dynamics of infinitesimal fluctuations
around a given base flow. While this framework can be utilized in a variety of flow regimes and
geometries, we resort to a channel flow with homogeneous wall-parallel directions to illustrate the
key concepts (see Figure 14). Even in this simple setup, a variety of nontrivial fundamental ques-
tions can be addressed by employing an input-output viewpoint, including transition in complex
fluids, flow control, and data-driven turbulence modeling.

2.1. From the Evolution Model to Input—-Output Representation

The linearized NS equations govern the dynamics of infinitesimal fluctuations around a given base
flow. Fluctuations can arise from a variety of sources, including surface roughness, imperfections in
the incoming stream, acoustics, vibrations, particles, and impurities. In turbulent flows, nonlinear
interactions between different length scales can also provide forcing that sustains fluctuations.
The linearized NS equations, with an input forcing dk(z) and an output of interest & (¢), can be
brought to an evolution form (Evolution Model 1):

d, (¢
WO ) + B, L
&) = Gei(),
where 1 (¢) is the state and k is the vector of wave numbers. The operator Ay characterizes dynam-
ical interactions between the states, Bx specifies the way the input dk(z) enters into the dynamics,
and Cy maps the state Py () to the output & (t). Equation 1 is a standard state-space model in the

controls literature, and it provides a convenient starting point for modal and nonmodal analysis,
system identification, turbulence modeling, and flow control.
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Evolution Model 1:
a first-order
differential equation
governs the evolution
of the state Py (¢), and
a static-in-time
equation relates Py (¢)
to the output

&) = G @);
apart from the
boundary conditions,
no additional
constraints are
imposed on P (7)

k: wave numbers
: time

Ay: dynamical
generator

By: input operator

Cy: output operator
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For a pressure-driven channel flow of an incompressible Newtonian fluid, the base flow @
is given by either the laminar parabolic profile (Poiseuille flow) or the turbulent mean veloc-
ity. In both cases, the flow is fully developed and @ only depends on the wall-normal distance,
y:u = (U(y),0,0). Thus, the linearized NS equations are translationally invariant in wall-parallel
directions and in time, and fluctuations can be decomposed in terms of the normal modes in
x and z as W (x,y,z,t) = Py (y,2) e®=*+%2) Here, k := (k,, k.) denotes the vector of wall-parallel
wave numbers and Ay is the Orr—-Sommerfeld/Squire operator (Schmid & Henningson 2001). In
addition to k, the system described by Equation 1 is parameterized by the base flow, @, and the
Reynolds number, Re. For any (k, #), the state, {y (¢); input, di(?); and output, &, (¢), are functions
of y, but for notational convenience we suppress this dependence.

2.1.1. Derivation of Equation 1. The linearized model is obtained by expressing the flow as the
sum of the base and fluctuation components and by neglecting the quadratic fluctuation terms. In
incompressible flows of Newtonian fluids, the velocity obeys a continuity equation, and a Poisson
equation for the pressure, p, is obtained by applying the divergence operator to the linearized
NS equations. The Orr-Sommerfeld equation is obtained by acting with the Laplacian, A, on the
wall-normal velocity equation and using the expression for Ap to eliminate p. The Squire equation
is obtained by taking the curl of the linearized NS equations. This yields an evolution model in
the form of two partial differential equations for the wall-normal velocity and vorticity (Kim et al.
1987), ¥ := (v, n). All other velocity and vorticity components can be expressed in terms of (v, 17)
via kinematic relations (Jovanovié¢ & Bamieh 2005).

Standard stability analysis of a laminar Poiseuille flow predicts modal instability for Re = 5,772.
The discrepancy with experiments, in which transition occurs for Re ~ 1,000, can be explained
using nonmodal analysis (Schmid 2007), which reveals significant transient growth of fluctua-
tions (Gustavsson 1991, Butler & Farrell 1992) and strong amplification of disturbances (Farrell
& Toannou 1993, Trefethen et al. 1993, Bamieh & Dahleh 2001, Jovanovi¢ & Bamieh 2005).

2.1.2. Resolvent, transfer function, impulse, and frequency response operators. While the
governing equations and geometry determine the dynamical generator, Ay, there is flexibility
in selecting the operators Bk and Ci, and different choices can reveal different aspects of flow
physics (Jovanovi¢ & Bamieh 2005). All of these operators play a role in the response of the
system described by Equation 1 that arises from the initial condition 1 (0) and the exogenous
input d(2):

Natural response Forced response

L) = Ce P (0) + / Ci e=9 B dy (7)dr,
0

Ayt

where ek’ is the state-transition operator associated with Ax. The Laplace transform can be uti-

lized to rewrite Equation 2 as
E(s) = Gl — A7 $i(0) + Gl — A)™' B di(o), 3.

where s is the complex number, I is the identity operator, £4(s) is the Laplace transform of & (¢),
and (sI — Ai)~! is the resolvent operator. Equations 2 and 3 determine responses of the system
described by Equation 1 and provide the basis for quantifying important dynamical features of the
linearized flow equations. The natural (i.e., unforced) responses are characterized by the state-

transition e’

and resolvent (sI — Akx)~! operators. In contrast, the forced response is obtained
by convolving an input dk(¢) with the impulse response operator, Tk(#); equivalently, the transfer

function Ti(s) specifies an input-output mapping in the complex domain, i.e., £(5) = Ti(s) &k(x),
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with

Impulse response Transfer function

Laplace transform

Tk(t) = Ck eAktBk Tk(j‘) = Ck (S‘I - Ak)ilBk.

For flows over perfectly smooth walls and in noise-free environments, study of natural re-
sponses aids in understanding the fundamental fluid mechanics. Specifically, the eigenvalue de-
composition of Ax and the SVD of ekt

pects of the flow (Schmid 2007). While such insights are valuable, engineering flows seldom exist in

, respectively, offer insights into modal and nonmodal as-

isolation and understanding the forced responses is equally important. In particular, input-output
analysis examines forced responses with the objective of quantifying amplification of disturbances
and impact of modeling imperfections on fluctuations’ dynamics. In contrast to natural responses,
study of forced responses requires specifying how disturbances enter into Equation 1 through the
operator Bk.

In the special case when the input excites all degrees of freedom equally and the output is
the entire state, Bx and Cy are the identity operators and the resolvent completely determines the
transfer function. However, it is often of interest to confine the inputs to certain spatial regions and
to examine outputs that are given by a linear combination of certain state variables. In such cases,
the transfer function is determined by a compressed resolvent, and its analysis can uncover impor-
tant dynamical aspects that may be obscured by only paying attention to the standard resolvent.
This distinction played a key role in understanding how turbulent jets generate noise. Jeun et al.
(2016) utilized compressed resolvent analysis by restricting inputs to the vicinity of the jet turbu-
lence and selecting far-field pressure as the output. In contrast to a standard resolvent analysis,
which provides links to jet hydrodynamics but does not explain noise generation (Garnaud et al.
2013), this approach identifies acoustic sources to be wave packets that are in excellent agreement
with experiments (Jordan & Colonius 2013) and reveals mechanisms for noise generation.

2.1.3. Singular value decomposition. In transient growth analysis, SVD identifies the spatial
structure of initial conditions that maximize energy at a given time. SVD also provides the tool
for quantifying responses to unsteady deterministic and stochastic inputs, di (), that neither grow
nor decay in time (on average). This allows us to set s = iw, and the frequency response, Tk(iw), is
obtained by evaluating the transfer function 7i(s) along the imaginary axis (see the sidebar titled
Frequency Response Operator).

SVD of Tx(iw) identifies fundamental input-output features across (k, w):

Elio) = Tuli0) dui0) = Y ok (@) (@) (1), delio)). .

j=1

The left and right singular functions, ¥y j(w) and Gy j(w), respectively, provide orthonormal bases
of the input and output spaces; the singular value o j(w) determines the corresponding amplifi-
cation; and (-,+) is the inner product. SVD requires computation of the adjoint T]:r (iw),

(le ()& (i), &k(iw)> - (ék(iw), Tk(iw)ak(iw)> , 5.

and the eigenvalue decomposition of 77" and T1T: Y]((iw)TJ (w)ay j(w) = Uﬁ‘j(w)ﬁk,j(a)) and
TkT (iw) Ti (iw)¥y j(w) = ali (@), j(w), respectively. Unless noted otherwise, the L, inner product
(-y-), which induces an energy norm, is taken over inhomogeneous spatial directions in
Equation 4.
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Gy e’ By.: impulse
response operator

s =0 + iw: complex
number

(sI — A1)~ resolvent
operator

Ci(sI - Ak)_lBk:
transfer function

w: frequency

Cx(iwl — Ak)_lBk:
frequency response
operator

Z: set of integers
(+,-): inner product
Ot adjoint

L;: square-integrable
function space

II-]l: norm

sup: supremum
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FREQUENCY RESPONSE OPERATOR
Time-Invariant Systems

The natural response of a stable linear time-invariant (L'TT) system, described by Equation 1, asymptotically decays
to zero. The frequency response operator determines the steady-state response to harmonic inputs with frequency
o and is obtained by evaluating the transfer function along the imaginary axis:

Ti(iw) == Ti@)| = Ciliol - Ap) "By

For di(t) = dy(iw)e, the steady-state response of a stable L'TT system described by Equation 1 is harmonic with
the same frequency but with different amplitude and phase, i.e., &x(z) = £ (iw)el’. The frequency response Tk(la))
is an operator (in inhomogeneous spatial directions) that maps a spatial input profile di (i) into the output & (iw),
Ex(io) = Tk(lw)dk(lw), thereby determining how amplitude and phase change across k and w; see Figure 2 for an
illustration in linearly stable channel flows.

Time-Periodic Systems

If the operator Ax in Equation 1 has time-periodic coefficients, i.e., Ak () = Ax(¢ + 27 /w,), the steady-state response
to a harmonic input with frequency w contains an infinite number of harmonics separated by integer multiples of ,,
i.e., w + nw,, for n € Z. The proper normal modes for frequency response analysis are no longer purely harmonic
(e?). Rather, they are determined by the Bloch waves (Odeh & Keller 1964), i.e., by a product of €’ and the
27 /w,-periodic function in #:

dit) = Y di,(i0) e 0 € [0,m,),

n=—00

where 6 is the angular frequency and 6 = 0 and 6 = w,/2 identify the fundamental and subharmonic modes, re-
spectively. The steady-state response of a stable linear time-periodic system to the above Bloch wave input dk(z)
is also a Bloch wave, &x(r) =), ?.,k,,, (i9) '@+t "and, for any (k, ), the frequency response operator Tk(if) maps
di(0) := col {dy.,(i0)}nez to £x(i0) := col {E4,(0)}yez, ie., £x(i0) = Ti(i6)dy (i0). If the operators By and Cy in
Equation 1 are time invariant, for a system with A, (t) = 3, Ay,€™, we have

Ti(i0) = Ck (EG0) — Ax) ™' By,

with £(10) := diag{i(6 + nw;)I},cz, where By and Cy are the block-diagonal operators with By and Ck on the
main diagonal, respectively, and Ay := toep{. .., Ak 1,Ak0,Ak—1,...} is the block-Toeplitz operator (Jovanovié
2008).

2.2. Amplification of Deterministic Inputs

For a harmonic input dy(t) = ak(iw)eiw’ with &k(iw) = Vi.j(w), where ¥ ;(w) is the jth left

singular function of Ti(iw), the steady-state output &i(¢) = £x(iw)e of the system described
by Equation 1 is in the direction of the jth right singular function, &(iw) = oy j(w)ly j(w),

and its energy is given by ||§.,k(ia))||§ = (ék(ia)), ék(ia))) = Uli].(a)). The principal singular value,

01,1 (@) := Omax(Ti(iw)), determines the largest amplification at any (k, »), and the smallest upper
bound over w determines the Hy, norm of the system described by Equation 1 (Zhou et al.
1996), Gy :=sup, o} | (»). This measure of input-output amplification has several appealing

interpretations for any k.
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a Input:ds(x, y, 2, t) b Steady-state output: u(x, y, z, t)
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In linearly stable channel flows, the steady-state response of the linearized Navier-Stokes (NS) equations to a harmonic input in (x, 2, 7),
&k(y, i) eitkerthazton s determined by the output & (y, i) eierthezton with & (y, i) = [Th.(iw)dy (-, io)] (), where Tk(iw) is the
frequency response operator. (#,5) Spatial structures of (#) spanwise forcing fluctuations and (b) resulting streamwise velocity fluctuations
at one time instant in Poiseuille flow with Re = 2,000 for four combinations of (k, k., w): (1, 1, —0.385) and (—1, 1, 0.385).

() First, the H,, norm represents the worst-case amplification of harmonic (in homogeneous
directions and in time) deterministic (in inhomogeneous directions) inputs. This worst-case
input—output gain is obtained by maximizing over spatial profiles (largest singular value of Ti) and
temporal frequency (supremum over ) (see Figure 34). (b)) Second, the H,, norm determines
the induced gain from finite-energy inputs to outputs, Gy = supEl;(.,ﬁl(El‘z“t/EL“), where E
and EP* denote the k-parameterized energy of input and output, e.g., Eli{“ = fooo i (2113 dt,
with |dx@)[3 = (dk(t), dk(t)). For a unit-energy input dk(z) to the stable system described by
Equation 1, G quantifies the largest possible energy of the output &x(#) across the spatial
wave number k. (¢) Third, the H,, norm quantifies robustness to modeling imperfections (see
Figure 35).

2.3. Amplification of Stochastic Inputs

A common criticism of transient growth and resolvent analyses is the difficulty of implementing
the worst-case initial conditions or inputs in the lab. An alternative approach introduces a random

a ' ' b
Nominal linearized dynamics
= Eil(t) Ye(t) = Aie(®) + By () dy(t)
= E Ei(t) = Gy(t) '
¥ : =
o . '
) ' i ' .
1 1 1
"""""""" *: Fk :‘"""""""""
1 '
N Modeling uncertainty
1077 100 10! 102 (can be nonlinear or time varying)

Figure 3

(@) The Hy, norm is determined by the peak value, Gk, of the largest singular value of the frequency response operator, o max (Tk(i®)),
over the frequency . (b) A large Hy, norm of the linearized dynamics signals low robustness margins: Modeling imperfections,
captured by the operator 'k, with the Ho, norm 1/,/Gy can trigger instability of Ak + Bk['kCk. This interpretation is related to the
pseudo-spectra of linear operators (Trefethen & Embree 2005).
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The variance of velocity fluctuations, (1/t) f(; ||vk(r)||§ dr, for 20 realizations of stochastic forcing to the linearized Navier—Stokes
equations in Poiseuille flow with Re = 2,000 for (Jeft to right) k = (0, 1.78), (1, 1), and (1, 0). The variance averaged over all simulations is
shown by a thick black line.

E(-): expectation
operator

excitation to the NS equations that can account for background noise. It identifies almost identical
dominant flow structures and opens the door to turbulence modeling.

Control-theoretic tools can be utilized to exploit the structure of the linearized Equation 1,
avoid costly stochastic simulations, and offer insight into amplification mechanisms. For 20
realizations of persistent channel-wide temporally and spatially uncorrelated stochastic input
di(?) to Equation 1, Figure 4 shows the variance of the velocity fluctuation vector vi(¢) :=
(i (), vic (), wi (¢)) in Poiseuille flow with Re = 2,000. Although individual simulations display dif-
ferent responses, their average reaches the steady-state limit. In the absence of modal instability,
viscosity asymptotically dissipates natural responses but a persistent excitation source maintains
fluctuations for all times.

2.3.1. The Reynolds-Orr equation. Inchannel flow with stochastic forcing, the kinetic energy
Ex () :== E({vi(2), vi(t))) of fluctuations vi(z) around (U(y), 0, 0) obeys

1dBG) _

57 = B[ 2 0 am0) — .U + 0,0 .

Here, E is the expectation operator, (-,+) is the L [—1, 1] inner product, U'(y) is defined as dU(y)/dy,
and the terms on the right-hand side denote the viscous energy dissipation, the energy exchange

with the base shear, and the work done by the body forces, respectively. The nonlinear terms in the
NS equations are conservative and the Reynolds—Orr equation takes the same form for nonlinear
and linearized dynamics (Schmid & Henningson 2001). Since it is driven by the terms that need
to be determined by solving the equations for flow fluctuations, it is not in the form that allows
for direct determination of its solution. For the linearized NS equations, both the kinetic energy
and the terms on the right-hand side of the Reynolds—Orr equation can be computed using the
solution to the differential Lyapunov equation (Equation 6), which we present below. This avoids
the need for costly stochastic simulations and provides an alternative way of solving an important
equation in fluid mechanics.

2.3.2. Time-invariant systems. Let the system described by Equation 1, with the output
& (#) = vi(z), be driven by a stochastic input dk(#) with the spectral density Qk(iw). The spec-
tral density operator, Sy (iw) = Tk(ico)Qk(ia))TkJr (iw), quantifies the two-point correlations of vi(z)
across the wave number k and the frequency o, where Tx(iw) is the frequency response opera-
tor defined in the sidebar titled Frequency Response Operator. The inverse Fourier transform of

Jovanovi¢
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Sk(iw) yields the lagged covariance operator,
1 +oo .
A = lim Em) @w(+1)] = 5 / Si(i0) " do,
t— 00 T oo

where ® denotes the tensor product. Furthermore, the integration of Sk(iw) over w yields the
steady-state two-point correlation (i.e., covariance) operator Vi of the output vi(2),
+00

. 1 .
Ve = R(0) = lim @) = b Sk(iw) do,

where Vi () := E [vi(t) ® v ()] is the time-dependent covariance operator of velocity fluctu-
ations. For the system described by Equation 1, we have Vi (t) = Cka(t)CII, where Xi(t) :=
E [ (t) ® Py ()] is the covariance operator of the state Py (¢) and CII is the adjoint of the op-
erator Cy. In channel flow, for any k, Vi is an operator in the wall-normal direction, gi(y;) :=
[Vk £ ()] (1), whose kernel representation determines all stationary two-point correlations of
vik(2):

1 1
gy = [1 Ve, y2) fi(y2) dy, = /:IIILII;E[Vk()/l,t)Vﬂ()’z,l‘)] fi(y2) dy,.

One- and two-point correlations in y are obtained for y; =y, and y; # y», respectively; VX (y1,y,)
determines the two-point spectral density tensor and its inverse Fourier transform gives the two-
point correlation tensor in x and z (Moin & Moser 1989).

2.3.3. Lyapunov equation. For a zero-mean temporally uncorrelated input di(#) with the co-
variance operator Wk, i.e., E[dk(?)] = 0, E[dk(r) ® dk(7)] = Wi8( — 1), the input spectral den-
sity, Qk(iw), is constant across w, i.e., Qk(iw) = Wi. In this case, as described in the sidebar titled
Lyapunov Equation, the covariance operator Xi(#) of the state 1 (¢) in Equation 1 satisfies the
differential Lyapunov equation:

dXi ()

dr

For the system described by Equation 1 with the input covariance Wi and the initial condition
Xx(0), this operator-valued differential equation can be used to compute Xk(#) and determine en-
ergy of fluctuations via Ey (¢) = trace [Cka(t)Cli]. For linearly unstable flows, the steady-state limit
of Xi(#) either is unbounded or does not exist. However, the solution of Equation 6 can still be

= AXi(t) + Xu(t)4] + B WAB]. 6.

computed, e.g., by forward-marching in time or via the following formula:

At Al Ak BkVVkB]t 0 Al
X(t) = e™ X (0)et +[1 O]exp<|:0 aiIncs

In the absence of modal instability, X := lim, _, » Xy (¢) is well defined and the steady-state limit
of Equation 6 is given by
AXy + XAl = —BWABL. 7.

In this case, for a given initial condition Xi(0), Xk(#) can be computed from the solution X to the
algebraic Lyapunov equation (Equation 7) via X (t) = Xj, — e[ X, — X;.(0)] eAltt, and the steady-
state limit of Ei(#) determines the energy amplification Ey := lim, _, o, Ex(t) = trace (CkaCE) (see
the sidebar titled Power Spectral Density and Energy Amplification). Finally, for colored-in-time
input dk(z), Xk satisfies

AXi + Xed] = —(BH] + HeB), 8.
where the operator Hx determines the stationary cross-correlation between the input dk(¢) and
the state P (¢) in Equation 1 (Zare et al. 2017b, appendix B).
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LYAPUNOV EQUATION: TWO-POINT CORRELATIONS OF LINEAR SYSTEMS

The Lyapunov equation can be used to propagate two-point correlations of the white stochastic input d(#) into
colored statistics of the state P (¢) of a linear system (Bamieh & Dahleh 2001, appendix A). Here we derive the
Lyapunov equation for a finite-dimensional discrete-time LTT system (DT LTT):

Y +1) = Ap@) + Bd@),

where time # is a nonnegative integer and A, B are constant matrices. The derivation for continuous-time systems is
standard (Kwakernaak & Sivan 1972, chapter 1.11) but is more involved and less intuitive. Let X (¢) := E [11) (t)w*(t)]
be the covariance matrix of the state at time z, where E is the expectation operator and {* () is the complex-conjugate
transpose of Y (#). Then the DT LTT can be used to obtain the following recursion:

X(@t+1) =E{[AP(@) + Bd®)] [Ww*®)A* + d*(1)B*] }
= AE [W(@e)*(1)]4* + BE[d@e)w* (¢)]4* + AE[W@)d*(¢)B* + BE[d()d*()]B".

If the stochastic input is white-in-time with the covariance matrix ¥ i.e., E[d(¥)d*(z)] = W§(t — t), where § is the
Kronecker delta, the cross terms in the above recursion disappear and we obtain the Lyapunov equation:

X(¢t+1) = AX@®)A* + BWB, X(0) = X,.

If the matrices 4 and B in the DT LTT as well as the matrices /¥ and X, are known, this deterministic equation
can be propagated forward in time to obtain the covariance matrix X(7). Even though the above derivation holds
irrespective of stability properties of the DT LTT system, the steady-state limit, X := lim,_, , X (), only exists for
stable systems. In this case, the Lyapunov equation converges to the algebraic Lyapunov equation,

AXA* — X = —BWEB',

which is linear in X and is typically used to compute the stationary covariance matrix X for given A4, B, and W.
For colored-in-time stochastic inputs d(z), the cross terms in the above recursion are nonzero and introducing the
matrix H() := AE [ (t)d* ()] + %BE [d(@®)d*(z)] in the recursion allows us to write it as

X@t+1) = AX(@)A* + BH*(t) + H@)B*, X(0) = X,
which, for the stable DT L'TT system, converges asymptotically to the algebraic Lyapunov-like equation,
AXA* — X = —(BH* + HBY),

with H := lim, _, . H(t). For continuous-time systems, the Lyapunov equation above takes the form of the differ-
ential Lyapunov equation (Equation 6), which, for stable systems, converges to the algebraic Lyapunov equation
(Equation 7). While the above equations also hold for systems in which A4(7) and B(¢) depend on time, their steady-
state limits may not be well defined. Finally, for infinite-dimensional systems, the complex-conjugate transpose of
a matrix, 4*, should be replaced with an adjoint of an operator, A'.

Departure from the white-in-time restriction removes the sign-definiteness requirement on

the right-hand side in Equation 7: While the operator By#4B] in Equation 7 has nonnegative
eigenvalues, BkHl:r + HkB]t in Equation 8 is allowed to be sign indefinite, which provides additional

flexibility. Furthermore, for a zero-mean white input wi(¢) with the covariance operator Wi, the

stationary covariance operator of { (¢) in the system
d @] _ |4 —BiKx Py (t) By
dr [ebk(t)} - [o Ay - BkKJ [«bk(t)} ! {BJ v

320  fovanovi¢



Annu. Rev. Fluid Mech. 2021.53:311-345. Downloaded from www.annualreviews.org
Access provided by 23.242.79.201 on 01/09/21. For personal use only.

POWER SPECTRAL DENSITY AND ENERGY AMPLIFICATION

The power spectral density quantifies the energy of the output &y (¢) of the stochastically forced system described
by Equation 1 across the wave number k and temporal frequency w:

M () = trace[Sk(i®)] = trace [Ti(iw)Qu(w) T} ()],

where T (iw) is the frequency response and Qx(iw) is the spectral density of di(?). At any k, the temporal average of
M (w) determines the energy (variance) amplification of harmonic (in homogeneous spatial directions) stochastic
(in inhomogeneous directions and time) disturbances to the linearized NS equations:

Ey = L/ My (@) dw.
27 J_ o

This quantity is also known as the ensemble-average energy density of the statistical steady state, and it is here-
after referred to as the (steady-state) energy amplification (or energy density). For white-in-time inputs dk(z) with
Qi (iw) = Wk, the solution to the algebraic Lyapunov equation (Equation 7) can be used to compute Ey:

Ey = trace (CkaCII), EA.

thereby avoiding integration over w. When the input is uncorrelated in inhomogeneous spatial directions with
Wi = I, the sum of squares of the singular values of Tx(iw) gives the power spectral density, i.e., the Hilbert—
Schmidt norm of Tx(iw). In this case, Ex determines the H> norm of the system described by Equation 1 and
Parseval’s identity yields

1 oo X 1 (o) . ) o0
E, = ;e j; alf,j(a)) do = T [m trace [Tk(lw)TkT(la))] do = /oo trace [Tk(t)TkT(t)] de.

Thus, in addition to quantifying the steady-state variance of the system described by Equation 1 subject to spatially
and temporally uncorrelated stochastic inputs, the H> norm also determines the L, norm of the impulse response
and the same control-theoretic quantity enjoys both stochastic and deterministic interpretations.

Comparison of H; and H,, norms

For flows without homogeneous directions, the H> and Hy, norms compress the dynamics into a single positive
number; otherwise, they are parameterized by the wave number, k. Section 2.2 offers interpretations of the Hy,
norm and this sidebar discusses the H> norm. Here we highlight how these measures of input—output amplification
of the system described by Equation 1 compress information in inhomogeneous directions and in time: While the
H,, norm maximizes over both spatial profiles and frequency by computing the temporal supremum of o i,y [Tk (iw)],
the H> norm quantifies the aggregate effect of inputs by integrating the sum of squares of the singular values of
Tx(iw) over w.

with Ky := [(I/Z)WI(Bl —HII]Xk’l, is given by Xk (Zare et al. 2017b). The ¢, subsystem in
Equation 9 maps the white input wi(?) to the colored input dk(?) in the system described by
Equation 1 such that we have Xj = lim, _,  E [ (#) @ P (¢)] . Equivalently, the mapping from
wi(?) to Py (t) in Equation 9 can be represented via

dy (1)
dt

= (Ax — BiK) b () + Buwi (), 10.

and the algebraic Lyapunov equation (Equation 7) can be used to verify that the stationary two-
point correlation operator of Py (¢) is indeed given by Xi. Thus, the impact of a colored-in-time
input can be interpreted as a state-feedback modification of the operator Ay in Equation 1.
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For a stable stochastically forced system described by Equation 1, Equation 8 identifies ad-
missible steady-state covariance operators. This fundamental relation was recently utilized for
low-complexity stochastic dynamical modeling of turbulent flows (Zare et al. 2017a,b, 2020a).

2.3.4. Time-periodic systems. The response of a linear time-periodic system to a stationary
stochastic input is a cyclo-stationary process (Gardner 1990); the covariance operator of the state
is 277 /w; periodic, i.e., Xi(t) 1= E [Py (t) @ W ()] = X, Xic.e"", with Xy _, = thn, and the effect
of the stationary input, over one period T := 27 /@, is determined by (1/T) |, 0’1‘ Xi(®) dt = Xio. If
the stochastic input dk(#) is white-in-time with the spatial covariance W, the harmonic Lyapunov
equation,

[k — £G0)] X + X[Ax — EGO]T = —BuW B, 11.

can be used to compute the Fourier series coefficients Xk » of Xk(z). Here, Ay, Bk, and & are
defined in the sidebar titled Frequency Response Operator; W is the block-diagonal operator
with 4 on the main diagonal; and A, is the self-adjoint block-Toeplitz operator whose elements
are determined by Xi , (Jovanovi¢ 2008, Jovanovi¢ & Fardad 2008).

3. UNCOVERING MECHANISMS IN WALL-BOUNDED SHEAR FLOWS

We next illustrate how the input-output approach provides insights into the physics of transitional
and turbulent wall-bounded shear flows of Newtonian and viscoelastic fluids. In addition to offer-
ing a computational framework that quantifies the impact of modeling imperfections on relevant
flow quantities, a control-theoretic viewpoint also reveals influence of dimensionless groups on
amplification of deterministic as well as stochastic disturbances and uncovers mechanisms that
may initiate bypass transition. In Section 3.1, we highlight how streamwise streaks, oblique waves,
and Orr—Sommerfeld modes are identified as input-output resonances of the operator that maps
forcing fluctuations to different velocity components in Newtonian fluids. In Section 3.2, we
demonstrate how a control-theoretic approach reveals a viscoelastic analog of the familiar inertial
lift-up mechanism, thereby identifying mechanisms that may trigger transition to elastic turbu-
lence in rectilinear flows of viscoelastic fluids. Finally, in Section 3.3, we offer a brief overview of
the merits and the effectiveness of the input-output analysis in turbulent channel and pipe flows of
Newtonian fluids.

3.1. Bypass Transition in Channel Flows of Newtonian Fluids

For Poiseuille flow with Re = 2,000, Figure 4 shows that the streamwise-constant flow structures
with %k, = 1.78 are much more energetic than the oblique waves (k, = k, = 1) and the Orr—
Sommerfeld modes (k, = 1, k£, = 0). We next illustrate how the tools of Section 2.3 offer insights
into the physics of transitional flows while avoiding need for stochastic simulations. Figure 5
displays the joint impact of forcing fluctuations in all three spatial directions on the individual
velocity components. For a channel-wide forcing di(7), we utilize the expression for the energy
amplification in the sidebar titled Power Spectral Density and Energy Amplification to evaluate
the impact of the wave numbers %, and k, on the steady-state variance of #, v, and w. The stream-
wise velocity component, #, contains most energy, and the strongest amplification occurs in the
region that corresponds to small values of k. and O(1) values of k. The oblique modes [i.e., the
flow structures with O(1) values of &, and k.] emerge as input—output resonances in the response of
the spanwise velocity, w, and they are significantly less amplified than the streamwise-elongated
flow structures with k£, ~ 0. In contrast, the least-stable Orr—Sommerfeld mode, which is the
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Energy amplification of (Jeft ro 7ight) streamwise (z), wall-normal (v), and spanwise (w) velocity fluctuations for the linearized Navier—
Stokes equations subject to channel-wide stochastic forcing in Poiseuille flow with Re = 2,000. The largest value in each plot is marked
by a black dot and a logarithmic scaling with the same color map is employed. The streamwise velocity contains most energy and the

dominant flow structures are given by the streamwise-elongated spanwise-periodic streaks.

dominant source of amplification for the wall-normal velocity, v, creates only a local peak around
(ky ~ 1, k, = 0) in the response of «. Thus, the flow structures that are deemed important in clas-
sical hydrodynamic stability play a marginal role in the amplification of stochastic disturbances.
This identifies shortcomings of modal stability theory, highlights the utility of componentwise
input—output analysis (Jovanovi¢ & Bamieh 2005), and demonstrates that significant insight can
be gained by examining linearized dynamics in the presence of modeling imperfections (in this
case, additive stochastic disturbances).

3.1.1. Streamwise-constant model: lift-up mechanism. In addition to computational ad-
vantages, a control-theoretic viewpoint also uncovers mechanisms for subcritical transition and
quantifies impact of the Reynolds number on amplification of deterministic as well as stochastic
disturbances (Jovanovi¢ 2004, Jovanovi¢ & Bamieh 2005). By considering how the disturbances
propagate through the linearized dynamics, important insight can be gained without any com-
putations. Since the streamwise-constant fluctuations experience the largest amplification (see
Figure 5), we examine the system described by the linearized dimensionless NS equations for

k:= (kxy kz) = (0’ kz):

Nonnormal
S di (1)
d [v@)| | & Ao o v@e)| | | 0 BBy d‘(t)
dt [n@)| | At & As | | 0@ B0 O di(t) ’ b
u(t) 0C,
o) | =1¢ 0 [”(t)},
w(t) ¢, o |L1®

where we suppress the dependence on the spanwise wave number, k. Here, v and 5 respectively
denote the wall-normal velocity and vorticity fluctuations, whereas (di, 4>, d;) and («, v, w) are re-
spectively the forcing and velocity fluctuations in (x, y, z). The Orr-Sommerfeld, Squire, and cou-
pling operators are given by A, := A™'A?, Ay := A, and A1 := —ik,U'(y), respectively, where
A = 9,, — k2I is a Laplacian with homogeneous Dirichlet boundary conditions, A~
of the Laplacian, A? is defined as d,,,, — 2k29,, + kI with homogeneous Dirichlet and Neumann
boundary conditions, and U’(y) is again dU(y)/dy. We refer the reader to section 4 of Jovanovi¢ &
Bamieh (2005) for a definition of the input, B, and output, C, operators.

is the inverse
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BLOCK DIAGRAMS: A TOOL FOR REVEALING STRUCTURE WITHOUT
COMPUTATIONS

Block diagrams decompose complex systems into essential pieces, abstract away unnecessary details, and highlight
the flow of information. These control-theoretic tools reveal structure without any computations and allow one
to make useful analogies. Circles are used to denote the summation of input signals and boxes represent different
parts of the system. Inputs into each box/circle are represented by lines with arrows directed toward the box/circle,
and outputs are represented by lines with arrows leading away from the box/circle. The inputs specify the signals
affecting subsystems, and the outputs specify the signals of interest or signals affecting other parts of the system.
The block diagrams in Figure 6 illustrate influence of disturbances dy, 4>, and d; to the momentum equation on
the velocity fluctuations #, v, and w in streamwise-constant channel flows of Newtonian and inertialess viscoelastic
fluids.

dy
B,
a Viscous Vortex Generalized
dissipation tilting diffusion
a n v d,
«— G Re (i - Ag)™! Acp1 Re (il - Agg)™! @ B,
Source of
; amplification J3
(@ Bs
w
Cw
dy
iw+1 B,
b Viscous Polymer Generalized
dissipation stretching diffusion
a 7 ~(1-p) 9 ) d,
«— C Al ¥ We A 5 ¥ B
v Blw)+1 T Blaw)+1 2
Source of
v amplification d,
(@ iw+1 B
% . . Re Reynolds We Weissenberg
w number number
Figure 6

Block diagrams of the frequency response operators that map the forcing fluctuations di, d, and d3 to the
velocity fluctuations #, v, and w in streamwise-constant channel flows of (#) Newtonian fluids and

(b) inertialess Oldroyd-B fluids. Blue boxes represent resolvent operators associated with the
Orr-Sommerfeld, A, and Squire, Asq, operators, and red boxes represent the coupling operators

Aepr = —ik;U'(y) and A == ik [U'(y)A + 2U"(y)3,]. In Newtonian fluids, Q2 := wRe is the frequency
scaled with the diffusive timescale, 5% /v, and in viscoelastic fluids, w is the frequency scaled with the polymer
relaxation time, A. The thick black lines indicate the part of the system responsible for large amplification. In
Newtonian fluids, amplification originates from vortex tilting, i.e., the operator Ay in Equation 12, and in
viscoelastic fluids, it originates from polymer stretching, i.e., the operator Apz. In Newtonian fluids, singular
values of the frequency responses from d; to 7 are proportional to Re? for » = u and / = {2, 3}; are
proportional to Re for {r =u,/ = 1; 7 = {v, w},/ = {2, 3}}; and are equal to zero for {r = {v, w},/=1}. In
inertialess flows of viscoelastic fluids, they are proportional to We for {r = u, / = {2, 3}}; all other singular
values are independent of We.
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As described in the sidebar titled Block Diagrams, block diagrams are control-theoretic tools
that decompose complex systems into essential pieces, abstract away unnecessary details, and high-
light the flow of information. A graphical representation of the frequency response operator in
Figure 64 illustrates that the wall-normal and spanwise forcing fluctuations, 4; and ds, produce
O(Re) fluctuations in v and w, respectively. Although these are dissipated by viscosity, the result-
ing spanwise variations in v, ik,v, tilt the spanwise vorticity of the laminar base flow, —U’(y), in
the wall-normal direction, y, thereby triggering O(Re?) fluctuations in 1 and, consequently, in
u = n/(ik;). This lift-up mechanism (Landahl 1975) is a dominant source of amplification in wall-
bounded shear flows of Newtonian fluids. The operator A, acts as a source in the wall-normal
vorticity equation and accounts for vortex tilting that arises from linearization of the convective
terms in the NS equations. Since the operators A, and A, are self-adjoint, in the absence of vortex
tilting, the dynamics are characterized by viscous dissipation.

3.2. Early Stages of Transition to Elastic Turbulence: Viscoelastic Lift-Up

In complex fluids and complex flows, it is even more important to explicitly account for mod-
eling imperfections by quantifying their influence on transient and asymptotic dynamics. Here
we illustrate how input-output analysis discovers mechanisms that may initiate bypass transition
in channel flows of viscoelastic fluids in the absence of inertia. Transition in fluids that contain
polymer chains can impact polymer processing and enhance microfluidic mixing. In contrast to
Newtonian fluids, viscoelastic liquids can deviate from laminar profiles even when inertia is neg-
ligible (Groisman & Steinberg 2000), and in curvilinear flows, a purely elastic instability trig-
gers transition (Larson et al. 1990). In low-inertial regimes, rectilinear flows are asymptotically
stable but the dynamics associated with polymer stress fluctuations can still induce complex re-
sponses (Qin et al. 2019a,b). Since no single constitutive equation fully describes the range of
phenomena in viscoelastic fluids, it is important to understand how modeling imperfections may
adversely affect their dynamics.

Newtonian fluids are characterized by a static-in-time linear relation between stresses and ve-
locity gradients. In viscoelastic fluids, constitutive equations determine the influence of velocity
gradients on the dynamics of the stress tensor. For dilute polymer solutions, polymer molecules
are treated as springs that connect spherical beads (Bird et al. 1987); the Oldroyd-B (infinitely
extensible linear spring) and the FENE (finitely extensible nonlinear elastic)-type models are
most commonly used. In the absence of inertia, we can set Re = 0, and the Weissenberg number,
We = Aii/b, and the viscosity ratio, 8 = ps/(s + 1p), characterize channel flows of Oldroyd-B
fluids. The Weissenberg number quantifies the ratio between the elastic and viscous forces and is
given by the product of the polymer relaxation time, A, and the velocity gradient, #/b. The steady
solution determines the laminar base flow (, T), with a = (U (y), 0, 0), where we have U(y) = 1 —
y? in pressure-driven Poiseuille flow and U(y) = y in shear-driven Couette flow, and the nonzero
components of the base polymer stress tensor, T, are 713 = 2We[U’(y)]? and 13 = ©; = U'(y).
Equations for infinitesimal velocity, pressure, and stress fluctuations are obtained by linearization
around (1, T).

Hoda et al. (2008, 2009) were the first to investigate nonmodal amplification of disturbances
in channel flows of viscoelastic fluids and demonstrate high sensitivity of the laminar flow in both
inertia- and elasticity-dominated regimes. Jovanovi¢ & Kumar (2010) showed that velocity and
stress fluctuations experience significant transient growth even in the absence of inertia. Jovanovi¢
& Kumar (2011) identified a new slow-fast decomposition of the governing equations and used
singular-perturbation techniques to analytically establish unfavorable scaling of the energy
amplification with the Weissenberg number in weakly inertial flows. Lieu et al. (2013) quantified
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the role of finite extensibility of polymers on the worst-case amplification of disturbances in
FENE-type models, and Hariharan et al. (2018) studied amplification of localized body forces.
The combined effects of inertia and elasticity on streak evolution was examined by Agarwal et al.
(2014) and Page & Zaki (2014).

For streamwise-constant flows of Oldroyd-B fluids, the block diagram in Figure 65 reflects
the structure of the frequency response operator that maps disturbances to the momentum
equation (inputs) to the velocity fluctuations (outputs) and eliminates all unnecessary variables.
Apart from the operator A, := ik.[U’(y)A 4+ 2U"(y)d,], which accounts for stretching of poly-
mer stress fluctuations by a base shear, all other operators are the same as in Newtonian fluids (see
Section 3.1.1). The block diagrams reveal striking structural similarity between streamwise-
constantinertial flows of Newtonian fluids and inertialess flows of viscoelastic fluids. In the absence
of base shear, U’(y), and spanwise variations in fluctuations, the responses of viscoelastic fluids are
governed by viscous dissipation and all velocity components are We-independent. However, in
contrast to Newtonian fluids, spanwise variations in fluctuations and their interactions with U’ (y)
provide a source in the vorticity equation even in the absence of inertia. In particular, the influ-
ence of d, and d; on u can be understood by analyzing the wall-normal vorticity equation in the
dimensionless Oldroyd-B model (Jovanovi¢ & Kumar 2011):

BANGE) = —An@) — (1= We[U'(n)A + 2U"(y)d,] ik0 (),

where & := 9/(iw + 1) denotes a low-pass version of the wall-normal velocity, v. The source term
arises from stretching of polymer stress fluctuations by a base shear and it introduces a lift-up
of fluctuations in a way similar to vortex tilting in inertia-dominated flows of Newtonian fluids.
Thus, the wall-normal and spanwise inputs give rise to an energy transfer from the base flow
to fluctuations and generate streamwise velocity fluctuations that are proportional to the Weis-
senberg number. Responses from all other inputs to all other velocities are We-independent and
are governed by viscous dissipation. Jovanovi¢ & Kumar (2011) also demonstrated that d, and
ds induce a quadratic scaling with the Weissenberg number of the streamwise component of the
polymer stress tensor, T1;.

In summary, elementary control-theoretic analysis identifies key physical mechanisms and
demonstrates that the wall-normal and spanwise body forces have the largest impact on the
streamwise velocity fluctuations in inertia-dominated channel flows of Newtonian fluids and
elasticity-dominated flows of viscoelastic fluids. These conclusions are derived without any com-
putations by examining the frequency responses of streamwise-constant fluctuations and showing
that d; and d5 induce a quadratic scaling of # with the Reynolds number (in Newtonian fluids) and
a linear scaling of # with the Weissenberg number (in inertialess Oldroyd-B fluids). At &, = 0, d;
does not influence v and w and the mappings from all other forcing to all other velocity compo-
nents are proportional to the Reynolds number (in Newtonian fluids) and are We-independent (in
viscoelastic fluids); readers are referred to Jovanovi¢ & Bamieh (2005, section 4) and Jovanovié¢ &
Kumar (2011) for additional details. Despite these structural similarities, amplification in New-
tonian and viscoelastic fluids originates from different physical mechanisms: vortex tilting and
polymer stretching, respectively.

3.3. Turbulent Channel and Pipe Flows of Newtonian Fluids

Lee etal. (1990) used direct numerical simulations (DNS) of homogeneous turbulence to demon-
strate that the linear amplification of eddies that interact with large mean shear induces streamwise
streaks even in the absence of a solid boundary. This study also employed linear rapid distortion
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theory (Pope 2000) to predict the lack of isotropy and the structure of turbulence at high shear
rate. Furthermore, Kim & Lim (2000) used DNS of a turbulent channel flow to show decay of
near-wall turbulence in the absence of the linear vortex tilting term.

In contrast to the laminar base flow, the time-averaged turbulent mean velocity is not a so-
lution of the NS equations, and even the question of what to linearize around can be con-
tentious (Beneddine et al. 2016). Since the linearized NS equations around the turbulent mean
flow are stable (Malkus 1956, Reynolds & Tiederman 1967), they are well suited for input—output
analysis. Butler & Farrell (1993) utilized transient growth analysis over a horizon determined by
the eddy turnover time to show that the streak spacing of approximately 100 wall units represents
the optimal response of the NS equations linearized around the turbulent mean flow. McKeon
& Sharma (2010) employed a gain-based decomposition of fluctuations around mean velocity in
turbulent pipe flow to characterize energetic structures in terms of their convection speeds and
wavelengths. This study highlighted the role of critical layers in wall-normal localization of ex-
perimentally identified energetic modes and related the wave speed, ¢ := w/k,, to the wall-normal
localization of the dominant flow structures. Moarref et al. (2013) leveraged the role of wave speed
to formally determine three different scalings for the most amplified modes; showed that these
scales are consistent with inner, logarithmic, and outer layers in the turbulent mean velocity; and
established dependence of the dominant resolvent modes on the spatial coordinates.

Other classes of linearized models have also been utilized to identify the spatiotemporal struc-
ture of the most energetic fluctuations in turbulent flows. In particular, the turbulent mean flow
can be obtained as the steady-state solution of the NS equations in which molecular viscosity
is augmented with turbulent eddy viscosity (Reynolds & Tiederman 1967, Reynolds & Hussain
1972). Del Alamo & Jiménez (2006), Cossu et al. (2009), Pujals et al. (2009), and Hwang & Cossu
(2010a,b) demonstrated that transient growth and input—output analyses of the resulting lineariza-
tion qualitatively capture features of turbulent flows.

For a turbulent channel flow with Re = 547 and &, = 0, Figure 7 demonstrates the emergence
of channel-wide and near-wall streaks in a stochastically forced eddy viscosity—enhanced linearized
model. The values of k£, where the two peaks in the premultiplied energy spectrum, k.F;, , emerge
determine the spanwise length scales of the most energetic response of velocity fluctuations to
stochastic forcing (Figure 7a). Streamwise velocity fluctuations that contain the most variance
are harmonic in z, and their wall-normal shapes are determined by the principal eigenfunctions

a 100
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80 scales: 2m/k;,

uTN 60
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Figure 7

(#) Premultiplied energy spectrum, k.Ey, , and (b,c) dominant flow structures resulting from stochastically forced eddy viscosity—

enhanced linearization around the turbulent mean flow with Re = 547 (based on friction velocity) and k, = 0. Color plots display the

most energetic streamwise velocity fluctuations, #(z, y), and contour lines show streamfunction fluctuations with the spanwise

wavelength determined by (b) 277 /k.; (channel-wide streaks) and (c) 27 /k.; (near-wall streaks).
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Figure 8

Block diagrams of (#) a modification to the dynamics introduced by spatiotemporal oscillations, which introduce a sensorless feedback,
at the level of flow fluctuations, by changing a base flow Uy(y) to a periodic profile, and (b) a simulation-free approach for determining
the influence of control on skin-friction drag in turbulent flows. The bold arrows represent coefficients into the mean-flow and
linearized equations. In Moarref & Jovanovi¢ (2012), the turbulent mean velocity is updated once.

of the stationary covariance operator, Vi (Figure 7a,b). Pairs of counter-rotating streamwise vor-
tices distribute momentum in the (y, z)-plane and promote amplification of high- and low-speed
streamwise streaks. The most energetic flow structures occupy the entire channel width, and the
second set of strongly amplified fluctuations is determined by near-wall streaks.

4. CONTROL OF TRANSITIONAL AND TURBULENT FLOWS

Flow control by sensorless means is often inspired by the desire to bring the efficiency of birds and
fish to engineering systems. Control of conductive fluids using the Lorentz force, periodic blowing
and suction, wall oscillations, and geometry modifications (e.g., riblets, superhydrophobic surfaces,
and jet-engine chevrons) are characterized by the absence of sensing capabilities and implemen-
tation of control without measurement of the relevant flow quantities or disturbances. Rather, as
illustrated in Figure 84, the dynamics are impacted by spatiotemporal oscillations through geom-
etry or base velocity modifications.

Min et al. (2006) used DNS to show that a blowing and suction in the form of an upstream
traveling wave can provide a sustained sublaminar drag in a fully developed turbulent channel
flow. Their paper inspired other researchers to examine fundamental limitations of streamwise
traveling waves for control of transitional and turbulent flows (Marusic et al. 2007, Bewley 2009,
Fukagata et al. 2009, Heepffner & Fukagata 2009, Lieu et al. 2010, Moarref & Jovanovi¢ 2010).
Furthermore, simulations and experiments showed that spanwise wall oscillations can reduce skin-
friction drag by as much as 45% (Jung et al. 1992, Laadhari et al. 1994, Choi et al. 1998, Choi
2002, Ricco 2004). While these and other studies (e.g., Fransson et al. 2006) have demonstrated
the potential of sensorless periodic strategies, until recently a model-based design for transitional
and turbulent flows remained elusive.

In Section 4.1, we highlight the utility of the input—output framework in the design of travel-
ing waves for controlling the onset of turbulence while achieving positive net efficiency (Moarref
& Jovanovi¢ 2010), and in Section 4.2, we describe how stochastic analysis in conjunction with
control-oriented turbulence modeling quantifies the effect of control on turbulent flow dynamics
and identifies the optimal period of oscillations for drag reduction (Moarref & Jovanovi¢ 2012).
Apart from demonstrating the merits of the input—output approach in the design of periodic strate-
gies for controlling laminar and turbulent flows, we also illustrate how to overcome challenges that
arise in secondary receptivity analysis, i.e., in nonmodal analysis of the dynamics associated with
spatially or time-periodic base flows.
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4.1. Controlling the Onset of Turbulence by Streamwise Traveling Waves

Let channel flow be subject to a uniform pressure gradient and a zero-net mass-flux blowing
and suction along the walls, V' (y = £1) = F2« cos (v, (¥ — ¢t)) (see Figure 1b). Here, o, ,, and
¢ respectively denote amplitude, frequency, and speed of the wave that travels in the streamwise
direction, #. Positive/negative values of ¢ identify downstream/upstream waves, and ¢ = 0 gives
a standing wave. The Galilean transformation, x := & — ¢z, eliminates the time dependence in
V(+£1), and the steady-state solution of the NS equations, a = (U (x, y), V(x, ), 0), does not depend
on t in the frame of reference that travels with the wave. The new laminar base flow, 1, is no
longer a parabola: It is periodic in x, with frequency w,, and it contains both streamwise and wall-
normal components, Uy, y) and My, y).

4.1.1. Net efficiency of modified base flow. Blowing and suction induce a bulk flux in the
direction opposite to that of the wave (Heepffner & Fukagata 2009). This pumping mechanism
occurs even in the absence of the pressure gradient and is explained by a weakly nonlinear analysis.
For small-amplitude «, U(x, y) is given by

Parabola  Mean drift Oscillatory components
Uly) = U + o*Un(y) + a[Up() e + Um(y)e ]
+ o? [UZp()’) eiZoxx + UZm(y)e—Iwax] + 0(0{3)_

In addition to an oscillatory O(e) correction to Uy(y) with frequency w,, both the second harmonic
2w, and the mean flow correction U,y(y) are induced by the quadratic nonlinearity in the NS
equations at the level of . For the fixed pressure gradient, the skin-friction drag coefficient
of the base flow is inversely proportional to the square of the bulk flux. Since the integral of
Us(y) is positive for the upstream and negative for the downstream waves (Hoepffner & Fukagata
2009, Moarref & Jovanovi¢ 2010), upstream/downstream waves respectively reduce/increase skin-
friction drag coefficient relative to the laminar uncontrolled flow.

The net efficiency of wall actuation is given by the difference of the produced and required
powers (Quadrio & Ricco 2004). These two quantities respectively determine the increase/
decrease in bulk flux relative to the flow with no control and the control effort exerted at the
walls. Compared to laminar uncontrolled flow, any strategy based on blowing and suction re-
duces net efficiency (Bewley 2009, Fukagata et al. 2009). However, if uncontrolled flow becomes
turbulent, both upstream and downstream waves of small enough amplitudes can improve net ef-
ficiency (Moarref & Jovanovi¢ 2010, section 2.4). Moarref & Jovanovi¢ (2010) also demonstrated
that, apart from the net efficiency, the dynamics of fluctuations around the modified base flow
have to be evaluated when designing the traveling waves.

4.1.2. Dynamics of velocity fluctuations. The laminar base flow induced by the traveling
waves is periodic in x, with frequency w,, and the resulting linearization is not translationally
invariant in the streamwise direction. The normal modes in z are still harmonic, €=, but in x they
are given by the Bloch waves, which are determined by a product of ¢ and the 27 /w,-periodic
function in x, ak(x,y, 1) = di(x + 27T /@y, Y, 1)

o0
d(xaya Z, t) = ak(xd’,f) ei(0x+kZZ) = Z &k,ﬂ()’,t) ei[(9+nwx)x+/ezz]’ 0 e [07 a)x)a
n=-—00

where k:= (0,k;) and dg,(y,7) are the coefficients in the Fourier series expansions of
di(x,y,2). In this case, signals in Equation 1 are the k-parameterized bi-infinite column
vectors whose components are determined by the corresponding Fourier series coefficients, e.g.,
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dy (t) := col {ak,,,(y, ez, and similarly for P (z) and &(z). Thus, for each k, Ak, Bk, and
Cyx in Equation 1 are bi-infinite matrices whose entries are operators in the wall-normal di-
rection, y (Moarref & Jovanovi¢ 2010), and the frequency response operator Ti(iw) defined
in the sidebar titled Frequency Response Operator maps ak(iw) := col {&k,n O, iw)lnez to
Ei(iw) = col (&, (), i)}y ez

Since modal stability does not capture the early stages of transition, Moarref & Jovanovi¢
(2010) utilized input—output analysis of a linearization around (U(x, y), M(x, y), 0) to quantify the
effect of control on amplification of stochastic disturbances and identify waves that reduce re-
ceptivity relative to the flow without control. A discretization in y and truncation of bi-infinite
matrices in Equation 1 yield a large-scale Lyapunov Equation 7; computing its solution to assess
impact of control parameters (o, w,, ¢), wave numbers (6, k.), and the Reynolds number Re on the
energy amplification is demanding. Motivated by the observation that large values of « introduce
high cost of control, Moarref & Jovanovi¢ (2010) employed a perturbation analysis to efficiently
compute the solution to Equation 7. This approach offers significant advantages relative to the
approach based on truncation: The impact of small-amplitude waves on energy amplification can
be assessed via computations that are of the same complexity as computations in the uncontrolled
flow. In particular, for small-amplitude waves, the following explicit formula,

energy amplification with control “ 1+ algi(@ne Re) + O, 13

energy amplification without control

offers insights into the impact of control on energy amplification. For o < 1, the analysis
amounts to examining the dependence of the function gx in Equation 13 on k = (8, k.); the
frequency/speed of the wave, (w,, ¢); and the Reynolds number, Re. Positive (negative) values of g«
respectively identify parameters that increase (decrease) energy amplification. For channel flow
with Re = 2,000 and fixed values of w, and ¢, we use a sign-preserving logarithmic scale to visualize
the k-dependence of the function gk in Figure 9. While the downstream waves with (w, = 2,
¢ = 5) reduce amplification for all values of 6 and %, the upstream waves with (o, = 0.5, c = —2)
promote amplification for a broad range of 6 and k.. Thus, in addition to guaranteeing positive

a Downstream waves: (w, =2, c=5) b Upstream waves: (w, = 0.5, c=-2
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The second-order correction to the energy amplification in Equation 13 visualized using a sign-preserving logarithmic scale,
sign(gk)logio(1 + Igkl), in channel flow with Re = 2,000 (based on the centerline velocity of the parabolic laminar profile and the
channel half-height). While the downstream waves with selected parameters reduce amplification for all values of 6 and #,, the
upstream waves promote amplification for a broad range of 6 and ;. Figure adapted with permission from Moarref & Jovanovi¢ (2010),
copyright 2010 Cambridge University Press.
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net efficiency relative to the uncontrolled flow that becomes turbulent (see Section 4.1.1), the
downstream waves also suppress energy of 3D fluctuations. In contrast, the upstream waves with
the parameters that provide a favorable skin-friction coefficient of the modified laminar flow (Min
et al. 2006) increase amplification of the most energetic modes of the uncontrolled flow. In fact,
since, at best, they exhibit receptivity similar to that of the uncontrolled flow (Moarref & Jovanovi¢
2010) and can even induce modal instability of the modified laminar flow (Lee et al. 2008), they
are not suitable for controlling the onset of turbulence. In contrast, properly designed down-
stream waves can substantially reduce the production of fluctuations’ kinetic energy (Moarref &
Jovanovi¢ 2010) and are an excellent candidate for preventing transition to turbulence.

4.1.3. Verification by direct numerical simulation. All theoretical predictions resulting from
the simulation-free approach of Moarref & Jovanovi¢ (2010) were verified by Lieu et al. (2010).
Their DNS confirmed that the downstream waves indeed provide an effective means for control-
ling the onset of turbulence and that the upstream waves promote transition even when the uncon-
trolled flow stays laminar. This demonstrates considerable predictive power of the input-output
framework and suggests that reducing receptivity is a viable approach to controlling transition.

4.2. Turbulent Drag Reduction by Spanwise Wall Oscillations

Spanwise wall oscillations can reduce turbulent drag by as much as 45%. This observation was
made in simulations, experiments, and theoretical studies (Dhanak & Si 1999, Bandyopadhyay
2006, Ricco & Quadrio 2008) that focused on explaining the effectiveness of this sensorless strat-
egy. Here we describe how input—output analysis in conjunction with control-oriented turbulence
modeling identifies the optimal period of oscillations for turbulence suppression in channel flow
(see Moarref & Jovanovi¢ 2012 for details).

4.2.1. Modified mean flow. In pressure-driven channel flow, the steady-state solution of the
NS equations in which the molecular viscosity is augmented with the turbulent viscosity vr(y) is
determined by the Reynolds—Tiederman profile, Uy(y). If the flow is also subject to W(y = £1,1) =
2asin (w,t), the steady-state solution is given by (Uy(y), 0, Wo(y, 1) = a[W,(y)e " + W (y)e ']).
Here, Uy(y) approximates the mean streamwise velocity of the uncontrolled turbulent flow and the
wall oscillations induce the time-periodic spanwise component, W (y, ), under the assumption that
the turbulent viscosity is not modified by control. If this were the case, the oscillations would have
no impact on Uy, which is at odds with simulations/experiments. In contrast, the estimates of the
required power exerted by wall oscillations resulting from the use of W closely match the DNS
results of Quadrio & Ricco (2004) over a broad range of oscillation periods (Moarref & Jovanovié¢
2012, section 2.2).

4.2.2. Turbulence modeling. The inability of the above approach to predict drag reduction
arises from the fact that the wall oscillations change the turbulent viscosity of the flow with no
control. Moarref & Jovanovi¢ (2012) pioneered a method based on the stochastically forced eddy
viscosity—enhanced NS equations linearized around (Uy(y), 0, Wo(y, 1)) to capture the influence of
control on turbulent viscosity. The approach utilizes the Boussinesq hypothesis, but in contrast
to standard practice, the turbulent kinetic energy, k, and its rate of dissipation, €, are computed
using the second-order statistics of velocity fluctuations in the linearized model. Using an analogy
with homogeneous isotropic turbulence, Moarref & Jovanovic (2012, section 3.1) selected spatial
correlations of white-in-time forcing to provide equivalence between the 2D energy spectra of
the uncontrolled turbulent flow and the flow governed by the stochastically forced linearization
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around (Uy(y), 0, 0). This approach was the first to utilize available DNS data (del Alamo & Jiménez
2003, del Alamo et al. 2004) of the uncontrolled turbulent flow to guide control-oriented modeling
for design purposes; it takes advantage of the turbulent viscosity and the energy spectrum of the
uncontrolled flow and determines the effect of control on the turbulent flow using a model-based
approach.

4.2.3. Dynamics of velocity fluctuations. Linearization around (Up(y), 0, Wy(y, ?)) yields
a time-periodic model with Ay (t) = Arp + o (A 167" + Ay 1€*7), and the solution to
Equation 11 provides two-point correlations. For small-amplitude oscillations, Moarref &
Jovanovi¢ (2012) utilized perturbation analysis to efficiently solve this equation and identify
the oscillation periods that yield the largest drag reduction and net efficiency. This approach
quantifies the influence of velocity fluctuations on the turbulent viscosity in the flow with control,
vr(y) = v1o(y) + &> vra(y) + O(at), where vro(y) is the turbulent viscosity of the uncontrolled
flow and v (y) is determined by the second-order corrections (in «) to the kinetic energy, £;(y),
and its rate of dissipation, €,(y). These quantities are obtained by averaging the second-order
statistics resulting from a stochastically forced linearization around (Uy(y), 0, Wo(y, 1)) over the
wall-parallel directions and one period of oscillations.

The solution to Equation 11 and the above expression for vt are used to assess the influence of
small-amplitude oscillations on the dynamics of velocity fluctuations and to identify the optimal
period of oscillations for drag reduction. For the controlled flow with constant bulk flux and
the friction Reynolds number Re = 186, Figure 10 shows the second-order correction to the
skin-friction coefficient %Cp (T*), normalized by its largest value, and normalized DNS results
at Re = 200 (Quadrio & Ricco 2004). A close agreement is observed between a theoretical predic-
tion for the optimal period resulting from input-output analysis (7" = 102.5) and DNS results
(T ~ 100). Figure 10b,c shows the premultiplied 2D energy spectrum of the uncontrolled flow,
k.k,Ex 0, and the second-order correction, .k, Ex 2, triggered by small-amplitude oscillations with
the optimal period T = 102.5. The most energetic modes of the uncontrolled flow occur at (k, ~
2.5, k, =~ 6.5). Figure 10c shows that the wall oscillations increase amplification of the modes
with small streamwise wavelengths, in addition to suppression of energy of large streamwise

C
T T
0.01
10" [ = Ho
-0.01
ke
100 = — -0.02
sa=6 -0.03
va=9
0.4 L | 1 1 101 1 1 -0.04
40 100 160 220 107" 100 10!
T k,
Figure 10

(@) Second-order correction (in «) to the skin-friction drag coefficient relative to the uncontrolled flow, %Cp, (T), normalized by
maxp+ %Cq (T ), as a function of the period of oscillations, T, for the flow with Re = 186 and DNS (direct numerical simulation)-
based %C¢(T™") normalized by the corresponding largest values at Re = 200 (Quadrio & Ricco 2004) for control amplitudes & = 2.25,
a = 6,and & = 9. (b)) Premultiplied DNS-based energy spectrum, k.4, FEx 0, of the uncontrolled turbulent flow with Re = 186.

(¢) Second-order correction to the energy spectrum, k., El 2, for the flow subject to wall oscillations with optimal drag-reducing period
T+ = 102.5. Figure adapted with permission from Moarref & Jovanovié¢ (2012), copyright 2012 Cambridge University Press.
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wavelengths. This observation agrees with the study of the impact of wall oscillations on free-
stream vortices in a pretransitional boundary layer (Ricco 2011). Moarref & Jovanovi¢ (2012) also
showed that the optimal wall oscillations minimize the turbulent viscosity near the interface of
the buffer and log-law layers and that oscillations are less effective at higher Reynolds numbers.

4.2.4. Summary. Traveling waves and wall oscillations introduce a sensorless feedback via peri-
odic modifications to the dynamics (see Figure 8#) by changing a base flow Uy(y) to a spatially or
time-periodic profile. Depending on the actuation waveform and the parameters, the properties
can be improved or worsened relative to the flow without control. In contrast to a standard ap-
proach, which employs DNS and experiments to assess sensorless periodic strategies, Moarref &
Jovanovié (2010, 2012) developed a model-based framework for determining the influence of con-
trol on transitional and turbulent flows and demonstrated the critical importance of the dynamics
associated with the modified base flows for effectively controlling the onset of turbulence and
drag reduction. The developed simulation-free method enables computationally efficient design
by merging receptivity analysis and control-oriented turbulence modeling with techniques from
control theory, and its utility goes beyond the case studies presented here. Recently, the input—
output approach was used to quantify the effect of riblets on kinetic energy and turbulent drag in
channel flow (Chavarin & Luhar 2020, Ran et al. 2020) and it is expected to enable optimal design
of periodic strategies for control of transitional and turbulent flows. The input—output framework
is also at the heart of the optimal and robust H; and H, feedback control strategies (Zhou et al.
1996) and has recently found use in the model-based design of opposition control (Luhar et al.
2014, Toedtli et al. 2019).

5. PHYSICS-AWARE DATA-DRIVEN TURBULENCE MODELING

Advances in high-performance computing and measurement techniques provide an abundance
of data for a broad range of flows. Thus, turbulence modeling can be formulated as an inverse
problem, where the objective is to identify a parsimonious model that explains available data and
generalizes to unavailable data. Techniques from machine learning and statistical inference were
recently employed to reduce uncertainty and improve the predictive power of models based on the
Reynolds-averaged NS equations (Duraisamy et al. 2019). Large data sets can also be exploited to
develop reduced dynamical representations (Rowley & Dawson 2017), but an exclusive reliance
on data makes such models agnostic to physical constraints and can yield subpar performance in
regimes that are not contained in the training data set. Moreover, sensing and actuation can sig-
nificantly change the identified model, thereby making its use for flow control challenging (Noack
et al. 2011, Tadmor & Noack 2011). A compelling alternative for model-based optimization and
control is to leverage data in conjunction with a prior model that arises from first principles.

As demonstrated in Section 3, the linearized NS equations in the presence of stochastic exci-
tation can be used to qualitatively predict structural features of transitional and turbulent shear
flows. In most prior studies, excitations were restricted to white-in-time stochastic inputs but this
assumption is often too narrow to fully capture observed statistics of turbulent flows (Jovanovi¢
& Georgiou 2010). To overcome these limitations, Zare et al. (2017a,b) developed a framework
to allow for colored-in-time inputs to the linearized NS equations.

We next briefly summarize how strategic use of data enhances the predictive power of the
linearized NS equations in order to capture second-order statistics of turbulent flows (Zare et al.
2017a,b,2020a). Since machine learning tools are physics agnostic, the power spectrum of stochas-
tic forcing is identified by merging tools from control theory and convex optimization. The re-
sulting stochastic model, given by Equation 10, accounts for neglected nonlinear interactions via
a low-rank perturbation to the original dynamics (see Figure 11).
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(@) The Navier-Stokes (INS) equations can be viewed as a feedback interconnection of the linearized dynamics with the nonlinear term.
(&) Stochastically driven linearized NS equations with low-rank state feedback modification. At the level of second-order statistics, the
two representations can be made equivalent by proper selection of Bk and Kx (cf. Equation 10).
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5.1. Completion of Partially Available Channel Flow Statistics

Here we examine linearization around mean velocity in turbulent channel flow and highlight the
utility of the framework developed in Zare et al. (2017a,b). A pseudo-spectral method (Weideman
& Reddy 2000) yields a finite-dimensional approximation of the operators in y, and a change of
variables (Zare et al. 2017b, appendix A) leads to an evolution model in which the kinetic energy
at any k is determined by the Euclidean norm of the state vector . For given (4, Bx) and input
statistics (Wi or H), algebraic Equations 7 and 8 can be used to compute the stationary covari-
ance matrix X of the state P in the system described by Equation 1. However, in turbulence
modeling, the converse question arises: Starting from Equation 1 and the covariance matrix Xk
(resulting from DNS or experiments), can we identify the power spectrum of the stochastic input
di(?) that generates such statistics? For the NS equations linearized around turbulent mean veloc-
ity with white-in-time stochastic forcing, the answer to this question is negative (Zare et al. 2017b,
figure 6). This limitation can be overcome by allowing for colored-in-time stochastic inputs to the
linearized system described by Equation 1.

The positive-definite matrix Xk is the stationary covariance of the state P (¢) of the LTT system
described by Equation 1 with controllable pair (Ak, Bx) if and only if (Georgiou 2002a,b) the
following holds:

rank AXic + Xy B = rank 0 B . 14.
B; 0 B 0

This fundamental condition guarantees that, for given Ay, Bk, and Xk, Equation 8 can be solved
for Hi. It also implies that any Xy = X;* > 0 is admissible as a stationary covariance of { (¢) in
Equation 1 if the input matrix By is full rank. In particular, for By = I, Equation 8 is satisfied with
H} = —A X\, and the stochastically forced system described by Equation 10, which simplifies to
P @2) = 7(1/2)Xk’11pk(t) -+ wi(2) for this choice of Hx and Wi = I, can be used to generate Xi.
This implies that a colored-in-time input that excites all degrees of freedom in Equation 1 can
completely cancel the relevant physics contained in Ax. Thus, in data-driven turbulence modeling,
it is critically important to restrict the rank of the matrix Bk, which specifies the number of inputs
to the linearized NS equations.

To address this challenge, Zare et al. (2017a,b) formulated and solved the problem of complet-
ing a subset of entries del"s of the stationary covariance matrix ;%" of velocity fluctuations using
stochastically forced linearization around the turbulent mean velocity. The approach utilizes al-
gebraic Equation 8 with Zy := By H + Hy Bf and a maximum entropy formalism along with a
convex surrogate for rank minimization to limit the number of inputs to the linearized model and
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identify spectral content of the colored-in-time forcing:

mi;(ﬁrgize —logdet(Xy) + ¥ Y, 0i(Zy), Objective function

1o 7k

subject to Ak Xy + Xidp + Zx = 0, Physics 15.
(GeXkCY)ij = del‘}‘, @#,7) € T Awvailable data

The Hermitian matrices Xk > 0 and Zx are the optimization variables, whereas the matrices
(Ax, Cx), the available entries del‘}s of V3 for a selection of indices (7, j) € Z,and y > 0 are known
problem parameters. The first constraint in Equation 15 comes from physics; it imposes the re-
quirement that second-order statistics are consistent with linearization around turbulent mean
velocity. The second constraint requires that the available elements of the matrix V%™ are exactly
reproduced by the linearized model. The logarithmic barrier function is introduced to ensure
positive-definiteness of Xk (Boyd & Vandenberghe 2004), and the sum of singular values of the
matrix Zx, which reflects the contribution of the stochastic input, is used as a convex proxy to
restrict the rank of Zx (Fazel 2002, Recht et al. 2010).

The convexity of the objective function and the linearity of the constraint set in Equation 15
imply the existence of a unique globally optimal solution, (X}*, Z). This solution reproduces all
available entries of the stationary covariance matrix V%" resulting from DNS (or experiments) and
completes unavailable second-order statistics via the low-complexity stochastic dynamical model
given by Equation 10. In particular, the factorization of Z; can be used to determine By and H,
which, along with X}*, yield a low-rank modification, Bf K, to Ax in Equation 10. This approach
provides a model that refines the predictive power of the linearized NS equations by employing
data while preserving the relevant physics of turbulent flows.

Figure 12 shows the covariance matrices Vi w and Vi . resulting from DNS of turbulent
channel flow with Re = 186 (Figure 12a,) and the solution to the optimization problem in
Equation 15 with y = 300 (Figure 12b,d) for k = (2.5, 7). The lines along the main diagonals
mark the one-point correlations (in y) that are used as available data in Equation 15 and are per-
fectly matched. Using a Frobenius norm measure, ||}]* — Vk‘l“S I/l de“s |lF, approximately 60% of
V45 can be recovered by the stationary covariance matrix, V}* = GX;'C}, of velocity fluctuations
resulting from the solution of Equation 15 (Zare et al. 2017b). The high-quality recovery of two-
point correlations is attributed to the Lyapunov-like structural constraint in Equation 15, which
keeps physics in the mix and enforces consistency between data and the linearized dynamics.

5.2. Alternative Formulations

The covariance completion problem in Equation 15 can be cast as an optimal control problem
aimed at establishing a trade-off between control energy and the number of feedback couplings
thatare required to modify Ay in the system described by Equation 10 and achieve consistency with
available data (Zare et al. 2020a,b). Depending on the modeling purpose and available data, many
alternative turbulence modeling formulations are possible. Jovanovi¢ & Bamieh (2001) showed
that portions of one-point correlations in (x, y, 2), resulting from the integration of DNS-based
Vker(y,y) over k, can be approximated by the appropriate choice of covariance of white-in-time
forcing to the NS equations linearized around the turbulent mean velocity. This early success in-
spired the development of optimization algorithms for the approximation of full covariance ma-
trices using stochastic dynamical models (Heepffner 2005, Lin & Jovanovi¢ 2009). For the eddy
viscosity—enhanced linearization, Moarref & Jovanovi¢ (2012) demonstrated that white-in-time
forcing with variance proportional to the turbulent energy spectrum can be used to reproduce the
DNS-based energy spectrum of velocity fluctuations. Hwang & Eckhardt (2020) determined the
wave number dependence of the variance of stochastic forcing, which is uncorrelated in 7 and y,
and minimizes the difference between the Reynolds shear stresses resulting from the mean and the
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Figure 12

(a,b) Streamwise, Vi, uu, and (c,d) streamwise/wall-normal, Vi 40, covariance matrices resulting from direct
numerical simulation of turbulent channel flow with Re = 186 (#,c), and the solution to the optimization
problem in Equation 15 with y = 300 (b,d) for k = (2.5, 7). Black lines along the main diagonals mark the
one-point correlations that are used as available data in Equation 15 and are perfectly matched. Figure
adapted with permission from Zare et al. (2017b), copyright 2017 Cambridge University Press.

linearized eddy viscosity—enhanced NS equations. Several recent efforts were aimed at matching
individual entries of the spectral density matrix Sk(iw) at given frequencies (Beneddine et al. 2016,
2017; Towne et al. 2020) or at capturing the spectral power, trace(Sk(iw)) (Morra et al. 2019). Fi-
nally, compared to the standard resolvent analysis (Moarref et al. 2014), an optimization-based ap-
proach that utilizes a componentwise approach (Rosenberg & McKeon 2019) offers considerable
improvement in matching spectra and cospectra in turbulent channel flow (McMullen et al. 2020).
This further exemplifies the power and versatility of the componentwise input-output viewpoint
of fluid flows that was introduced by Jovanovi¢ & Bamieh (2005).

6. DISCUSSION

In this section we expand on future issues and provide an overview of outstanding challenges.

6.1. Complex Fluids and Complex Flows

In addition to parallel flows, input—output analysis was utilized to quantify the influence of
deterministic (Sipp & Marquet 2013) and stochastic (Ran et al. 2019b) inputs as well as base flow
variations (Brandt et al. 2011) on spatially evolving boundary layers. In high-speed compressible
flows, there is a coupling of inertial and thermal effects, and experiments suggest a significant
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impact of exogenous disturbances on transition (Fedorov 2011). Traditional receptivity is based
on a local spatial analysis (Malik 1989, Bertolotti & Herbert 1991) and is not applicable to most
bodies of aerodynamic interest. For hypersonic vehicles with complex geometry or shock interac-
tions with control surfaces, transition is poorly understood, and empirical testing is typically used
to characterize their behavior. Linearization around spatially evolving base flows in the presence
of sharp gradients involves multiple inhomogeneous directions, and even modal stability analysis
becomes challenging and computationally demanding (Hildebrand et al. 2018, Sidharth et al.
2018). Recently, Dwivedi et al. (2019) employed a global input-output analysis to quantify the
amplification of exogenous disturbances and explain the appearance of experimentally observed
steady reattachment streaks in a hypersonic flow over a compression ramp. For the laminar
shock-boundary layer interaction, this study showed that upstream counter-rotating vortices
trigger streaks with a preferential spanwise length scale. Input-output analysis is expected to
clarify the importance of different physical mechanisms in the presence of surface roughness and
free-stream disturbances and to quantify the impact of modeling uncertainties that arise from
chemical reactions and gas surface interactions on hypersonic flows (Candler 2019).

6.2. Computational Complexity

For an evolution model with 7 degrees of freedom, the tools presented in this review require O(n*)
computations. Such computations are routine for canonical flows, but the large-scale nature of
spatially discretized models in complex geometries induces significant computational overhead.
Dominant singular values of the state-transition and frequency response operators can be com-
puted iteratively (Schmid 2007) or via randomized techniques (Halko et al. 2011). Such compu-
tations have been used to conduct nonmodal analysis of complex flows (Jeun et al. 2016; Dwivedi
etal. 2019, 2020). While in general it is challenging to efficiently solve large-scale Lyapunov equa-
tions, efficient iterative algorithms (in terms of both memory and computations) exist for systems
with a small number of inputs and outputs and sparse dynamic matrices (Benner et al. 2008).
These are expected to bring the utility of stochastic analysis from canonical channels (Jovanovié
& Bamieh 2005) and boundary layers (Ran et al. 2019b) to flows in complex geometries.

6.3. Nonlinear Interactions

Large amplification of disturbances in conjunction with nonlinear interactions can induce
secondary instability of streamwise streaks, their breakdown, and transition (Waleffe 1997).
An alternative self-sustaining mechanism shows that turbulence can be triggered by the
streamwise-constant NS equations in feedback with a stochastically forced streamwise-varying
linearization (Farrell & Ioannou 2012, Thomas et al. 2014). Nonlinear nonmodal stability analysis
identifies initial conditions of a given amplitude that maximize energy at a fixed time (Kerswell
2018). Dissipation inequalities (Ahmadi et al. 2019) and a harmonic balance approach (Rigas
et al. 2020) were recently utilized to extend input—output analysis to the nonlinear NS equations,
parabolized Floquet equations were employed to examine the interactions among different
modes in slowly varying shear flows (Ran et al. 2019a), and the theory of integral quadratic
constraints (Megretski & Rantzer 1997) was used to study a phenomenological model of transi-
tion (Kalur etal. 2020). However, it is still an open challenge to precisely characterize the interplay
between high flow sensitivity and nonlinearity in order to capture later stages of transition routes
and design effective control strategies.

6.4. Data-Driven Techniques

Machine learning has revolutionized many disciplines, e.g., image recognition and speech pro-
cessing, and is increasingly used in modeling and decision making based on available data. While
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the NS equations are often too complex for model-based optimization and control, DNS provides
data for reduced-order dynamical modeling (Rowley 2005, Lumley 2007, Schmid 2010, Jovanovié
etal. 2014, Towne et al. 2018). Capitalizing on the availability of such data, machine and reinforce-
ment learning have recently been used for flow modeling, optimization, and control (Brunton et al.
2020) and this trend will continue. In spite of the apparent promise, several challenges have to be
addressed, including the development of methods that respect physical constraints, generalize to
flow regimes that were not accounted for in the available data sets, and offer convergence, perfor-
mance, and robustness guarantees on par with model-based approaches to flow control.

6.5. Feedback Control

Feedback control offers a more viable approach than sensorless control for dealing with un-
certainties that impact the operation of engineering flows. The scale and complexity of the
problem introduce significant challenges for modeling, sensor and actuator placement, and
control design. These necessitate the development of model-based and data-driven techniques.
In wall-bounded flows at low Reynolds numbers, model-based feedback control has shown
significant promise (Joshi et al. 1997; Bewley & Liu 1998; Hogberg et al. 2003a,b; Kim & Bewley
2007). Since sensing and actuation are typically restricted to the surface, the flow field needs to
be estimated using limited noisy measurements in order to form a control action. Heepffner et al.
(2005) and Chevalier et al. (2006) demonstrated the importance of statistics of disturbances in
the design of estimation gains. Alternatively, the data-refined model, given by Equation 10, which
matches statistics of turbulent flows, can be readily embedded into a Kalman filter estimation
framework. Alongside estimation, challenges associated with the optimal sensor and actuator
placement (Chen & Rowley 2011, Dhingra et al. 2014, Zare et al. 2020b), efficient computation
of optimal and robust controllers (Bewley et al. 2016), structured and distributed control syn-
thesis (Lin et al. 2013), and convergence and sample complexity of data-driven reinforcement
learning strategies (Mohammadi et al. 2019) have to be addressed to enable successful feedback
control at high Reynolds numbers.

1. The following quote is attributed to Eric Eady: “It is not the process of linearization
that limits insight. It is the nature of the state that we choose to linearize about” (Boyd
2001, p. 127). In addition, this review demonstrates that the tools that we use to study the
linearized equations are as important as the base flow that we choose to linearize about.

2. Componentwise input—output analysis goes beyond and enhances standard resolvent
analysis. In channel flows of Newtonian fluids, it uncovers mechanisms for subcritical
transition and identifies streamwise streaks, oblique waves, and Orr—Sommerfeld modes
as input-output resonances from forcing to velocity components.

3. Input-output analysis discovers a viscoelastic analog of the familiar inertial lift-up mech-
anism. This mechanism arises from stretching of polymer stress fluctuations by a base
shear and, even in the absence of inertia, induces significant amplification that can trigger
transition to elastic turbulence in rectilinear flows.

4. Input-output analysis quantifies the impact of forcing and energy content of veloc-
ity components. It reveals the influence of dimensionless groups (e.g., Reynolds and
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Weissenberg numbers) on amplification of deterministic and stochastic disturbances and
identifies relevant spatiotemporal scales as well as the dominant flow structures.

. The input-output viewpoint provides a model-based approach to vibrational flow con-

trol, where zero-mean oscillations introduce a sensorless feedback to the original dy-
namics. Effective strategies for controlling the onset of turbulence and turbulence sup-
pression have been designed by examining the dynamics of fluctuations around the base
flow induced by spatiotemporal oscillations.

. Linearized Navier-Stokes equations with stochastic forcing qualitatively predict struc-

tural features of turbulent shear flows and provide sufficient flexibility to account for
two-point correlations of fully developed turbulence via low-complexity models.

. The input-output framework provides a data-driven refinement of a physics-based

model, guarantees statistical consistency, and captures complex dynamics of turbulent
flows in a way that is tractable for analysis, optimization, and control design.

. Tools and ideas from control theory and convex optimization overcome shortcomings

of physics-agnostic machine learning algorithms and enable the development of theory
and techniques for physics-aware data-driven turbulence modeling.

. Complex fluids and complex flows: Among other emerging applications, input-output

analysis is expected to clarify the importance of different physical mechanisms in the
presence of surface roughness and free-stream disturbances and to quantify the impact
of modeling uncertainties that arise from chemical reactions and gas surface interactions
in hypersonic flows (Candler 2019).

. Computational complexity: For an evolution model with # degrees of freedom, the tools

presented in this review require O(#*) computations. Such computations are routine for
canonical flows, but the large-scale nature of spatially discretized models in complex
geometries induces significant computational overhead.

. Nonlinear interactions: Precise characterization of the interplay between high flow sen-

sitivity and nonlinearity in order to capture later stages of disturbance development,
identify possible routes for transition, and design effective control strategies for the non-
linear Navier—Stokes equations remains a grand challenge.

. Data-driven techniques: In spite of the apparent promise of machine and reinforcement

learning, several challenges have to be addressed, including the development of methods
that respect physical constraints, generalize to flow regimes that are not accounted for
in the available data, and offer convergence, performance, and robustness guarantees on
par with model-based approaches to flow control.

. Feedback control: A host of challenges, including estimation using noisy measurements,

optimal sensor and actuator placement, efficient computation of optimal and robust con-
trollers, structured and distributed control synthesis, and convergence and sample com-
plexity of data-driven reinforcement learning strategies, have to be addressed to enable
a successful feedback control at high Reynolds numbers.
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