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a b s t r a c t

Nonmodal amplification of stochastic disturbances in elasticity-dominated channel flows of Oldroyd-B
fluids is analyzed in this work. For streamwise-constant flows with high elasticity numbers l and finite
Weissenberg numbers We, we show that the linearized dynamics can be decomposed into slow and fast
subsystems, and establish analytically that the steady-state variances of velocity and polymer stress fluc-
tuations scale as OðWe2Þ and OðWe4Þ, respectively. This demonstrates that large velocity variance can be
sustained even in weakly inertial stochastically driven channel flows of viscoelastic fluids. We further
show that the wall-normal and spanwise forces have the strongest impact on the flow fluctuations,
and that the influence of these forces is largest on fluctuations in the streamwise velocity and the stream-
wise component of the polymer stress tensor. The underlying physical mechanism involves polymer
stretching that introduces a lift-up of flow fluctuations similar to vortex tilting in inertia-dominated
flows. The validity of our analytical results is confirmed in stochastic simulations. The phenomenon
examined here provides a possible route for the early stages of a bypass transition to elastic turbulence
and might be exploited to enhance mixing in microfluidic devices.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background

The classical approach to transition to turbulence examines the
linearized equations for exponentially growing normal modes. The
existence of these unstable modes implies exponential growth of
infinitesimal perturbations to the laminar flow, and the corre-
sponding eigenfunctions identify flow patterns that are expected
to dominate early stages of transition. This approach agrees with
experiments in many flows (e.g., those driven by thermal and cen-
trifugal forces [1]) but it comes up short in matching experimental
observations in wall-bounded shear flows (flows in channels,
pipes, and boundary layers). The failure of hydrodynamic stability
analysis in describing the early stages of transition is attributed in
part to the nonnormal nature of the linearized equations, which
may manifest itself by transient growth of perturbations [2,3], pro-
trusion of pseudospectra to the unstable regions [1,4], and large
receptivity to ambient disturbances [5–7]. Even in stable regimes
– owing to nonnormality – perturbations that grow transiently

before decaying due to viscosity can be configured, irregularities
in laboratory design can lead to instability, and disturbances (such
as free-stream turbulence or surface imperfections) can be ampli-
fied by orders of magnitude. These conclusions can be reached by
performing transient growth, pseudospectra, or variance amplifica-
tion analyses [8–10]. All of these methods demonstrate the impor-
tance of streamwise-elongated flow patterns of high and low
streamwise velocity (streaks) in transitional wall-bounded shear
flows of Newtonian fluids; this is at odds with modal stability re-
sults, but in agreement with experiments [11] and direct numerical
simulations [12] conducted in noisy environments. We note that in
order to understand the later stages of transition, consideration of
nonlinear interactions between streamwise-varying fluctuations
and the streaks is required [13–15].

Transition to turbulence in viscoelastic fluids is important from
both fundamental and technological perspectives [16]. The obser-
vation that transition can occur even when the effects of fluid elas-
ticity dominate those of inertia – which is a primary cause of
transition in Newtonian fluids – is particularly intriguing [17–
22]. Improved understanding of transition mechanisms in visco-
elastic fluids has broad applications, ranging from deeper insight
into order-disorder transitions in spatially extended nonlinear
dynamical systems to enhanced mixing in microfluidic devices
through the addition of polymers [19,23]. The phenomenon of
‘elastic turbulence’ occurs in the absence of inertial effects [17],
and it has been observed experimentally in shear flows with
curved streamlines [17–19,24–26]. The transition in curvilinear
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flows is triggered by a purely elastic instability that originates from
the interactions between polymer stress fluctuations and the
velocity gradients in the base flow [16,27,28]. Currently, it is not
known whether fluid elasticity can promote transition in parallel
shear flows with negligible inertial forces.

In spite of the linear stability of weakly inertial parallel shear
flows of viscoelastic fluids, small fluctuations around the laminar
base state can achieve significant transient growth. Early efforts
used simulations of two-dimensional (2D) channel flows to probe
their transient responses in both linear and nonlinear regimes
[29,30]. A new family of linearly stable transiently growing 2D
stress modes was identified for the Oldroyd-B constitutive model
[31]; these modes were obtained in Couette flow by setting the
velocity and pressure fluctuations to zero and they do not couple
back to the momentum equation. More recently, a similar result
was shown for the three-dimensional (3D) upper convected Max-
well model (a special case of the Oldroyd-B model) with linear
base velocity [32]. In [33], an exact solution to the Oldroyd-B mod-
el was constructed which displays non-monotonic transient re-
sponses in strongly elastic 2D Couette flow with arbitrarily low,
but non-zero, inertia. Even in channel flows without inertia, the
streamwise-independent velocity and stress fluctuations can exhi-
bit transient growth that scales unfavorably with elasticity [34].
Several explicit scaling relationships were established, and compu-
tations were used to identify the spatial structure of the initial
conditions (in the polymer stress components) that grow the most
with time.

Amplification of stochastic disturbances in channel flows of vis-
coelastic fluids was recently examined using linear systems theory
[35]. For the Oldroyd-B model, computations reported in [35] dem-
onstrated that streamwise-constant velocity fluctuations can expe-
rience considerable amplification even in the weakly inertial/
strongly elastic regime. As in Newtonian fluids, this amplification
is fundamentally nonmodal in nature: it cannot be described using
the normal mode decomposition of classical hydrodynamic stabil-
ity analysis [8–10]. Rather, it arises from an energy exchange
involving the fluctuations in the streamwise/wall-normal polymer
stress and the wall-normal gradient of the streamwise velocity
[36].

Despite this recent progress, analytical results that describe
amplification of stochastic disturbances in strongly elastic channel
flows of viscoelastic fluids are lacking. Such results are important
because of the physical insight they yield, and as a means to vali-
date numerical simulations. The purpose of the present work is to
address this issue.

1.2. Preview of key results

The key parameters that characterize channel flows of visco-
elastic fluids are: the viscosity ratio, b ¼ gs=ðgs þ gpÞ, where gs

and gp are the solvent and polymer viscosities; the Weissenberg
number, We ¼ kUo=L, which represents the product of the polymer
relaxation time k and the typical velocity gradient Uo=L; and the
elasticity number, l ¼We=Re, which quantifies the ratio of the
polymer relaxation time k to the viscous diffusion time
qL2=ðgs þ gpÞ. Here, Re ¼ qUoL=ðgs þ gpÞ is the Reynolds number,
which represents the ratio of inertial to viscous forces, Uo is the
largest base velocity, L is the channel half-height, and q is the
fluid density. By modeling ambient disturbances to streamwise-
constant channel flows of Oldroyd-B fluids (with spanwise
wavenumber kz) as an additive white Gaussian forcing with zero
mean and unit variance, we develop an explicit scaling of the
variance (or energy) amplification of velocity fluctuations with
the Weissenberg number We,

Evðkz; We;b;lÞ ¼ f ðkz; b;lÞ þWe2 gðkz; b;lÞ: ð1Þ

Here, f and g denote We-independent functions where g accounts
for the amplification from wall-normal and spanwise forces to the
fluctuations in streamwise velocity, while f accounts for the ampli-
fication from all other forcing to all other velocity components. It is
worth noting that Ev quantifies the ensemble-average energy den-
sity (associated with the velocity field) of the statistical steady-state
[5], and it is determined by integrating the power spectral density
over all temporal frequencies [37].

Furthermore, considering flows with l� 1, we apply singular
perturbation techniques to establish that the steady-state velocity
variance scales as

Evðkz; We;b;lÞ ¼ l~f 0ðkzÞ=bþ ~f 1ðkzÞ ð1� bÞ=b2

þWe2 ~g0ðkzÞ ð1� bÞ2=bþOð1=lÞ:

Our analysis demonstrates that, in flows with high elasticity num-
bers, the linear l-scaling of the function f in (1) arises from the cor-
responding power spectral density becoming almost uniformly
distributed over the temporal frequency band whose width is pro-
portional to l. We also show that, from a physical point of view,
no important viscoelastic effects take place in the contribution of
the function ~f 0 to the variance amplification.

The last expression should be compared to the expression for
the variance amplification in Newtonian fluids [6],

ENðkz; ReÞ ¼ fNðkzÞ þ Re2 gNðkzÞ: ð2Þ

At low Re the kz-dependence of EN is governed by fNðkzÞ; EN

ðkz; ReÞ � fNðkzÞ, and at high Re it is governed by gNðkzÞ; ENðkzÞ �
Re2 gNðkzÞ. In this paper, we show that ~f 0ðkzÞ ¼ fNðkzÞ which implies
that the kz-dependence of ~f 0 is characterized by viscous dissipation
[6]. This clearly indicates that, at the level of velocity-fluctuation
dynamics, the behavior of Newtonian fluids with low Re and
the behavior of Oldroyd-B fluids with low We is dominated by
diffusion. On the other hand, the g-functions in the expressions
for Ev and EN exhibit peaks at kz ¼ Oð1Þ; the values of kz where
these peaks take place identify the spanwise length scales of
the most energetic response of velocity fluctuations to stochastic
forcing in Newtonian fluids with high Re, and in Oldroyd-B fluids
with high We.

We note that gNðkzÞ and ~g0ðkzÞ arise from fundamentally differ-
ent physical mechanisms: in inertia-dominated flows of Newto-
nian fluids, vortex tilting is the main driving force for
amplification; in elasticity-dominated flows of viscoelastic fluids,
it is polymer stretching, which gives rise to an energy transfer from
the base flow to fluctuations. In streamwise-constant channel
flows of Newtonian fluids, the linearized dynamics of the wall-nor-
mal vorticity, g, are governed by [2]

@tg ¼ �ReU0ðyÞ@zv þ Dg; ð3Þ
where v denotes the wall-normal velocity fluctuations, D is a Lapla-
cian, and �U0ðyÞ is the base flow vorticity (in the spanwise direction
z). The first term on the right-hand side of (3) represents the linear-
ized vortex-tilting term which acts as a source in the vorticity equa-
tion. From a physical point of view, the spanwise vorticity of the
base flow, i.e. �U0ðyÞ, gets tilted in the wall-normal direction y by
the spanwise changes in v which leads to the amplification of the
wall-normal vorticity (and thereby streamwise velocity, g ¼ @zu)
[2]. In this paper, we show that the linearized wall-normal vorticity
equation in inertialess streamwise-constant flows of Oldroyd-B flu-
ids assumes the following form

@tDg ¼ �We 1=b� 1ð Þ U0ðyÞD@z þ 2U00ðyÞ@yz
� �

#� 1=bð ÞDg ð4aÞ
¼ �We 1=b� 1ð Þ @yz U0ðyÞs22

� �
þ @zz U0ðyÞs23

� �� �
� 1=bð ÞDg;

ð4bÞ

where # in (4a) is obtained by filtering high temporal frequencies in
the wall-normal velocity v; see Section 4.1 for details. The terms

756 M.R. Jovanović, S. Kumar / Journal of Non-Newtonian Fluid Mechanics 166 (2011) 755–778



Author's personal copy

U0ðyÞs22 and U0ðyÞs23 in (4b) represent stretching of the correspond-
ing stress fluctuations by a background shear; gradients of these
quantities provide a source in the vorticity equation even in the ab-
sence of inertia. Thus, base-shear stretching of stress fluctuations
along with their spanwise variations gives rise to the amplification
of g (and consequently u) in inertialess flows of viscoelastic fluids.
As in streamwise-constant inertial flows of Newtonian fluids, this
amplification disappears either in the absence of spanwise varia-
tions in flow fluctuations, i.e. @zð�Þ ¼ 0, or in the absence of the back-
ground shear, i.e. U0 ¼ 0.

Additional insight into the above mechanism can be gained by
considering the momentum conservation equation in planes per-
pendicular to the direction of the base flow. For streamwise-inde-
pendent inertialess flows, there is a static-in-time relationship
between the ðy; zÞ-gradients in s22; s23, and s33 and the wall-normal
ðvÞ and spanwise ðwÞ velocity fluctuations

0 ¼ �@y pþ ð1� bÞ @ys22 þ @zs23
� �

þ bDv þ d2;

0 ¼ �@z pþ ð1� bÞ @ys23 þ @zs33
� �

þ bDwþ d3:

Spatial variations in v and w induced by these stress gradients result
in streamwise vorticity fluctuations (i.e., the streamwise ‘rolls’);
these redistribute momentum in the ðy; zÞ-plane and promote
amplification of streamwise velocity fluctuations. As in the Newto-
nian case, this momentum exchange involves lifting of the low
speed fluid away from the wall and movement of the high speed
fluid toward the wall, and it is responsible for creation of low and
high speed streaks that alternate in the spanwise direction. From
a microscopic point of view, the end-to-end vectors of the elastic
dumbbells that underlie the Oldroyd-B model are oriented in the
streamwise direction in the base flow (the only non-zero diagonal
element of the base polymer stress tensor is the streamwise compo-
nent) [38,39]. Stochastic forcing ðd2; d3Þ perturbs the end-to-end
vector and generates fluctuations in s22; s23, and s33 (which are zero
in the base flow). These fluctuations then lead to energy amplifica-
tion through the mechanism described above; see Fig. 1 for
additional illustration.

Our second key result is an explicit formula for the steady-state
variance maintained in the components of the polymer stress ten-
sor by streamwise-constant stochastic forcing

Esðkz; We; b;lÞ ¼ aðkz; b;lÞ þWe2 bðkz; b;lÞ þWe4 cðkz; b;lÞ:

Here, a; b, and c represent We-independent functions which in flows
with high l also become elasticity-number-independent,

Esðkz; We; b;lÞ ¼ a0ðkz; bÞ þWe2 b0ðkz; bÞ þWe4 c0ðkz; bÞ þ Oð1=lÞ:

We note that the c-function, which primarily originates from the
polymer stretching, quantifies the amplification from the wall-
normal and spanwise forces to the fluctuations in the streamwise
component of the polymer stress tensor, s11. Therefore, in high-We
regimes the wall-normal and spanwise disturbances have the stron-
gest influence, and the impact of these forces is largest on the
streamwise velocity and polymer stress fluctuations. Furthermore,
we demonstrate that, in flows with high elasticity numbers, the
analysis of inertialess (or creeping) flows of Oldroyd-B fluids cor-
rectly predicts all important properties of the functions a; b; c, and
g. On the other hand, the inertialess model provides a poor approx-
imation at high temporal frequencies of the power spectral densi-
ties responsible for the generation of the function f in (1). In fact,
we show that the problem of determining this function in inertia-
less flows becomes ill-posed. This ill-posedness arises from the ab-
sence of the inertial terms in the momentum equation and it cannot
be alleviated by the addition of diffusion to the constitutive
equations.

The above analytical results are obtained as a consequence of
our discovery that the linearized dynamics can be decomposed
into slow and fast subsystems. This observation is used to cast
the equations into a standard singularly perturbed form for which
existing methodology [40] can be applied. The decomposition of
the linearized dynamics at high l is not obvious a priori, and it
takes advantage of the intrinsic time scale ðkÞ in the Oldroyd-B
constitutive equation. In addition, it facilitates derivation of the
explicit analytical expressions for the steady-state variances of

Fig. 1. (a) The steady-state configuration of an elastic dumbbell is perturbed out of the ðx; yÞ-plane by stochastic forcing. (b) A projection of a perturbed dumbbell in the ðy; zÞ-
plane. Dumbbell stretching in the wall-normal and spanwise directions creates fluctuations in polymer stress components s22 ; s23, and s33. (c) Streamwise vortices, generated
by the gradients in s22; s23, and s33, induce streamwise streaks through the lift-up mechanism. A spanwise momentum exchange is enabled by displacement of fluid particles
in the wall-normal direction.
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velocity and polymer stress fluctuations given above. Our success
with uncovering the hitherto unknown dependence of the energy
amplification on the Weissenberg and elasticity numbers points
to the scaling and modeling steps as prerequisites for applying
standard singular perturbation techniques.

The organization of the rest of the paper is laid out next. In Sec-
tion 2, we describe the streamwise-constant linearized model with
forcing. In Section 3, we provide explicit scaling of the frequency
responses from different forcing to different velocity and stress
components with the Weissenberg number. In Section 4, we pro-
vide analytical expressions for the variance amplification and dis-
cuss physical mechanisms leading to amplification from forcing
to flow fluctuation components. We also determine the spanwise
length scales of flow structures that contribute most to the stea-
dy-state variance and show that the most energetic velocity fluctu-
ations assume the form of high and low speed streaks. In Section 5,
we use stochastic simulations of the linearized dynamics to verify
our analytical developments. The major contributions are summa-
rized in Section 6 and the mathematical developments are rele-
gated to the appendices. These developments make heavy use of
singular perturbation techniques for stochastically forced linear
systems and they provide important physical insight about the
dynamics of strongly elastic fluids through transformation of the
linearized equations into slow and fast subsystems.

2. The streamwise-constant linearized model with forcing

We consider incompressible channel flows of Oldroyd-B fluids
with � ¼ 1=l� 1; see Fig. 2 for geometry. The equations governing
the dynamics (up to first order) of velocity ðv ¼ u v w½ �TÞ, pressure
ðpÞ, and polymer stress tensor ðsÞ fluctuations around base flow
ðv; sÞ are brought to a non-dimensional form by scaling time with
k, length with L, velocity with Uo, polymer stresses with gpUo=L,
pressure with ðgs þ gpÞUo=L, and forcing per unit mass with
ðgs þ gpÞUo=qL2

� _v ¼ ��We $vv þ $v vð Þ � $pþ ð1� bÞ$ � sþ b$2v þ d;
0 ¼ $ � v;
_s ¼ $v þ $vð ÞT � sþWe s � $v þ s � $v þ ðs � $vÞT

�
þðs � $vÞT � $vs� $v s

�
:

ð5Þ

Here, a dot signifies a partial derivative with respect to time t;$ is
the gradient, $v ¼ v � $, and u;v , and w are the velocity fluctuations
in the streamwise ðxÞ, wall-normal ðyÞ, and spanwise ðzÞ directions,
respectively. The linearized momentum equation is driven by the
body force fluctuation vector d, which is purely harmonic in the
horizontal directions, and stochastic in the wall-normal direction
and in time,

dðx; y; z; tÞ ¼ R dðkx; y; kz; tÞeiðkxxþkzzÞ� �
;

where the same notation is used to represent the field dðx; y; z; tÞ
and its Fourier transform in the horizontal directions dðkx; y; kz; tÞ;
the difference between the two should be clear from the context.

This spatio-temporal forcing will in turn yield velocity and polymer
stress fluctuations of the same nature. We assume that dðkx; y; kz; tÞ
is a temporally stationary white Gaussian process with zero mean
and unit variance; see [5–7] for additional details.

We study the linearized model for streamwise-constant three-
dimensional fluctuations, which means that the dynamics evolve
in the ðy; zÞ-plane, but fluctuations in all three spatial directions
are considered. This model is analyzed since the largest velocity
variance in stochastically forced channel flows of viscoelastic fluids
is maintained by streamwise-constant fluctuations [35]. The line-
arized equations can be brought to an evolution form by removing
pressure from the equations and by expressing v in terms of the
streamwise velocity and the ðy; zÞ-plane streamfunction fluctua-
tions, fu ¼ u;v ¼ @zw;w ¼ �@ywg. By denoting

/1 ¼ w; /3 ¼ u;

and by rearranging the polymer stress tensor components into

/2 ¼ s22 s23 s33½ �T ; /4 ¼ s12 s13½ �T ; /5 ¼ s11;

system (5) with fluctuations that are constant in the streamwise
direction ð@xð�Þ � 0Þ and purely harmonic in the spanwise direction
can be converted to

� _/1 ¼ bS11 /1 þ ð1 � bÞS12 /2 þ F2 d2 þ F3 d3; ð6aÞ
_/2 ¼ �/2 þ S21 /1; ð6bÞ
� _/3 ¼ bS33 /3 þ �WeS31 /1 þ ð1 � bÞS34 /4 þ F1 d1; ð6cÞ
_/4 ¼ �/4 þWe S41 /1 þ S42 /2ð Þ þ S43 /3; ð6dÞ
_/5 ¼ �/5 þWe2 S51 /1 þWe S53 /3 þ S54 /4ð Þ; ð6eÞ

u

v
w

264
375 ¼ 0 Gu

Gv 0
Gw 0

264
375 /1

/3

� �
: ð6fÞ

Eqs. (6a)–(6e) represent a system of partial differential equa-
tions (PDEs) in the wall-normal direction and in time driven by
the body forcing, dðy; kz; tÞ ¼ d1ðy; kz; tÞ d2ðy; kz; tÞ d3ðy; kz; tÞ½ �T ,
and parameterized by the spanwise wavenumber, kz, the Weiss-
enberg number, We, the elasticity number, 1=�, and the viscosity
ratio, b. The operators Fj and Gr are given by

F1 ¼ I; F2 ¼ ikzD
�1; F3 ¼ �D�1@y;

Gu ¼ I; Gv ¼ ikz; Gw ¼ �@y;

and they, respectively, determine the way the forcing enters into
the evolution model, and the way the velocity fluctuations depend
on /1 and /3. On the other hand, the S-operators determine internal
properties of the streamwise-constant evolution model (e.g., modal
stability)

S11 ¼ D�1D2; S33 ¼ D; S31 ¼ �ikzU0ðyÞ;

S12 ¼ D�1 ikz@y � @yy þ k2
z

� �
�ikz@y

h i
; S34 ¼ @y ikz

� 	
;

S21 ¼ 2ikz@y � @yy þ k2
z

� �
�2ikz@y

h iT
; S43 ¼ ST

34;

S41 ¼
ikz U0ðyÞ@y � U00ðyÞ
� �
�U0ðyÞ@yy

" #
; S42 ¼

U0ðyÞ 0 0
0 U0ðyÞ 0

� �
;

S51 ¼ �4ikzU0ðyÞU00ðyÞ; S53 ¼ 2U0ðyÞ@y; S54 ¼ 2U0ðyÞ 0
� 	

:

Here, I is the identity operator, D ¼ @yy � k2
z is a Laplacian with

homogeneous Dirichlet boundary conditions, D�1 is the inverse of
the Laplacian, D2 ¼ @yyyy � 2k2

z@yy þ k4
z with homogeneous Cauchy

(both Dirichlet and Neumann) boundary conditions, i ¼
ffiffiffiffiffiffiffi
�1
p

;

Fig. 2. Schematic of channel flow. In this paper, we study the linearized model for
streamwise-constant three-dimensional fluctuations, which means that the
dynamics evolve in the ðy; zÞ-plane, but fluctuations in all three spatial directions
are considered.
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UðyÞ ¼ y in Couette flow, UðyÞ ¼ 1� y2 in Poiseuille flow, and
U0ðyÞ ¼ dUðyÞ=dy. We note that operators S11 and S33, respectively,
stand for the Orr-Sommerfeld and Squire operators in the stream-
wise-constant model of Newtonian fluids with Re ¼ 1 [9], and that
S31 denotes the vortex-tilting term [2]. A comparison of the evolu-
tion model (6) and the linearized momentum, continuity, and con-
stitutive equation (5) reveals that, from a physical point of view, S12

and S34 account for gradients of polymer stress fluctuations (i.e.,
r � s), S21 and S43 produce gradients of velocity fluctuations (i.e.,
rv), S41 captures both transport and stretching of base polymer
stress by velocity fluctuations (i.e., v � rs and s � rv), and S42 and
S54 represent stretching of polymer stress fluctuations by base shear
(i.e., s � rv). Furthermore, operators S51 and S53 in (6e) quantify
transport and stretching of base polymer stress by velocity fluctua-
tions (i.e., v � rs and s � rv), respectively.

3. Dependence of frequency responses on the Weissenberg
number

In this section, we examine the Weissenberg-number depen-
dence of the frequency responses from different forcing to different
velocity and polymer stress components. Application of the tempo-
ral Fourier transform to (6) enables us to determine the elements
of the frequency response operator, H, that relates v to d;v ¼ Hd.
We also determine the elements of the frequency response
operator associated with the stress components. We show that
the frequency responses from wall-normal and spanwise forces
to the fluctuations in streamwise velocity, u, and the streamwise
component of the polymer stress tensor, s11, scale linearly and
quadratically with We, respectively. Furthermore, these two forces
introduce a linear dependence of s12 and s13 on We, and the
presence of the streamwise forcing introduces a similar effect on
s11. On the other hand, the responses from all other forces to all
other velocity and stress components are We-independent.

Although the analysis of the frequency responses of velocity
fluctuations in Section 3.1 is similar to that of [36], it is revisited
here because of the different scalings employed; to the best of
our knowledge, the analysis of the frequency responses of polymer
stress fluctuations in Section 3.2 has not been done before. The sca-
lings used in this work are well-suited for uncovering the condi-
tions under which strong elasticity amplifies disturbances, and
the resulting expressions for variance amplification will be ana-
lyzed in detail in Section 4.

3.1. Frequency responses of velocity fluctuations

As shown in Appendix A.1, application of the temporal Fourier
transform to (6) allows for elimination of the polymer stresses
from the evolution model, which can be used to clarify the We-
dependence of the frequency responses from forcing to velocity
components. The block diagram in Fig. 3 provides a systems-level

view of the velocity fluctuation dynamics in the streamwise-
constant linearized model. The boxes represent different parts of
the system and the circles denote summation of signals. Inputs into
each box/circle are represented by lines with arrows directed to-
ward the box/circle, and outputs of each box/circle are represented
by lines with arrows leading away from the box/circle. The inputs
specify the signals affecting subsystems, and the outputs designate
the signals of interest or signals affecting other parts of the system
[41].

All signals in Fig. 3 are functions of the wall-normal coordinate
y, the spanwise wavenumber kz, and the temporal frequency x, e.g.
u ¼ uðy; kz;xÞ, with the following boundary conditions on w and
u; fwð	1; kz;xÞ ¼ @ywð	1; kz;xÞ ¼ uð	1; kz;xÞ ¼ 0g. The capital
letters in Fig. 3 denote the Weissenberg-number-independent
operators. These operators act in the wall-normal direction and
some of them are parameterized by kz (Gr and Fj with
fr ¼ u;v ;w; j ¼ 1;2;3g), while the others depend on kz;x; b, and
� (Kos;Ksq, and Cp). As discussed in Section 2, the operators Fj and
Gr , respectively, describe the way the forcing enters into the
evolution model, and the way the velocity fluctuations depend
on the streamfunction and the streamwise velocity. The operator
Cp captures the coupling from the equation governing the
dynamics of w to the equation governing the dynamics of u, and
it is defined as

Cp ¼ �Cp1 þ
1� b

ð1þ ixÞ2
Cp2;

where Cp1 ¼ �ikzU0ðyÞ denotes the vortex-tilting term [2], and

Cp2 ¼ ikz
eCp2; eCp2 ¼ U0ðyÞDþ 2U00ðyÞ@y; ð7Þ

denotes the term arising from polymer stretching (see Section 4 and
Appendix A.1). Finally, Kos and Ksq govern the internal dynamics of
w and u, respectively. These two operators describe how the Orr-
Sommerfeld and Squire operators (respectively, Sos ¼ D�1D2 and
Ssq ¼ D) in the streamwise-constant model of Newtonian fluids
with Re ¼ 1 are modified by elasticity,

Kk ¼ �ðixÞ2I� ðbSk � �IÞix� Sk

� ��1
; k ¼ fos;sqg:

In the frequency domain, the forcing and velocity components are
related by

rðy;kz;x;We;b;�Þ¼
X3

j¼1

Hrjðkz;x;We;b;�Þdjð�;kz;xÞ
� 	

ðyÞ;r¼fu;v;wg;

where Hrj denotes the frequency response from dj to r. Each Hrj rep-
resents an operator in y parameterized by spatial and temporal fre-
quencies ðkz;xÞ and key parameters associated with the
constitutive equation ðWe;b; �Þ. The power spectral density main-
tained in r by forcing evolution model (6) with white, unit variance,
stationary stochastic process dj is determined by [37]

Fig. 3. Block diagram of the velocity dynamics in the streamwise-constant linearized model. The capital letters denote the We-independent operators, and x denotes the
temporal frequency. The operators Fj and Gr describe the way the forcing enters in the evolution model (6), and the way the velocity fluctuations depend on w and u; Kos and
Ksq govern the internal dynamics of w and u; and Cp captures the coupling from w to u which accounts for both vortex tilting and polymer stretching. From this block diagram
it follows that (i) d2 and d3 induce a linear scaling of u with We; and (ii) the responses from all other forces to all other velocity components are We-independent.
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Prjðkz;x; We;b; �Þ ¼ trace Hrjðkz;x; We; b; �ÞH
rjðkz;x; We;b; �Þ
� �

;

where H
rj is the adjoint of the operator Hrj. From a physical point of
view, function Prjðkz;xÞ quantifies how the energy of the velocity
component r arising from the forcing component dj is distributed
over spanwise wavenumber kz and temporal frequency x. Further-
more, for a fixed value of kz, the variance (energy) sustained in r by
dj is given by [5]

Erjðkz; We; b; �Þ ¼ 1
2p

Z 1

�1
Prjðkz;x; We;b; �Þdx:

From the analysis presented in Appendix A.1 (or, equivalently,
from the block diagram in Fig. 3), it follows that the Hrj are deter-
mined by

Hu1ðkz;x; We; b; �Þ ¼ Hu1ðkz;x; b; �Þ;
Hujðkz;x; We;b; �Þ ¼WeHujðkz;x; b; �Þ; j ¼ 2;3;

Hrjðkz;x; We;b; �Þ ¼ Hrjðkz;x; b; �Þ; r ¼ v ;w; j ¼ 2;3;
Hr1ðkz;x; We;b; �Þ ¼ 0; r ¼ v ;w;

ð8Þ

where the Hrj represent the We-independent operators,

Hu1 ¼ ð1þ ixÞGuKsqF1 ¼ ð1þ ixÞKsq;

Hrj ¼ ð1þ ixÞGrKosFj; r ¼ v;w; j ¼ 2;3;

Huj ¼ GuKsq �ð1þ ixÞ2Cp1 þ ð1� bÞCp2

� �
KosFj; j ¼ 2;3:

Using the definitions of Prj and the above expressions for Hrj, we
obtain the following We-scaling of the power spectral densities
maintained in r by stochastically forcing the linearized model with
dj

Pu1ðkz;x; We;b; �Þ Pu2ðkz;x; We; b; �Þ Pu3ðkz;x; We; b; �Þ
Pv1ðkz;x; We; b; �Þ Pv2ðkz;x; We;b; �Þ Pv3ðkz;x; We;b; �Þ
Pw1ðkz;x; We;b; �Þ Pw2ðkz;x; We; b; �Þ Pw3ðkz;x; We;b; �Þ

24 35
¼

Pu1ðkz;x; b; �Þ Pu2ðkz;x; b; �ÞWe2 Pu3ðkz;x; b; �ÞWe2

0 Pv2ðkz;x; b; �Þ Pv3ðkz;x; b; �Þ
0 Pw2ðkz;x; b; �Þ Pw3ðkz;x; b; �Þ

24 35;
ð9Þ

where Prj are the power spectral densities of the We-independent
operators Hrjðkz;x; b; �Þ. Moreover, the square-additive property of
the power spectral density can be used to determine the aggregate
effect of forces in all three spatial directions, d, on all three velocity
components, v,

Pðkz;x; We; b; �Þ ¼ Pf ðkz;x; b; �Þ þPgðkz;x; b; �ÞWe2: ð10Þ

Here, Pðkz;x; We; b; �Þ denotes the power spectral density of the
frequency response operator Hðkz;x; We;b; �Þ;v ¼ Hd, with

Pf ¼ Pu1 þ
X3

j¼2

Pvj þPwj
� �

; Pg ¼ Pu2 þPu3:

Similarly, the variance maintained in v by d is determined by

Evðkz; We;b; �Þ ¼ f ðkz; b; �Þ þ gðkz; b; �ÞWe2; ðEvÞ

where f ¼ fu1 þ
P3

j¼2 fvj þ fwj
� �

; g ¼ gu2 þ gu3, and, for example,

gu2ðkz; b; �Þ ¼
1

2p

Z 1

�1
Pu2ðkz;x; b; �Þdx:

Therefore, as can be seen from (9), variance amplification from wall-
normal and spanwise forces to streamwise velocity is proportional
to We2, while variance amplification for all other components of
the frequency response operator H;v ¼ Hd, is Weissenberg-number
independent.

3.2. Frequency responses of polymer stress fluctuations

We next examine frequency responses of polymer stress fluctua-
tions. From the analysis presented in Appendix A.2, it follows that
their dynamics can be equivalently represented via the block dia-
gram in Fig. 4. This representation is convenient for uncovering the
We-dependence of the frequency responses from the forcing compo-
nents d1; d2, and d3 to the stress components /2 ¼ s22 s23 s33½ �T ;
/4 ¼ s12 s13½ �T ; and /5 ¼ s11. In what follows, the frequency re-
sponse from dj to /i will be denoted by C/i ;j

/iðy; kz;x; We;b; �Þ ¼
X3

j¼ 1

C/i ;jðkz;x; We;b; �Þdjð�; kz;xÞ
� 	

ðyÞ;

i ¼ f2;4;5g:

We will also pay attention to the responses from individual forcing
to individual polymer stress components. For example, C12;3 will de-
note the frequency response from d3 to s12, and R12;3 will denote the
power spectral density of C12;3,

R12;3ðkz;x;We;b;�Þ ¼ trace C12;3ðkz;x;We;b;�ÞC
12;3ðkz;x;We;b;�Þ
� �

:

Similar notation will be used to quantify the influence of the other
components of d on the other components of s.

Since the capital letters in Fig. 4 denote the Weissenberg-num-
ber-independent operators, the We-dependence of responses from
dj to the polymer stress components can be inferred by following
the flow of information in this block diagram. In particular, we
see that the streamwise forcing does not influence the dynamics
of /2 ¼ s22 s23 s33½ �T ; on the other hand, this forcing creates a
We-independent response of /4 ¼ s12 s13½ �T ; and a response of
/5 ¼ s11 that scales linearly with We. Furthermore, d2 and d3

Fig. 4. Block diagram of the polymer stress dynamics in the streamwise-constant linearized model. The operators Fj;Kos;Ksq have the same meaning as in Fig. 3,
Cp ¼ ð1þ ixÞ2 Cp , and the S-operators describe the coupling between the different components in the evolution model (6). From this block diagram it follows that d1 induces
(i) zero response of /2; (ii) a We-independent response of /4; and (iii) a linear scaling of /5 with We. In addition, d2 and d3 induce (i) a We-independent response of /2; (ii) a
linear scaling of /4 with We; and (iii) a quadratic scaling of /5 with We.
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induce (i) a We-independent response of /2; (ii) a response of /4

that depends linearly on We; and (iii) a response of /5 that scales
quadratically with We. Therefore, in high-Weissenberg-number
flows, the wall-normal and spanwise forcing fluctuations have
the strongest influence, and the impact of these forces is most
powerful on the streamwise component of the polymer stress ten-
sor, s11. This follows from the observation that the frequency re-
sponses from both d2 and d3 to s11 scale quadratically with the
Weissenberg number; the frequency responses from all other in-
puts to other polymer stress components scale at most linearly
with We.

We note that almost all operators that are multiplied by the
Weissenberg number in Fig. 4 contain stretching of polymer stress
fluctuations by a background shear as an integral part. The only
exceptions are (i) the operators S51 and S53 which, respectively,
arise from transport and stretching of base polymer stress by
velocity fluctuations; (ii) the operator S41 which captures both of
these phenomena; and (iii) the operator Cp which, in addition to
polymer stretching, also accounts for vortex tilting. In Appendices
C.1.2 and C.2 we show that, in elasticity-dominated flows, vortex
tilting has negligible influence on both velocity and polymer stress
fluctuations.

The We-scaling of the power spectral densities of the operators
Cik;j that map dj to sik follows directly from the above discussion,
the definition of Rik;j, and the linearity of the trace operator

R22;1ðkz;x; We; b; �Þ R23;1ðkz;x; We;b; �Þ R33;1ðkz;x; We;b; �Þ
R12;1ðkz;x; We; b; �Þ R13;1ðkz;x; We;b; �Þ R11;1ðkz;x; We;b; �Þ

� �
¼ 0 0 0

R12;1ðkz;x; b; �Þ R13;1ðkz;x; b; �Þ R11;1ðkz;x; b; �ÞWe2

� �
;

R22;jðkz;x; We; b; �Þ R23;jðkz;x; We; b; �Þ R33;jðkz;x; We;b; �Þ
R12;jðkz;x; We; b; �Þ R13;jðkz;x; We; b; �Þ R11;jðkz;x; We;b; �Þ

� �
¼

R22;jðkz;x; b; �Þ R23;jðkz;x; b; �Þ R33;jðkz;x; b; �Þ
R12;jðkz;x; b; �ÞWe2 R13;jðkz;x; b; �ÞWe2 R11;jðkz;x; b; �ÞWe4

" #
;

j ¼ 2;3:

Here, Rik;j are the power spectral densities of the We-independent
operators Cik;jðkz;x; b; �Þ, and the aggregate effect of the forcing vec-
tor d to the six independent components of s can be obtained using
square additivity

Rðkz;x; We; b; �Þ ¼ Raðkz;x; b; �Þ þ Rbðkz;x; b; �ÞWe2

þ Rcðkz;x; b; �ÞWe4;

with

Ra ¼ R12;1 þ R13;1 þ
X3

j¼2

R22;j þ R23;j þ R33;j
� �

;

Rb ¼ R11;1 þ
X3

j¼2

R12;j þ R13;j
� �

;

Rc ¼ R11;2 þ R11;3:

Furthermore, the steady-state variance maintained in the indepen-
dent components of s by d is determined by

Esðkz; We;b; �Þ ¼ aðkz; b; �Þ þ bðkz; b; �ÞWe2 þ cðkz; b; �ÞWe4; ðEsÞ

where, for example,

aðkz; b; �Þ ¼
1

2p

Z 1

�1
Raðkz;x; b; �Þdx;

and similarly for bðkz; b; �Þ and cðkz; b; �Þ.
The principal results of this section, that the remainder of the

paper builds upon, are the scaling relationships (Ev) and (Es) which,

respectively, highlight the quadratic and quartic We-dependence
of the steady-state variance amplification associated with velocity
and polymer stress fluctuations. We note that (i) the block dia-
grams in Figs. 3 and 4 identify polymer stretching as the key phys-
ical ingredient underlying these scaling relationships; and (ii) the
scaling of the functions f and g in (Ev) and the functions a; b, and
c in (Es) with � in the high-elasticity-number limit is the topic of
Appendix C.

4. Main result: variance amplification in elasticity-dominated
flows

In this section, we present the main result of this paper which
reveals previously unknown structural similarities between veloc-
ity fluctuation dynamics in strongly elastic flows of viscoelastic flu-
ids and strongly inertial flows of Newtonian fluids. We also provide
analytical expressions for the variance amplification and discuss
physical mechanisms leading to amplification from the forcing to
velocity and polymer stress components. The most important
mechanism involves the stretching of the polymer stress fluctua-
tions by a background shear, and it introduces the lift-up of flow
fluctuations in a similar manner as vortex tilting does in inertia-
dominated flows of Newtonian fluids. Furthermore, we determine
the spanwise length scales of flow structures that contribute most
to the steady-state variance and show that the most energetic
velocity fluctuations assume the form of high- and low-speed
streaks. These exhibit striking similarity to the flow structures that
contain the most energy in shear flows of Newtonian fluids with
high Reynolds numbers.

The results presented in this section are obtained by transform-
ing the linearized dynamics into slow and fast subsystems and
then applying singular perturbation methods. For clarity of presen-
tation, we discuss the main results here and relegate the details to
the appendices.

4.1. Variance amplification of velocity fluctuations

Based on the developments in Appendices C.1 and D.1, it fol-
lows that in streamwise-constant Poiseuille and Couette flows of
Oldroyd-B fluids with sufficiently large l, the variance maintained
in v is given by

Evðkz; We;b;lÞ ¼ l~f 0ðkzÞ=bþ ~f 1ðkzÞ ð1� bÞ=b2

þWe2 ~g0ðkzÞ ð1� bÞ2=bþOð1=lÞ: ð11Þ

Here, ~f 0;
~f 1, and ~g0 are functions independent of We;l, and b that

capture spatial frequency responses of velocity fluctuations in elas-
ticity-dominated flows. As demonstrated in Appendix E, the linear
scaling with l of the first term on the right-hand side of (11) orig-
inates from the corresponding power spectral density becoming al-
most uniformly distributed over the temporal frequency bandwidth
which is proportional to l. Furthermore, the base-flow-indepen-
dent functions ~f 0ðkzÞ and ~f 1ðkzÞ are given by (cf. (C.3))

~f 0ðkzÞ ¼ fNðkzÞ ¼ �
1
2

trace S�1
os þ S�1

sq

� �
;

~f 1ðkzÞ ¼ �
1
2

trace S�2
os þ S�2

sq

� �
;

with fNðkzÞ being the function that arises in the expression for var-
iance amplification in Newtonian fluids (2). Since this function ac-
counts for viscous dissipation, it does not introduce any important
viscoelastic physical effects. On the other hand, the function ~g0 ac-
counts for the stretching of the polymer stress fluctuations by a
background shear, and it is determined by (cf. (C.5))

~g0ðkzÞ ¼ ðk2
z=4Þ trace S�1

sq
eCp2S�2

os
eC
p2S�1

sq

� �
:
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Expression (11) shows that the contribution of this base-flow-
dependent term to the steady-state velocity variance is propor-
tional to We2 and that it increases monotonically with a decrease
in the ratio of the solvent viscosity to the total viscosity.

The analytical expressions for trace ðS�1
k Þ with k ¼ fos; sqg were

derived in [6]; these are used to evaluate ~f 0ðkzÞ ¼ fNðkzÞ, which is
illustrated in Fig. 5(a). The behavior of this function, as well as
function ~f 1ðkzÞ in Fig. 5(b), is governed by viscous dissipation. In
Couette flow, the expression for ~g0 simplifies to

~g0ðkzÞ ¼ �ðk2
z =4Þ trace S�2

os S�1
sq

� �
¼ �ðk2

z =4Þ trace D�2DD�2
� �

; ð12Þ

and an explicit kz-dependence of ~g0 can be derived after some
manipulation. The resulting expression for ~g0ðkzÞ is used to generate
the plot in Fig. 5(c); from this plot we observe the non-monotonic
character of ~g0ðkzÞ, with peaks at kz � 2:07 (in Couette flow) and
kz � 2:24 (in Poiseuille flow). In Poiseuille flow, determination of
the expression for ~g0ðkzÞ is considerably more involved than in Cou-
ette flow; however, the method developed in [42] can be used to
compute this quantity efficiently without resorting to spatial dis-
cretization. We note that, at kz ¼ 0, the function ~g0 becomes equal
to zero. On the other hand, at large kz both S�1

os and S�1
sq approxi-

mately scale as 1=k2
z . Therefore, the function ~g0 in (12) becomes

negligibly small as kz !1. A similar argument holds in Poiseuille
flow, which explains the appearance of the peaks at kz – 0 in
Fig. 5(c). As mentioned earlier, the values of kz where these peaks
emerge determine the spanwise length scales of the most energetic
response of velocity fluctuations to stochastic forcing in flows with
high Weissenberg numbers.

We next discuss the physical mechanisms leading to amplifica-
tion from the wall-normal and spanwise forces to the streamwise
velocity fluctuation. As demonstrated in Appendix C.1.2, in flows
with high elasticity numbers, the inertialess model ð� ¼ 0Þ cap-
tures well the responses from d2 and d3 to u. In the absence of iner-
tia, the dynamics of the streamwise velocity are governed by

Sos
_n

Ssq _u

" #
¼
�ð1=bÞSos 0
We b�1

b Cp2 �ð1=bÞSsq

" #
n

u

� �
þ
�ð1=bÞFj

0

� �
dj; j¼f2;3g;

ð13Þ

which corresponds to the slow subsystem discussed in Appendix
C.1.2. From Appendix B we note that n is obtained by filtering high
temporal frequencies in the streamfunction w

n ¼ 1
ixþ 1

w) _n ¼ �nþ w:

In comparison, by scaling time with the diffusive time qL2=gs, the
responses from d2 or d3 to u in the streamwise-constant linearized
Navier–Stokes equations are captured by

_w

_u

" #
¼

Sos 0
ReCp1 Ssq

� �
w

u

� �
þ

Fj

0

� �
dj: ð14Þ

Figs. 6(a) and 6(b) illustrate the block diagram representations of
systems (13) and (14), respectively.

As evident from both (13) and the expression for ~g0ðkzÞ, the cou-
pling term Cp2 plays an essential role in variance amplification (for
additional illustration, see the block diagram in Fig. 6(a)); if this
term was zero, the dynamics of strongly elastic flows, at the level
of velocity fluctuations, would be dominated by viscous dissipa-
tion. A careful analysis of the governing equations (see Appendix
A) shows that

Cp2 ¼ S34 S42 S21;

which demonstrates that the operator Cp2 emerges from

(i) the wall-normal and spanwise velocity ðv;wÞ gradients, S21,
in the equation for ðs22; s23; s33Þ;

(ii) stretching of s22; s23, and s33 by the background shear, S42, in
the equation for ðs12; s13Þ;

(iii) the s12 and s13 gradients, S34, in the equation for u.

From a physical point of view, the wall-normal and spanwise
forces produce weak, i.e. Oð1Þ, streamwise vortices; cf. the n-sub-
system in (13), where n denotes the low-pass version of the
streamfunction w; n ¼ w=ðixþ 1Þ. Spatial gradients in streamwise

Fig. 5. Plots of: (a) ~f 0ðkzÞ; (b) ~f 1ðkzÞ; (c) ~g0ðkzÞ in both Couette (solid curve) and Poiseuille (circles) flows.

Fig. 6. Block diagrams of the frequency response operators that map the wall-
normal and spanwise forces to the streamwise velocity fluctuation in streamwise-
constant (a) creeping flows of Oldroyd-B fluids, cf. (13); and (b) inertial flows of
Newtonian fluids, cf. (14). In Newtonian fluids amplification originates from vortex
tilting, i.e. operator Cp1, and in viscoelastic fluids it originates from polymer
stretching, i.e. operator Cp2. Note that the Weissenberg number in creeping flows of
Oldroyd-B fluids takes the role of the Reynolds number in inertial flows of
Newtonian fluids.
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vortices, i.e. S21n, yield Oð1Þ polymer stress fluctuations in the
ðy; zÞ-plane, ðs22; s23; s33Þ. The background shear, i.e. S42/2,
stretches s22 and s23 (U0ðyÞs22 and U0ðyÞs23, respectively), thereby
introducingOðWeÞ fluctuations in s12 and s13. Finally, the wall-nor-
mal gradients of s12 (i.e., @ys12) and the spanwise gradients of s13

(i.e., @zs13), i.e. S34/4, generate OðWeÞ fluctuations in streamwise
velocity which then get dissipated by the action of viscosity. All
of these give rise to polymer stretching, leading to a transfer of en-
ergy from the base flow to fluctuations which results in large stea-
dy-state velocity variances in flows with high Weissenberg
numbers.

Energy transfer from a base flow to fluctuations has been ob-
served experimentally in elastic turbulence of swirling flow be-
tween two parallel disks [18,19,24–26]. As mentioned earlier, a
radial pressure gradient which acts on the fluid along the curved
streamlines introduces an elastic instability and promotes this en-
ergy transfer [16,27,28]. The present work demonstrates that, even
in inertialess rectilinear flows, an energy transfer from a base flow
to fluctuations can be initiated by high flow sensitivity. It remains
an open question whether this nonmodal amplification mecha-
nism, which arises from stretching of polymer stress fluctuations
by base shear, can trigger the onset of elastic turbulence in channel
flows of viscoelastic fluids. Progress in this area requires a deeper
understanding of the interplay between the streak sensitivity
[43] and the nonlinear feedback that the streamwise-varying fluc-
tuations induce on the streamwise rolls [14]. Experiments using
highly viscous flows of elastic fluids in a circular pipe suggest that
the pressure, and presumably other flow variables, begin to fluctu-
ate irregularly at sufficiently large Weissenberg numbers [44,45].
However, additional experiments and calculations aimed at char-
acterizing different stages of disturbance development are needed
in order to make more definitive comparisons between theory and
experiment.

Streamwise velocity fluctuations that contain the most variance
in strongly elastic flows with kz ¼ 2:07 (Couette) and kz ¼ 2:24
(Poiseuille) are shown in Fig. 7. These structures are purely har-
monic in z and their wall-normal shapes are determined by the
principal eigenfunctions of operators ðk2

z=4ÞS�1
sq
eCp2S�2

os
eC
p2S�1

sq [5].
The most amplified sets of fluctuations are given by high (hot col-
ors) and low (cold colors) speed streaks, with pairs of counter-
rotating streamwise vortices in between them (contour lines). In
Couette flow the streaks occupy the entire channel width, and in
Poiseuille flow they are antisymmetric with respect to the chan-
nel’s centerline.

These flow structures have striking resemblance to the initial
conditions responsible for the largest transient growth in channel
flows of Newtonian fluids [2]. Despite similarities, the fluctuations
shown in Fig. 7 and in [2] arise from fundamentally different phys-
ical mechanisms: in high Re-flows of Newtonian fluids, vortex tilt-
ing is the main driving force for amplification; in high We-flows of

viscoelastic fluids, it is the polymer stretching mechanism de-
scribed above. These two mechanisms are, respectively, captured
by the action of Cp1 and Cp2 on w and the low-pass version of w
(cf. the block diagrams in Figs. 6(a) and 6(b)). From the definitions
of these operators it follows that both of them contain the back-
ground shear U0ðyÞ and the spatial variations in the flow fluctua-
tions as their essential ingredients. In particular, in Couette flow
Cp2 ¼ U0ðyÞDikz ¼ Dikz and Cp1 ¼ �U0ðyÞikz ¼ �ikz. This observation
in conjunction with the block diagrams in Figs. 6(a) and 6(b) sug-
gests that polymer stretching in elasticity-dominated channel
flows of viscoelastic fluids redistributes the mean momentum
and introduces the lift-up of flow fluctuations in a similar manner
as vortex tilting does in inertia-dominated flows of Newtonian flu-
ids [46]. In Newtonian fluids, large amplification originates from
tilting of the base spanwise vorticity, �U0ðyÞ, by spanwise changes
in the streamfunction, ikzw. In Couette flow of Oldroyd-B fluids,
U0ðyÞ stretches s22 and s23, or equivalently it gets tilted by Dikzn.

Finally, we note that simple kinematics of streamwise-constant
flows allow for equivalent representation of system (13) (or the
block diagram in Fig. 6a) in terms of a low-pass version of the
wall-normal velocity, # ¼ ikzn ¼ v=ðixþ 1Þ, and the wall-normal
vorticity, g ¼ ikzu. This can be achieved by replacing n by #;u by
g, and Fj by ikzFj in (13), thereby yielding the wall-normal vorticity
equation in inertialess streamwise-constant flows of Oldroyd-B
fluids (4).

4.2. Variance amplification of polymer stress fluctuations

From results obtained in Appendix C.2 it follows that in stream-
wise-constant Poiseuille and Couette flows of Oldroyd-B fluids
with sufficiently large l, the variance maintained in polymer
stress fluctuations approximately becomes elasticity-number
independent

Esðkz; We; b;lÞ ¼ a0ðkz; bÞ þWe2 b0ðkz; bÞ þWe4 c0ðkz; bÞ þ Oð1=lÞ:
ð15Þ

Here, a0; b0, and c0 are functions independent of We and l that cap-
ture the spatial frequency responses and b-dependence of s in iner-
tialess channel flows.

As shown in Appendix C.2, the function a0 is base-flow-inde-
pendent and it is determined by a0ðkz; bÞ ¼ ~a0ðkzÞ=b, with (cf.
(C.11))

~a0ðkzÞ ¼ ~aos;0ðkzÞ þ ~asq;0ðkzÞ;
~aos;0ðkzÞ ¼ ð1=2Þ trace S�2

os S
21S21

� �
¼ 2k2

z trace D�2 DD�2 @yy

� �
� ð1=2Þ trace D�2D

� �
;

~asq;0ðkzÞ ¼ ð1=2Þtrace S�2
sq S
43 S43

� �
¼ �ð1=2Þtrace D�1

� �
:

Fig. 7. Color plots: streamwise velocity fluctuations uðz; yÞ containing the most variance in strongly elastic flows subject to wall-normal and spanwise stochastic forcing.
Contour lines: fluctuations in the low-pass version of the streamfunction, nðz; yÞ. In Couette flow the most amplified set of fluctuations in u accounts for 89% of the total
variance, and in Poiseuille flow it accounts for 77% of the total variance.
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Clearly, a0 depends on the Orr-Sommerfeld and Squire operators,
and the operators S21 and S43 which introduce gradients of velocity
fluctuations (i.e., rv) in the constitutive equations. Note that the
functions ~aos;0 and ~asq;0, respectively, quantify the steady-state var-
iance amplification (as a function of the spanwise wavenumber) of
the operators that map d2 d3½ �T to /2 ¼ s22 s23 s33½ �T and d1 to
/4 ¼ s12 s13½ �T . Plots in Fig. 8 show that ~aos;0 reaches its maximum
at Oð1Þ values of kz, while ~asq;0 is characterized by viscous dissipa-
tion and it decays monotonically with kz.

In contrast to a0, the functions b0 and c0 in (15) differ in Couette
and Poiseuille flows. As shown in Appendix C.2.2, b0 determines
the variance amplification from d1 to /5 ¼ s11 and from ½d2 d3�T

to /4 ¼ s12 s13½ �T in inertialess channel flows with We ¼ 1. To sig-
nify this, we write b0 as

b0ðkz; bÞ ¼ bðkz; b; � ¼ 0Þ ¼ b/4 ðkz; b;0Þ þ b/5 ðkz; b; 0Þ;

where

b/4 ðkz; b;0Þ ¼
X3

j¼ 2

b12;jðkz; b; 0Þ þ b13;jðkz; b;0Þ
� �

;

b/5 ðkz; b;0Þ ¼ b11;1ðkz; b;0Þ;

quantify the contributions of /4 and /5 to the term responsible for
the quadratic scaling of Es with the Weissenberg number (cf. (15)).
The function b/5 is given by (cf. (C.14))

b/5 ðkz; b;0Þ ¼
1þ 4b

2bð1þ bÞ trace S�1
sq S
53 S53 S�1

sq

� �
¼ � 2ð1þ 4bÞ

bð1þ bÞ trace D�1 2U0ðyÞU00ðyÞ@y þ U0ðyÞ
� �2

@yy

� �
D�1

� �
;

and the function b/4 can be computed using the Lyapunov equation
(see Appendix C.1) associated with (C.16). Fig. 9 illustrates the kz-
dependence of the b functions in inertialess Couette and Poiseuille
flows with b ¼ 0:5 and We ¼ 1. In Poiseuille flow the function b/4

peaks at Oð1Þ values of kz, while all the other functions in Fig. 9 de-
cay monotonically with kz. Furthermore, since b/4 achieves much
smaller values than b/5 , the shape of b0 is primarily determined
by the amplification from d1 to s11.

In inertialess Couette flow, the variance amplification from the
wall-normal and spanwise forces to the streamwise component of
the polymer stress tensor is determined by (cf. (C.19))

c0ðkz; bÞ ¼
4b4 þ 16b3 þ 29b2 þ 6bþ 1

ðbþ 1Þ3
~c0ðkzÞ;

~c0ðkzÞ ¼ k2
z trace @y D�2 DD�2 @y

� �
:

ð16Þ

This formula separates the spanwise frequency responses from the
b-dependence of the function responsible for the We4-scaling of Es

in (15). We note that ~c0ðkzÞ can be efficiently evaluated using the
method developed in [42] that avoids the need for spatial discreti-
zation of the operators. In inertialess Poiseuille flow, the expression
for c0ðkz; bÞ is significantly more involved than in Couette flow; in-
stead, the Lyapunov equation associated with (C.18) can be used to
compute this quantity.

The kz-dependence of the function ~c0 in inertialess Couette flow
is shown in Fig. 10(a). Note that ~c0 peaks at kz � 2:42 which is the
wavenumber determining the spanwise length scale of the most
energetic response of s11 to wall-normal and spanwise stochastic
forcing. The non-monotonic character of ~c0ðkzÞ is induced by the
disappearance of this function at both kz ¼ 0 and as kz !1. The

Fig. 8. Plots of the base-flow-independent functions (a) ~aos;0ðkzÞ; (b) ~asq;0ðkzÞ; and (c) ~a0ðkzÞ ¼ ~aos;0ðkzÞ þ ~asq;0ðkzÞ. In inertialess flows, the variance amplification of the
operators that map d2 d3½ �T to /2 ¼ s22 s23 s33½ �T and d1 to /4 ¼ s12 s13½ �T is determined by a0ðkz ; bÞ ¼ ~a0ðkzÞ=b.

Fig. 9. Plots of the functions (a) b/5 ðkz; 0:5;0Þ; (b) b/4 ðkz; 0:5;0Þ; and (c) b0ðkz ; 0:5Þ ¼ b/4 ðkz; 0:5;0Þ þ b/5 ðkz; 0:5;0Þ in both Couette (solid curves) and Poiseuille (circles) flows.
In inertialess flows with We ¼ 1, the variance amplification of the operators that map d1 to /5 ¼ s11 and ½ d2 d3 �T to /4 ¼ s12 s13½ �T is determined by b0ðkz; bÞ.
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first assertion follows from the definition of ~c0ðkzÞ in (16), and the
second assertion follows from the observation that, at large
kz;D

�2DD�2 scales as 1=k6
z ; consequently, for kz � 1 we have

~c0ðkzÞ � 1=k4
z which justifies the existence of the peak at kz – 0 in

Fig. 10(a). Furthermore, the expression for c0ðkz; bÞ in (16) shows
that the term responsible for the We4-scaling of Es in inertialess
Couette flow can be determined by multiplying ~c0ðkzÞ with a
monotonically increasing function of b.

Fig. 10(b) illustrates the variance of s11 maintained by d2 and d3

in inertialess channel flows with b ¼ 0:5 and We ¼ 1. The largest
value of c0 in Poiseuille flow, which takes place at kz � 2:32, is
about 6.5 times larger than in Couette flow. We also see that, after
reaching its peak, the function c0 decays more rapidly with kz in
Poiseuille flow than in Couette flow. Apart from these minor differ-
ences, most essential amplification trends are shared in both cases.

Even though analytical and physical insight into transient re-
sponses of inertialess channel flows was provided in [34], the lack
of intrinsic spanwise wavelength selection in the Oldroyd-B model
driven by initial conditions in stress fluctuations was observed. In
fact, in transient growth analysis a high-wavenumber roll-off in s11

can be obtained only upon inclusion of a small amount of stress
diffusion in the constitutive equations [34]. In stochastically forced
problems, however, the body forces get ‘filtered’ through the equa-
tions of motion, thereby providing both a preferred spanwise
wavenumber and a roll-off at high kz even in the absence of stress
diffusive terms. As block diagrams in Figs. 6(a) and 13 (or, equiva-
lently Eqs. (13) and (C.18)) illustrate, the wall-normal and span-
wise forces enter into the equations for u and s11 through the
inverse of the Orr-Sommerfeld operator, S�1

os , which effectively
introduces ‘diffusion’ in the dynamics of the slow subsystem.

Fig. 11 shows the eigenvalues of the autocorrelation operator of
s11, arranged in descending order, in inertialess flows with We ¼ 1
and b ¼ 0:5 subject to wall-normal and spanwise stochastic forc-
ing. The sum of these eigenvalues determines the variance main-
tained in s11 by d2 and d3 [5]. The plots in Figs. 10(a) and 10(b)
illustrate the existence of two strongly amplified fluctuation types
in Couette flow with kz ¼ 2:42 and in Poiseuille flow with
kz ¼ 2:32. These values of kz identify the wavenumbers for which
the function c0ðkz; b ¼ 0:5Þ achieves its maximum. In Couette flow,
the two largest eigenvalues account for 55% and 25% of the total
variance, respectively; in Poiseuille flow, they account for 70%
and 20% of the total variance.

The flow structures with most energy, in inertialess flows with
We ¼ 1 and b ¼ 0:5 subject to wall-normal and spanwise stochas-
tic forcing, are shown in Fig. 12. These structures are purely har-
monic in z and their y-shapes are determined by the
eigenfunctions corresponding to the two largest eigenvalues of
the autocorrelation operator of s11. In both Couette and Poiseuille
flows, the most amplified set of fluctuations in s11 is antisymmetric
with respect to the channel centerline. In Couette flow s11 peaks
around y � 	0:5, while in Poiseuille flow the peaks are moved clo-
ser to the walls. The second set of most amplified fluctuations is
symmetric with respect to the channel centerline and it differs
vastly in shear-driven and in pressure-driven flows. In Couette
flow, the eigenfunction corresponding to the second-largest
eigenvalue achieves its maximum at the channel centerline,
with secondary set of peaks taking place in the vicinity of the
walls. In Poiseuille flow, the second set of strongly amplified
fluctuations has small values in the center of the channel and the
peaks occur around y � 	0:75. Although the stress fluctuations in

Fig. 10. Plots of the functions (a) ~c0ðkzÞ; and (b) c0ðkz; 0:5Þ in both Couette (solid curves) and Poiseuille (circles) flows. In inertialess flows with We ¼ 1, the variance
amplification of the operator that map ½ d2 d3 �T to /5 ¼ s11 is determined by c0ðkz; bÞ.

Fig. 11. The eigenvalues of the autocorrelation operator of s11, ordered by magnitude, in inertialess flows with We ¼ 1 and b ¼ 0:5 subject to wall-normal and spanwise
stochastic forcing. In Couette flow two principal eigenvalues contain 80% of the steady-state variance, and in Poiseuille flow they contain 90% of the steady-state variance.
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experiments and nonlinear simulations are expected to be more
complex than the structures presented in Fig. 12, the flow pat-
terns identified here are likely to play significant role in early
stages of disturbance development in channel flows of viscoelastic
fluids.

The block diagram of the frequency response operators that
map d2 and d3 to s11 in streamwise-constant inertialess flows of
Oldroyd-B fluids with We ¼ 1 is illustrated in Fig. 13, cf. (C.18). In
addition to exhibiting the simple aspects of the temporal responses
of s11 induced by the wall-normal and spanwise forces in creeping
flows, this block diagram exemplifies the contribution of polymer
stretching to the function c0 in (15). Namely, almost all operators
that act on the c-variables in Fig. 13 arise from stretching of poly-
mer stress fluctuations by a background shear. As noted in Sec-
tion 3.2, the only exceptions are (i) the operators S51 and S53

which, respectively, capture transport and stretching of a base
polymer stress by velocity fluctuations; (ii) the operator S41 which
accounts for both of these phenomena; and (iii) the operators S21

and Ssq which produce gradients of velocity fluctuations and vis-
cous dissipation, respectively.

5. Verification of analytical developments in stochastic
simulations

In this section, we conduct stochastic simulations of the linear-
ized flow equations in the absence of inertia. In particular, we

examine responses of the fluctuations in streamwise velocity and
the streamwise component of the polymer stress tensor to the
wall-normal and spanwise stochastic forcing. These input-output
choices are motivated by our analytical developments that identify
them as the most effective way to excite the flow and the most
responsive fluctuation components, respectively. The simulations
presented here not only confirm our analytical developments,
but they also illustrate how our results should be interpreted when
compared to direct numerical simulations and experiments. We
show that a proper comparison requires ensemble-averaging,
rather than a comparison at the level of individual simulations or
experiments.

We first examine variance of the streamwise velocity fluctua-
tions in inertialess flows driven by d2 and d3. As described in Sec-
tion 4.1, the aggregate effect of these forces on u in statistical
steady-state is captured by

Euðkz; We;bÞ ¼We2 ~g0ðkzÞ ð1� bÞ2=b; ð17Þ

with function ~g0ðkzÞ shown in Fig. 5(c). The Poiseuille flow results,
obtained by simulating system (13) with We ¼ 50 and b ¼ 0:5 in
the presence of a temporally stationary white Gaussian process
d2 d3½ �T with zero mean and unit variance, are shown in

Figs. 14(a)-(c). The wall-normal operators in (13) are approximated
using the pseudo-spectral method [47], and twenty different simu-
lations are performed with 50 collocation points in y, and 12
equally-spaced points between 0.1 and 6 in kz. We have verified

Fig. 12. Polymer stress fluctuations s11ðz; yÞ corresponding to the largest (a–b) and the second largest (c–d) eigenvalues of the autocorrelation operator of s11 in inertialess
flows with We ¼ 1 and b ¼ 0:5 subject to wall-normal and spanwise stochastic forcing.

Fig. 13. Block diagram of the frequency response operator that maps ðd2; d3Þ to s11 in streamwise-constant creeping flows of Oldroyd-B fluids with We ¼ 1, cf. (C.18).
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convergence by doubling the number of grid points in the wall-nor-
mal direction. The total simulation time is set to 50 relaxation
times. The Couette flow results exhibit similar trends and are omit-
ted for brevity.

The time evolution of the variance of u, for twenty realizations
of stochastic forcing with kz ¼ 2:24, is shown in Fig. 14(a); the var-
iance averaged over all simulations is represented by thick black
line. While individual simulations display significantly different re-
sponses, the average of twenty sample sets appears to be
approaching the steady-state value predicted by theoretical analy-
sis. This is further exemplified in Figs. 14(b) and 14(c) where the
kz-dependence of the variance at t ¼ 50 resulting from twenty forc-
ing realizations and from averaging over these realizations are
shown, respectively. The solid lines in these two figures represent
the steady-state variance of u determined from (17) with ~g0ðkzÞ
shown in Fig. 5(c). Even though the results of individual simula-
tions deviate from the theoretically predicted ensemble-average
energy density (cf. Fig. 14(b)), the average of all simulations dis-
plays good agreement with our analytical developments (cf.
Fig. 14(c)).

Variance of s11 in inertialess Poiseuille flow driven by the wall-
normal and spanwise stochastic forcing is obtained by simulating
system (C.18), which corresponds to the slow subsystem discussed
in Appendix C.2.3, using a sample set of twenty forcing realiza-
tions; see Figs. 14(d)–14(f). As in the case of the streamwise veloc-
ity fluctuations, we observe good agreement between ensemble-
averaged simulations and theoretical predictions for the variance
maintained in s11 by d2 d3½ �T : From Section 4.2, we recall that the
latter is determined by We4 c0ðkz; bÞwith function c0ðkz; 0:5Þ shown
in Fig. 10(b). Additional numerical experiments (not shown here)
suggest that this agreement can be further improved by increasing

the number of forcing realizations and by extending the total sim-
ulation time. We also note that the principal eigenvectors of the
ensemble-averaged autocorrelation matrices of u and s11 at
t ¼ 50 closely correspond to their counterparts in Figs. 7(b) and
12(b), respectively.

The results of this section verify our theoretical predictions and
demonstrate that the need for running a number of stochastic sim-
ulations with different forcing realizations can be circumvented by
careful analysis of the constitutive equations. They also indicate
that (i) a rather long simulation time may be required to obtain
convergent statistics (at least 20 relaxation times); and that (ii)
care should be exercised when comparing observations resulting
from numerical simulations or experiments subject to a single
forcing realization to observations resulting from ensemble-
averaging. These insights are anticipated to provide guidelines
for the design of numerical simulations and experiments that are
well-suited for investigating transition in strongly elastic flows of
polymeric fluids.

6. Conclusions

In this paper, we have analyzed nonmodal amplification of sto-
chastic disturbances in channel flows of Oldroyd-B fluids. For
streamwise-constant fluctuations, the linearized governing equa-
tions can be cast in a compact form suitable for application of tech-
niques from linear systems theory. Consideration of spatio-
temporal frequency responses leads to the conclusion that the
steady-state variances for velocity fluctuations scale quadratically
with the Weissenberg number, while those for polymer stress fluc-
tuations scale quartically with We. Wall-normal and spanwise

Fig. 14. Variance of u (first row) and s11 (second row) in streamwise-constant creeping Poiseuille flow with We ¼ 50 and b ¼ 0:5 subject to stochastic forcing d2 d3½ �T . (a and
d) The time evolution of the variance for twenty realizations of forcing with kz ¼ 2:24; the variance averaged over all simulations is shown by thick black line. The kz-
dependence of the variance at t ¼ 50 resulting from (b) and (e) 20 forcing realizations (circles); and (c and f) averaging over all simulations (circles). The solid lines in the kz-
dependent plots represent the steady-state variances determined from (17) with ~g0ðkzÞ shown in Fig. 5(c) (for u), and from We4 c0ðkz ; bÞ with c0ðkz; 0:5Þ shown in Fig. 10(b)
(for s11).
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forces have the largest influence in both cases, and their effects are
felt most strongly by the streamwise velocity and polymer stress
fluctuations. For large elasticity numbers, the linearized governing
equations can be decomposed into slow and fast subsystems,
allowing application of singular perturbation methods to obtain
explicit analytical expressions for the variance amplification asso-
ciated with the velocity and polymer stress fields. For sufficiently
large Weissenberg number, the variance amplification shows a
peak at Oð1Þ spanwise wavenumber, and the corresponding
streamwise velocity fluctuations have a structure similar to that
seen in high-Reynolds-number flows of Newtonian fluids. Results
from stochastic simulations confirm the validity of our analytical
approach. The mechanism of the energy amplification involves
polymer stretching, which gives rise to an energy transfer from
the base flow to fluctuations. This transfer can be interpreted as
an effective lift-up of flow fluctuations, similar to the role vortex
tilting plays in inertia-dominated flows.

The results of the present work are important because they re-
veal the asymptotic behavior of stochastically forced channel flows
in the high-elasticity-number limit. Such knowledge provides in-
sight into the underlying physical mechanisms, and is expected
to be valuable for validating and interpreting observations made
in direct numerical simulations and experiments (as is the case
for Newtonian fluids). Indeed, the block diagrams presented in this
paper lay bare the relationships between various inputs and out-
puts and the physical processes that contribute to these relation-
ships. In addition, we have demonstrated that the inertialess
limit is considerably more subtle than might be expected, for
determination of the function f in (1) that characterizes viscous
dissipation effects becomes ill-posed in this limit. In contrast, our
analysis shows that the inertialess model can be used to reliably
determine Es, as well as the Weissenberg-number-dependent part
of Ev . We also note that in contrast to studies that consider tran-
sient growth phenomena arising only from initial conditions (i.e.,
with no external disturbances), a preferential spanwise length
scale is selected for the stress fluctuations in stochastically forced
flows. When forcing is not present, the lack of diffusive terms in
the constitutive equation is manifested by the absence of a high-
wavenumber roll-off in the response of polymer stress fluctua-
tions which prevents the appearance of a preferred spanwise
length scale [34]. In the presence of forcing, however, the
disturbances get ‘filtered’ through the equations of motion thereby
leading to a peak at Oð1Þ spanwise wavenumber in the variance
amplification.

The present results further confirm our earlier observations
[35,36] that stochastic disturbances can be considerably amplified
by elasticity even when inertial effects are weak. This amplification
can serve as an initial stage of the development of streamwise-
elongated flow structures, which upon reaching a finite amplitude
may undergo secondary amplification [43] or instability [14] and
thereby provide a bypass transition to elastic turbulence. It is
important to point out that although we have considered a partic-
ular class of disturbances in this paper, our results raise the possi-
bility that other types of disturbances might also be significantly
amplified in elasticity-dominated flows. We note that in the pres-
ent problem, energy amplification does not require the presence of
curved streamlines in the base flow, which can give rise to linear
instabilities in other geometries when the effects of elasticity dom-
inate those of inertia [16,27,28]. (In the present problem, the base
flow is linearly stable [16].) However, the finite-amplitude flow
structures created by the energy amplification explored here may
well contain curved streamlines and be subject to further instabil-
ities that lead to a disordered flow.

Indeed, nonlinear evolution of disturbances in viscoelastic
channel flows has already been examined in several studies, but
most of these have been done for two-dimensional flows [30,48].

The present work suggests that three-dimensional effects may play
a key role in the transition to elastic turbulence. Furthermore, in
contrast to [49], where an elasticity-induced finite-amplitude
instability in Couette flow was predicted, our analysis (i) identifies
key physical mechanisms that enable nonmodal amplification of
disturbances in the absence of inertia; and (ii) highlights the rich-
ness of the linearized constitutive equations in parallel shear flows
of viscoelastic fluids. Elastic turbulence may find use in promoting
mixing in microfluidic devices, where inertial effects are weak due
to the small geometries [19,23,26]. In polymer processing applica-
tions, however, elastic turbulence is generally undesired [16,17],
and our work may aid the development of control strategies to
maintain ordered flows.

Finally, we point out that the slow-fast decomposition of the
linearized dynamics we have uncovered here does not follow a pri-
ori from the governing equations in their original form. Identifica-
tion of this decomposition was a necessary step in the application
of the singular perturbation methods that were used to develop
analytical expressions for the variance amplification. The approach
taken in this work may be helpful in examining the asymptotic
structure of other flows at high elasticity number, especially if such
flows are subject to disturbances and have nonnormal governing
equations.
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Appendix A. Frequency response operators

A.1. Frequency responses of velocity fluctuations

The frequency response operators Hrj, relating the forcing and
velocity components dj and r with fr ¼ u;v ;w; j ¼ 1;2;3g, can be
obtained by applying the temporal Fourier transform to (6) subject
to zero initial conditions and by eliminating polymer stresses from
the equations. Eq. (6b) can be used to express /2 ¼ s22 s23 s33½ �T in
terms of the ðy; zÞ-plane streamfunction /1 ¼ w

/2 ¼
S21

1þ ix
/1; ðA:1Þ

where x denotes the temporal frequency. Substitution of (A.1) into
the temporal Fourier transform of (6a) yields

/1 ¼ �ixI� bS11 �
1� b

1þ ix
S12S21

� ��1

ðF2d2 þ F3d3Þ

¼ ð1þ ixÞKos F2d2 þ F3d3ð Þ;
ðA:2Þ

where the fact that S12S21 ¼ S11 ¼ D�1D2 ¼: Sos was used to define
the operator Kos,

Kos ¼ ð�ðixÞ2I� ðbSos � �IÞix� SosÞ�1
:

Based on this and Eq. (6f), it follows that, for streamwise-constant
fluctuations, streamwise forcing does not influence the wall-normal
and spanwise velocities, i.e.

Hr1ðkz;x; We; b; �Þ ¼ 0; r ¼ v;w:

Moreover, using (6f) and (A.2), the operators Hrjðkz;x; We;b; �Þ;
fr ¼ v ;w; j ¼ 2;3g; can be written as
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Hrjðkz;x; We;b; �Þ ¼ Hrjðkz;x; b; �Þ; r ¼ v ;w; j ¼ 2;3;

where the We-independent operators Hrj are given by

Hrjðkz;x; b; �Þ ¼ ð1þ ixÞGrKosFj; r ¼ v;w; j ¼ 2;3: ðA:3Þ

The following relation between the streamfunction/streamwise
velocity ð/1;/3Þ and polymer stresses /4 ¼ s12 s13½ �T can be estab-
lished by substituting (A.1) into the temporal Fourier transform of
(6d)

/4 ¼
1

1þ ix
We S41 /1 þ S42 /2ð Þ þ S43 /3ð Þ ðA:4aÞ

¼ We
1þ ix

S41 þ
S42S21

1þ ix

� �
/1 þ

1
1þ ix

S43 /3: ðA:4bÞ

Substitution of this equation in the temporal Fourier transform of
(6c) yields

/3 ¼We �ixI� bS33 �
ð1� bÞ
1þ ix

S34S43

� ��1

� �S31 þ
ð1� bÞS34

1þ ix
S41 þ

S42S21

1þ ix

� �� �
/1

þ �ixI� bS33 �
ð1� bÞ
1þ ix

S34S43

� ��1

F1d1: ðA:5Þ

Now, since u ¼ Gu/3 ¼ /3, by substituting (A.2) into (A.5) and using
the fact that in Couette and Poiseuille flows

S34S43 ¼ S33 ¼ D ¼: Ssq; S34S41 ¼ 0;
S34S42S21 ¼ ikz U0ðyÞDþ 2U00ðyÞ@y

� �
;

it follows that operators Hujðkz;x; We;b; �Þ; fj ¼ 1;2;3g, are given
by

Hu1ðkz;x; We;b; �Þ ¼ Hu1ðkz;x; b; �Þ;

Hujðkz;x; We;b; �Þ ¼We Hujðkz;x; b; �Þ; j ¼ 2;3:

Here, the We-independent operators Huj are determined by

Hu1ðkz;x; b; �Þ ¼ ð1þ ixÞGuKsqF1 ¼ ð1þ ixÞKsq;

Hujðkz;x; b; �Þ ¼ GuKsq �ð1þ ixÞ2Cp1 þ ð1� bÞCp2

� �
KosFj; j ¼ 2;3;

ðA:6Þ

with

Ksq ¼ ð�ðixÞ2I� ðbSsq � �IÞix� SsqÞ�1
;

Cp1 ¼ S31 ¼ �ikzU0ðyÞ;

Cp2 ¼ ikz
eCp2; eCp2 ¼ U0ðyÞDþ 2U00ðyÞ@y:

Clearly, Cp2 ¼ ikz
eCp2 ¼ S34S42S21 would vanish if background shear

was absent (i.e., if UðyÞ was constant) or if kz ¼ 0.
In summary, the input-output mappings from forcing to veloc-

ity fluctuations in channel flows of Oldroyd-B fluids are deter-
mined by

uðy; kz;x; We; b; �Þ ¼ Hu1ðkz;x; b; �Þd1ð�; kz;xÞ
� 	

ðyÞ

þWe
X3

j¼ 2

Hujðkz;x; b; �Þdjð�; kz;xÞ
� 	

ðyÞ;

rðy; kz;x; b; �Þ ¼
X3

j¼ 2

Hrjðkz;x; b; �Þdjð�; kz;xÞ
� 	

ðyÞ; r ¼ v ;w; ðA:7Þ

where the We-independent operators Huj are given by (A.6), and the
We-independent operators Hrj with fr ¼ v ;w; j ¼ 2;3g are given by
(A.3).

A.2. Frequency responses of polymer stress fluctuations

In this appendix, we determine the frequency responses, C/i ;j,
from forcing components d1; d2, and d3 to polymer stress compo-
nents /2 ¼ s22 s23 s33½ �T ; /4 ¼ s12 s13½ �T , and /5 ¼ s11. Substitu-
tion of (A.2) to (A.1) yields the We-independent response of /2

/2ðy; kz;x; b; �Þ ¼
X3

j¼ 2

C/2 ;jðkz;x; b; �Þdjð�; kz;xÞ
� 	

ðyÞ;

C/2 ;j ¼ S21KosFj: ðA:8Þ

Similarly, combination of (A.2), (A.6), and (A.7) with (A.4b) yields

/4ðy; kz;x; We;b; �Þ ¼ C/4 ;1ðkz;x; b; �Þd1ð�; kz;xÞ
� 	

ðyÞ

þWe
X3

j¼ 2

C/4 ;jðkz;x; b; �Þdjð�; kz;xÞ
� 	

ðyÞ;

C/4 ;1 ¼ S43 Ksq;

C/4 ;j ¼
1

1þ ix
S43 Huj þ ð1þ ixÞS41 þ S42S21ð ÞKosFj
� �

; j ¼ 2;3:

ðA:9Þ

Finally, the temporal Fourier transform of (6e) gives

/5 ¼
1

1þ ix
We2 S51 /1 þWe S53 /3 þ S54 /4ð Þ
� �

;

which in conjunction with (A.2), (A.6), (A.7), (A.9) and S54S43 ¼ S53

can be used to obtain

/5ðy; kz;x; We;b; �Þ ¼We C/5 ;1ðkz;x; b; �Þd1ð�; kz;xÞ
� 	

ðyÞ

þWe2
X3

j¼ 2

C/5 ;jðkz;x; b; �Þdjð�; kz;xÞ
� 	

ðyÞ;

C/5 ;1 ¼
2þ ix
1þ ix

S53 Ksq;

C/5 ;j ¼ S51KosFj þ
2þ ix
ð1þ ixÞ2

S53 Huj

þ 1

ð1þ ixÞ2
S54 ð1þ ixÞS41 þ S42S21ð ÞKosFj; j ¼ 2;3:

ðA:10Þ

To summarize, the frequency response operators from the forcing
components to the polymer stress components /2;/4, and /5 are,
respectively, given by (A.8), (A.9), and (A.10). These expressions
are utilized in Section 3.2 and Appendix C.2 to quantify the depen-
dence of variance amplification of polymer stress fluctuations on
the Weissenberg and the elasticity numbers. While the develop-
ments of Section 3.2 apply to both inertia- and elasticity-dominated
flows, the developments of Appendix C.2 apply only to flows with
� ¼ 1=l� 1.

Appendix B. Evolution equations for Hrj

Here, we determine evolution equations for each Hrj in Sec-
tion 3.1. For a fixed temporal frequency x, each Hrj represents an
operator in y, mapping the forcing dj to the velocity r at We ¼ 1.
The inverse temporal Fourier transform yields a system of PDEs
in the wall-normal direction and in time which can be represented
in the form of evolution equations (i.e., a coupled system of first-
order in time PDEs). We show that, in elasticity-dominated flows,
these equations admit a standard singularly perturbed form which
is convenient for uncovering dependence of the frequency re-
sponses on elasticity number.
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B.1. Evolution equations for Hrj with fr ¼ u; j ¼ 1g and
fr ¼ v;w; j ¼ 2; 3g

We first determine evolution equations for the operators
Hrj ¼ ð1þ ixÞGrKosFj with fr ¼ v;w; j ¼ 2;3g: From Eq. (A.1),
which is obtained by applying the temporal Fourier transform to
(6b), we see that /2 can be expressed as

/2 ¼ S21 n;

where n represents a low-pass version of /1 ¼ w (with the left-hand
side denoting relations in the frequency domain, and the right-hand
side denoting relations in the time domain)

n ¼ 1
ixþ 1

w) _n ¼ �nþ w: ðB:1Þ

Since S12S21 ¼ S11 ¼ Sos, Eq. (6a) can be rewritten as

� _w ¼ bSos wþ ð1 � bÞSos nþ F2 d2 þ F3 d3;

which in conjunction with (B.1) yields the following evolution
equation for Hrj with fr ¼ v;w; j ¼ 2;3g

_n

� _w

" #
¼

�I I
ð1� bÞSos bSos

� �
n

w

� �
þ

0
Fj

� �
dj;

r ¼ 0 Gr½ �
n

w

� �
:

ðB:2Þ

This equation is expressed in terms of the ðy; zÞ-plane streamfunc-
tion w and the scalar field n whose spatial gradients determine
/2;/2 ¼ S21n. Since the time-derivative of w is multiplied by a small
positive parameter � and since the operator bSos is stable [9], and
therefore invertible, system (B.2) is in a standard singularly per-
turbed form [40] with homogeneous Cauchy boundary conditions
on both w and n.

Furthermore, the operator from ½d2 d3�T to ½v w�T can be repre-
sented by

_n

� _w

" #
¼

�I I
ð1� bÞSos bSos

� �
n

w

� �
þ

0 0
F2 F3

� �
d2

d3

� �
;

v
w

� �
¼

0 Gv

0 Gw

� �
n

w

� �
:

An evolution equation for the operator Hu1 that maps d1 to u can be
obtained using a similar procedure. Namely, since d1 does not influ-
ence the dynamics of /1 and /2, setting f/1 ¼ 0;/2 ¼ 0g in (6c) and
(6d) yields the following system of equations

_/4 ¼� /4 þ S43 u; ðB:3aÞ
� _u ¼ bS33 uþ ð1 � bÞS34 /4 þ F1 d1: ðB:3bÞ

Now, /4 can be expressed as

/4 ¼ S43 f; ðB:4Þ

where f denotes a low-pass version of u,

f ¼ 1
ixþ 1

u) _f ¼ �fþ u: ðB:5Þ

Since S34S43 ¼ S33 ¼ Ssq, substitution of (B.4) into (B.3b) in conjunc-
tion with (B.5) yields the following evolution equation for Hu1

_f

� _u

" #
¼

�I I
ð1� bÞSsq bSsq

� �
f

u

� �
þ

0
F1

� �
d1;

u ¼ 0 Gu½ �
f

u

� �
;

ðB:6Þ

with homogeneous Dirichlet boundary conditions on both u and f.
Owing to invertibility of the operator bSsq [9] and multiplication

of _u by a small parameter �, system (B.6) is in a standard singularly
perturbed form [40]. We note that the expression for /4 in (B.4)
holds only in the absence of wall-normal and spanwise forces
(i.e., for d2 ¼ d3 ¼ 0). The evolution equations capturing the influ-
ence of these forces on the streamwise velocity are determined in
Appendix B.2.

In summary, the operators fHu1¼ð1þ ixÞGuKsqF1;Hrj¼ð1þ ixÞ
GrKosFj;r¼ v;w; j¼2;3g can be represented by the following
evolution equation

_xrj

� _zrj

� �
¼

�I I
ð1� bÞSk bSk

� �
xrj

zrj

� �
þ

0
Fj

� �
dj;

r ¼ 0 Gr½ �
xrj

zrj

� �
;

ðB:7Þ

with fk ¼ sq for r ¼ u; k ¼ os for r ¼ v ;wg, homogeneous Dirichlet
boundary conditions on xu1 ¼ f and zu1 ¼ u, and homogeneous Cau-
chy boundary conditions on xrj ¼ n and zrj ¼ w for
fr ¼ v ;w; j ¼ 2;3g.

B.2. Evolution equations for Huj with j ¼ 2; 3

We next determine evolution equations for the operators that
map d2 and d3 to u,

Huj ¼ Ksq �ð1þ ixÞ2Cp1 þ ð1� bÞCp2

� �
KosFj; j ¼ 2;3:

Acting on Eq. (A.4a) with S34 and using S34S41 ¼ 0; S34S43 ¼ S33 ¼ Ssq;

/2 ¼ S21n, and Cp2 ¼ S34S42S21 we obtain

u ¼ 1
ixþ 1

WeCp2 nþ Ssq u
� �

) _u ¼ �uþWeCp2 nþ Ssq u; ðB:8Þ

where

u ¼ S34 /4:

Consequently, Eq. (6c), governing the evolution of u in flows with
d1 ¼ 0, can be written as

� _u ¼ bSsq uþ �WeCp1 wþ ð1 � bÞu: ðB:9Þ

Thus, Eqs. (B.2), (B.8), and (B.9) with homogeneous Cauchy bound-
ary conditions on w and n, homogeneous Dirichlet boundary condi-
tions on u, and no boundary conditions on u determine the
evolution model for Huj with j ¼ 2;3. By selecting x ¼ ½n u�T ;
z ¼ ½w u�T , we obtain a singularly perturbed realization of Huj;

j ¼ 2;3,

_x
� _z

� �
¼

A11 A12

A21 A22ð�Þ

� �
x
z

� �
þ

0
B2

� �
dj;

u ¼ 0 C2½ �
x
z

� �
;

ðB:10Þ

where all operators are partitioned conformably with the elements
of x and z,

A11 ¼
�I 0

WeCp2 �I

� �
; A12 ¼

I 0
0 Ssq

� �
; B2 ¼

Fj

0

� �
;

A21 ¼
ð1� bÞSos 0

0 ð1� bÞ I

� �
; A22ð�Þ ¼

bSos 0
�WeCp1 bSsq

� �
;

C2 ¼ 0 I½ �:
ðB:11Þ

The evolution equations for Hu2 and Hu3 are determined by (B.10)
and (B.11) with We ¼ 1. This system of equations is in the standard
singularly perturbed form [40] as the time-derivative of z is
multiplied by a small positive parameter � and the operator A22 is
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invertible (this follows from the lower-block-triangular structure of
A22 and invertibility of both bSos and bSsq).

Appendix C. Dependence of variance amplification on the
elasticity number: proof of the main result

We next examine how the We-independent functions in the
expressions for variance amplification of velocity and polymer
stress fluctuations depend on � ¼ 1=l. The mathematical develop-
ments that follow have been used in Section 4 to gain insight into
the conditions under which strong elasticity amplifies stochastic
disturbances. Considering the case of high l, � ¼ 1=l� 1, we em-
ploy singular perturbation methods [40] to show that function g in
(Ev) and functions a; b, and c in (Es) approximately become elastic-
ity-number-independent. In elasticity-dominated flows, we dem-
onstrate that these functions are correctly predicted by the
analysis of creeping flows. In contrast, the function f that quantifies
variance amplification from d1 to u and from ðd2; d3Þ to ðv ;wÞ in
(Ev) is inversely proportional to �. Furthermore, while the inertia-
less model correctly predicts behavior of the operators Hrj with
fr ¼ u; j ¼ 1g and fr ¼ v ;w; j ¼ 2;3g at low temporal frequencies,
it provides a poor approximation at high temporal frequencies
(see Appendix E). We also show that, from a physical point of view,
no important viscoelastic effects take place in the contribution of
the function f to the variance amplification.

The developments that follow make heavy use of singular per-
turbation techniques for stochastically forced linear systems [40].
As summarized in Section 4, the use of such techniques provides
(i) important physical insight about the dynamics of strongly elas-
tic fluids; and (ii) the asymptotic forms of the functions ðf ; gÞ in (Ev)
and ða; b; cÞ in (Es) at high elasticity number.

C.1. Variance amplification of velocity fluctuations

As described in Appendix B, each Hrj (cf. Section 3.1) represents
an operator in y, mapping the forcing dj to the velocity r at We ¼ 1.
Since the inverse temporal Fourier transform yields a system of
PDEs in y and t, the We-independent contributions to the variance
amplification of velocity fluctuations can be determined by recast-
ing each Hrj in the evolution form

_xrjðy; kz; tÞ ¼ArjðkzÞxrjðy; kz; tÞ þ BjðkzÞdjðy; kz; tÞ;
rðy; kz; tÞ ¼CrðkzÞxrjðy; kz; tÞ;

where xrj is a vector of state variables, and ðdj; rÞ is the input-output
pair for the frequency response operator Hrj; fr ¼ u;v;w; j ¼ 1;2;3g.
Note that xrj and operators Arj;Bj, and Cr will, in general, be different
for each Hrj. It is a standard fact [5] that the variance of r sustained
by dj is determined by

Erj ¼ trace PrjC


r Cr

� �
;

where Prj denotes the steady-state auto-correlation operator of xrj,
which is found by solving the Lyapunov equation,

ArjPrj þ PrjA


rj ¼ �BjB



j :

From Appendix B it follows that the evolution equations of each Hrj

assume the form

_x
� _z

� �
¼

A11 A12

A21 A22ð�Þ

� �
x
z

� �
þ

0
B2

� �
dj;

r ¼ 0 C2½ �
x
z

� �
;

ðC:1Þ

with appropriate boundary conditions on x and z. To simplify nota-
tion we have omitted the r and j indices in (C.1); it is to be noted,
however, that x, z and the A-operators are indexed by both r and

j, the B-operators are indexed by j, and the C-operators are indexed
by r. Eqs. (B.7) and (B.10) (and consequently (C.1)) are in the stan-
dard singularly perturbed form [40] as the time-derivative of the sec-
ond part of the state is multiplied by a small positive parameter �
and the lower-right-hand-corner blocks of the dynamical genera-
tors in both (B.7) and (B.10) are invertible. Furthermore, this repre-
sentation gives evolution equations for different components of the
frequency response operator H with a lower number of states com-
pared to the original evolution model (6). In particular, there are
two state variables in the evolution equations for operators Hrj with
fr ¼ u; j ¼ 1g and fr ¼ v;w; j ¼ 2;3g (cf. (B.7)), and four state vari-
ables in the evolution equations for operators Hu2 and Hu3 (cf.
(B.10)). In comparison, there are eight states in the evolution model
(6).

We next exploit the structure of Eqs. (B.7) and (B.10) to uncover
a slow-fast decomposition of each Hrj, identify the physics of the
slow and fast subsystems, and provide explicit analytical expres-
sions for the variance amplification of velocity fluctuations in flows
of strongly elastic polymeric fluids. These analytical developments
have been utilized in Section 4 to clearly identify important phys-
ical mechanisms leading to amplification from different forcing to
different velocity components.

C.1.1. Scaling of function f in (Ev) with �
We first examine how function f ðkz; b; �Þ in the expression for

variance amplification of velocity fluctuations (Ev) depends on �.
From Section 3.1 we recall that f is determined by

f ¼ f u1 þ
X3

j¼ 2

fvj þ fwj
� �

;

where functions frj quantify the variance amplification of the fre-
quency response operators from dj to r, with fr ¼ u; j ¼ 1g and
fr ¼ v ;w; j ¼ 2;3g. The analysis presented in Appendix D.1 reveals
that f is determined by

f ðkz; b; �Þ ¼
1
2

trace S�1
os ðbSos � �IÞ�1 þ S�1

sq ðbSsq � �IÞ�1
� �

� 1
2�

trace ðbSos � �IÞ�1 þ ðbSsq � �IÞ�1
� �

: ðC:2Þ

This expression for f ðkz; b; �Þ is valid for all kz 2 ð�1;1Þ; b 2 ð0;1Þ,
and � > 0. Furthermore, in strongly elastic flows, i.e. for
0 < �� 1; f ðkz; b; �Þ can be expressed as (for details, see Appendix
D.1)

f ðkz; b; �Þ ¼ ð1=�Þ
X1
n¼ 0

�nfnðkz; bÞ

¼ ð1=�Þf0ðkz; bÞ þ f1ðkz; bÞ þ �f2ðkz; bÞ þ . . . ;

f0ðkz; bÞ ¼ ~f 0ðkzÞ=b;
~f 0ðkzÞ ¼ �ð1=2Þ trace S�1

os þ S�1
sq

� �
;

f nðkz; bÞ ¼ ð1� bÞ~f nðkzÞ=bnþ1;

~f nðkzÞ ¼ �ð1=2Þ trace S�ðnþ1Þ
os þ S�ðnþ1Þ

sq

� �
; n P 1: ðC:3Þ

There are two key results of this section that quantify the depen-
dence of the function f in (Ev) on � ¼ 1=l. While scaling relation
(C.2) holds for flows with arbitrary but finite elasticity number,
scaling relation (C.3) holds only for flows with high elasticity num-
bers, 1� l <1. The latter relation shows that, in elasticity-domi-
nated flows, the traces of the inverses of the Orr-Sommerfeld and
Squire operators in streamwise-constant flows of Newtonian fluids
with Re ¼ 1 specify the spatial frequency content of the function f.
In Appendix E, we demonstrate that the 1=�-scaling of this function
originates from the corresponding power spectral density becoming
almost uniformly distributed over the temporal frequency
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bandwidth which is inversely proportional to �. This broad tempo-
ral spectrum of the frequency response operators from dj to r, with
fr ¼ u; j ¼ 1g and fr ¼ v;w; j ¼ 2;3g, is accompanied by viscous
dissipation in kz and it does not change the value of the peaks in
the power spectral densities.

C.1.2. Scaling of function g in (Ev) with �
By examining Hu2 and Hu3 we can determine the �-dependence

of terms responsible for the We2-scaling of the steady-state veloc-
ity variance in (Ev). As shown in Section 3.1,

gðkz; b; �Þ ¼ gu2ðkz; b; �Þ þ gu3ðkz; b; �Þ;

where guj denotes the steady-state variance of system (C.1) with
fr ¼ u; j ¼ 2;3g and (for details, see Appendix B.2)

A11 ¼
�I 0
Cp2 �I

� �
; A12 ¼

I 0
0 Ssq

� �
; B2 ¼

Fj

0

� �
;

A21 ¼
ð1� bÞSos 0

0 ð1� bÞ I

� �
; A22ð�Þ ¼

bSos 0
�Cp1 bSsq

� �
;

C2 ¼ 0 I½ �:

Setting � ¼ 0 in the z-equation of system (C.1) yields

z ¼ �A�1
22 ð0Þ A21 xþ B2 dj

� �
;

which in conjunction with the definitions of x ¼ ½n u�T and
z ¼ ½w u�T leads to the following expressions for the streamfunction
and the streamwise velocity,

w

�u

" #
¼ 1

b

�ð1� bÞ I 0

0 �ð1� bÞS�1
sq

" #
n

u

" #
þ �S�1

os Fj

0

" #
dj

 !
:

Here, we use the overbar to denote the solution of system (C.1) with
� ¼ 0. As shown in Appendix B.2, the components of x account for a
low-pass version of the streamfunction and the spanwise/wall-nor-
mal gradients in the components of /4, i.e.,

n ¼ w=ðixþ 1Þ; u ¼ S34/4:

Note that w is not a valid approximation of w; this is because of
the white noise component dj in the expression for w, which yields
infinite variance of the difference between w and w irrespective of
how small � is. Nevertheless, w can still be employed as an approx-
imation of an input w to the x-subsystem in (C.1) as the slow sys-
tem filters out the white noise component in w. On the other hand,
the absence of dj in the expression of �u makes ð1� 1=bÞS�1

sq u a va-
lid approximation of the streamwise velocity fluctuation. Further-
more, the approximate dynamics of the slow subsystem are
obtained by substituting the above expression for z into the x-
equation of system (C.1),

_xuj;s ¼ Auj;s xuj;s þ Bj;s dj;

u ¼ Cu;s xuj;s;

with

Auj;s ¼ A11 � A12 A�1
22 ð0ÞA21 ¼

�ð1=bÞ I 0
Cp2 �ð1=bÞ I

� �
;

Bj;s ¼ �A12 A�1
22 ð0ÞB2 ¼

�ð1=bÞS�1
os Fj

0

" #
; Cu;s ¼ 0 b�1

b S�1
sq

h i
:

Thus, we have

guj ¼ trace Puj;sC


u;sCu;s

� �
þOð�Þ;

where Puj;s denotes the auto-correlation operator of xuj;s,

Auj;sPuj;s þ Puj;sA


uj;s ¼ �Bj;sB



j;s:

A bit of algebra along with the self-adjointness of Sos and Ssq can be
used to obtain

gujðkz; b; �Þ ¼
ð1� bÞ2

4b
trace S�1

sq Cp2S�1
os FjF



j S�1

os C
p2S�1
sq

� �
þOð�Þ:

ðC:4Þ

In fact, a closer examination of the evolution equations of Hu2 and
Hu3 (cf. (B.10)) in conjunction with the singular perturbation meth-
ods of [40] can be used to show that

gðkz; b; �Þ ¼
X1
n¼ 0

�ngnðkz; bÞ ¼ g0ðkz; bÞ þ �g1ðkz; bÞ þ Oð�2Þ; � � 1;

where

g0ðkz; bÞ ¼
X3

j¼ 2

trace Puj;sC


u;sCu;s

� �
¼ gu2ðkz; b;0Þ þ gu3ðkz; b;0Þ:

Now, since Cp2 ¼ ikz
eCp2 (cf. (7)) and F2F
2 þ F3F
3 ¼ I (see [7]), we can

use (C.4) to obtain

g0ðkz; bÞ ¼ ~g0ðkzÞð1� bÞ2=b;
~g0ðkzÞ ¼ ðk2

z =4Þ trace S�1
sq
eCp2S�2

os
eC
p2S�1

sq

� �
: ðC:5Þ

An in-depth study of function ~g0ðkzÞ and its importance in the early
stages of transition to elastic turbulence has been provided in
Section 4.

Finally, we note that in the absence of inertia the operators Hu2

and Hu3 simplify to

Hujðkz;x; b;0Þ ¼ 1� b

ð1þ b ixÞ2
S�1

sq Cp2S�1
os Fj; j ¼ 2;3:

Using the separation of the temporal and the spatial responses in
Hujðkz;x; b;0Þ it is now straightforward to show that gujðkz; b; 0Þ in
(C.4) is determined by

gujðkz; b;0Þ ¼
1

2p

Z 1

�1
trace Hujðkz;x; b;0ÞH
ujðkz;x; b;0Þ

� �
dx:

As a matter of fact, creeping flow of an Oldroyd-B fluid captures well
the responses from the wall-normal and spanwise forces to the
streamwise velocity at both low and high temporal frequencies in
elasticity-dominated regimes. This is in contrast to the analysis con-
ducted in Appendix E where it was shown that a creeping-flow
model poorly approximates the responses from d1 to u and from
ðd2;d3Þ to ðv ;wÞ at high temporal frequencies.

To summarize, in streamwise-constant channel flows of Old-
royd-B fluids with � ¼ 1=l� 1, the function g contributing to
the We2-scaling of the steady-state velocity variance in (Ev) is
approximately �-independent and it is determined by (C.5).

Finally, we note that the following scaling of the variance
amplification associated with the velocity fieldbEvðkz; Re; b;lÞ � Re f̂ ðkz; bÞ þ lRe3 ĝðkz; bÞ; 1 � l < 1; ðC:6Þ

was hypothesized by [36] on the basis of numerical data. Even
though (C.6) appears to be at odds with (11), we next furnish a
proof of its validity. The evolution model (6),

@te xðy; kz; tÞ ¼ AeðkzÞxðy; kz; tÞ þ BeðkzÞdeðy; kz; tÞ;
vðy; kz; tÞ ¼ CðkzÞxðy; kz; tÞ;

ðC:7Þ

and the evolution model in [36],

@ti
xðy; kz; tÞ ¼ AiðkzÞxðy; kz; tÞ þ BiðkzÞdiðy; kz; tÞ;

vðy; kz; tÞ ¼ CðkzÞxðy; kz; tÞ;
ðC:8Þ

are obtained using different time and forcing scalings. In (C.7), te de-
notes time normalized by k, and de denotes forcing per unit mass
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normalized by ðgs þ gpÞUo=qL2; in (C.8), time is normalized by the
convective time scale L=Uo, and forcing per unit mass is normalized
by U2

o=L. It is easy to show that the A and B operators in (C.8) and
(C.7) are related by

Ai ¼ ð1=WeÞAe; Bi ¼ ðRe=WeÞBe:

Therefore, the solutions to the corresponding Lyapunov equations

AkPk þ PkA
k ¼ �BkB
k; k ¼ fe; ig;

are related to each other by

Pi ¼ ðRe2=WeÞPe ¼ ðRe=lÞPe;

which in conjunction with (C.6) and (11) can be used to obtain the
following expression for variance amplification in elasticity-domi-
nated flows

bEvðkz; Re;b;lÞ ¼ trace PiC

Cð Þ ¼ ðRe=lÞ trace PeC
Cð Þ

¼ ðRe=lÞEvðkz; We;b;lÞ

¼ Re~f 0ðkzÞ=bþ lRe3 ~g0ðkzÞ ð1� bÞ2=bþOð1=lÞ:

This establishes validity of the scaling conjectured in [36] and
shows that the functions f̂ and ĝ in (C.6) are, respectively, deter-
mined by f̂ ðkz; bÞ ¼ ~f 0ðkzÞ=b and ĝðkz; bÞ ¼ ~g0ðkzÞð1� bÞ2=b.

C.2. Variance amplification of polymer stress fluctuations

In Appendix C.1, we have studied how the elasticity number
influences frequency responses of velocity fluctuations in strongly
elastic channel flows of Oldroyd-B fluids. Here, we examine
the elasticity-number scaling of the functions a; b, and c in the
expression for the steady-state variance of polymer stresses (Es).
In flows with � ¼ 1=l� 1, we show that these functions approxi-
mately become �-independent, thereby implying that Es in (Es)
scales as

Esðkz; We;b;lÞ ¼ a0ðkz; bÞ þWe2 b0ðkz; bÞ þWe4 c0ðkz; bÞ þ Oð1=lÞ:
ðC:9Þ

One of the key results of this section is our finding that, in flows
with high elasticity numbers, the analysis of the inertialess Old-
royd-B model correctly approximates dynamics of polymer stress
fluctuations. This follows directly from the observation that the
evolution model (6) is in a standard singularly perturbed form.
Namely, setting � to zero in (6a) and (6c) yields the expressions
for /1 ¼ w and /3 ¼ u in terms of the polymer stress fluctuation
tensor s and the stochastic forcing d. As explained in Appendix E,
even though these expressions do not represent valid approxima-
tions of w and u (see the discussion following Eq. (E.2)) they can
still be used to approximate these two fields as an input into the
equations for polymer stresses (6b), (6d), and (6e). This is because
the error in approximating w and u by white noise forcing is fil-
tered out by the dynamics of the slow subsystem. Although this
is a viable approach to the analysis of the functions a; b, and c in
(Es), a more convenient representation for determination of these
functions is laid out next.

C.2.1. Scaling of function a in (Es) with �
We begin this section by examining the �-dependence of the

operators that map d1 to /4 ¼ s12 s13½ �T and d2 or d3 to
/2 ¼ s22 s23 s33½ �T . From Section 3.2 we recall that the steady-state
variance of these operators, which are respectively denoted by
C/4 ;1 and C/2 ;j with j ¼ f2;3g, is quantified by the function
aðkz; b; �Þ in (Es). Based on the developments in Appendices B.1
and E we conclude that C/4 ;1 and C/2 ;j admit the following evolu-
tion equations

_xij

� _zij

� �
¼

�I I
ð1� bÞSk bSk

� �
xij

zij

� �
þ

0
Fj

� �
dj;

/i ¼ Ci 0½ �
xij

zij

� �
;

ðC:10Þ

with C2 ¼ S21;C4 ¼ S43; fk ¼ os for i ¼ 2; k ¼ sq for i ¼ 4g, homoge-
neous Dirichlet boundary conditions on x41 ¼ f ¼ u=ðixþ 1Þ and
z41 ¼ u, and homogeneous Cauchy boundary conditions on
x2j ¼ n ¼ w=ðixþ 1Þ and z2j ¼ w for j ¼ f2;3g. The analysis pre-
sented in Appendix D.2 develops the following formula for the func-
tion a

aðkz; b; �Þ ¼ asqðkz; b; �Þ þ aosðkz; b; �Þ

¼ 1
2

trace S�1
sq ðbSsq � �IÞ�1S
43 S43

� �
þ 1

2
trace S�1

os ðbSos � �IÞ�1S
21 S21

� �
;

which holds for all kz, non-negative values of �, and b 2 ð0;1Þ. Fur-
thermore, in flows with � ¼ 1=l� 1, the function a in (Es) is
approximately �-independent, i.e.

aðkz;b; �Þ ¼ a0ðkz;bÞ þOð�Þ ¼ ~a0ðkzÞ=bþOð�Þ;
~a0ðkzÞ ¼ ~asq;0ðkzÞ þ ~aos;0ðkzÞ ¼ ð1=2Þtrace S�2

sq S
43 S43 þ S�2
os S
21 S21

� �
;

ðC:11Þ

and the aggregate variance amplification of the operators
C/4 ;1;C/2 ;2, and C/2 ;3 in inertialess flows of an Oldroyd-B fluid is
determined by aðkz; b; 0Þ ¼ ~a0ðkzÞ=b.

We note that similar arguments as in Appendix E can be em-
ployed to show that the dynamics of the slow subsystems in
(C.10) are, respectively, given by

_n ¼ �ð1=bÞn� ð1=bÞS�1
os Fj dj;

/2 ¼ S21 n;
ðC:12Þ

with j ¼ f2;3g, and

_f ¼ �ð1=bÞf� ð1=bÞS�1
sq d1;

/4 ¼ S43 f:
ðC:13Þ

It is easy to show that the frequency responses of slow subsystems
(C.12) and (C.13) are fully captured by those determined from the
inertialess model, i.e.,

C/2 ;jðx; kz; b;0Þ ¼ �
1=b

ixþ 1=b
S21 S�1

os Fj; j ¼ 2;3;

C/4 ;1ðx; kz; b;0Þ ¼ �
1=b

ixþ 1=b
S43 S�1

sq ;

and that the aggregate variance amplification of these operators is
obtained by setting � to zero in (C.11). This separates the temporal
and the spatial parts of the responses and suggests simple temporal
dynamics of C/2 ;j and C/4 ;1 in inertialess flows. The simple features
of the temporal responses would not be obvious if the singular per-
turbation techniques were instead applied directly to the original
evolution model (6).

C.2.2. Scaling of function b in (Es) with �
Singular perturbation techniques can be employed to show that

� has a negligible influence on the function b in elasticity-domi-
nated flows. Since this analysis follows a similar path to what
was already presented, here we only derive the expression for
the function b0,

bðkz; b; �Þ ¼ b0ðkz; bÞ þ Oð�Þ;

which determines the steady-state variance amplification from d1

to /5 ¼ s11 and from ½d2 d3�T to /4 ¼ s12 s13½ �T in inertialess flows.
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Since the streamwise forcing does not influence the dynamics of /1

and /2, the response of /5 arising from d1 is determined by (see
Appendix A.2)

/5 ¼
We

ixþ 1
S53 uþ S54 /4ð Þ ¼ We

ixþ 2
ixþ 1

S53 f:

In arriving at this expression, we have used (i) the definition of
f; f ¼ u=ðixþ 1Þ; (ii) the fact that /4 ¼ S43f when /1 ¼ 0 and
/2 ¼ 0; and (iii) S54S43 ¼ S53. Now, in inertialess flows the dynamics
of f are governed by (C.13), and we thus have

C/5 ;1ðx; kz; b;0Þ ¼ C11;1ðx; kz; b;0Þ

¼ � ixþ 2
bðixþ 1Þðixþ 1=bÞ S53 S�1

sq :

A bit of algebra yields the expression for the variance amplification
of this operator

b11;1ðkz; b;0Þ ¼
1þ 4b

2bð1þ bÞ trace S�1
sq S
53 S53 S�1

sq

� �
: ðC:14Þ

We next examine variance amplification of operators from d2 or d3

to /4 in inertialess flows. Using (A.4b) and the definition of
n; n ¼ w=ðixþ 1Þ, we can express /4 as

/4 ¼
We

ixþ 1
S41 þ

S42S21

ixþ 1

� �
wþ 1

ixþ 1
S43 u

¼We S41 nþ S42 S21
1

ixþ 1
n

� �
þ 1

ixþ 1
S43 u:

In the absence of inertia, u arising from d2 or d3 is determined by
(for details, see Appendix C.1.2)

u ¼ b� 1
b

S�1
sq u ¼ We

b� 1
b

S�1
sq Cp2

1
ixþ 1=b

n;

which in conjunction with the above expression for /4 and (C.12)
yields

/4 ¼We S41 nþ S42 S21
1

ixþ 1
nþ b� 1

b
S43 S�1

sq Cp2
1

ðixþ 1=bÞðixþ 1Þ n

� �
;

n ¼ � 1=b
ixþ 1=b

S�1
os Fj dj; j ¼ 2;3:

ðC:15Þ

By selecting n1 ¼ n; n2 ¼ n1=ðixþ 1Þ; n3 ¼ n2=ðixþ 1=bÞ, the opera-
tor C/4 ;j that relates d2 or d3 to /4 in (C.15) can be represented by
the following evolution equation

_n1

_n2

_n3

264
375 ¼ �1=b 0 0

1 �1 0
0 1 �1=b

264
375 n1

n2

n3

264
375þ �ð1=bÞS�1

os Fj

0
0

264
375dj;

/4 ¼ S41 S42 S21
b�1

b S43 S�1
sq Cp2

h i n1

n2

n3

264
375;

ðC:16Þ
with homogeneous Cauchy boundary conditions on n1; n2, and n3. In
inertialess Poiseuille and Couette flows, the Lyapunov equation
associated with (C.16) can be employed to compute the variance
amplification of the frequency response operators that map d2 or
d3 to /4. By defining n ¼ n1 n2 n3½ �T , Eq. (C.16) can be rewritten as

_nðy; kz; tÞ ¼ AnðkzÞnðy; kz; tÞ þ BjðkzÞdjðy; kz; tÞ;
/4ðy; kz; tÞ ¼ C4ðkzÞnðy; kz; tÞ;

and the function which determines the variance amplification from
d2 and d3 to /4 ¼ s12 s13½ �T in inertialess flows is obtained from
trace PnjC



4C4

� �
, where Pnj solves the Lyapunov equation

AnPnj þ PnjA


n ¼ �BjB



j :

C.2.3. Scaling of function c in (Es) with �
The dependence of the steady-state variance amplification from

½d2 d3�T to /5 ¼ s11 on � in elasticity-dominated flows of Oldroyd-B
fluids can be ascertained using singular perturbation techniques,

cðkz; b; �Þ ¼ c0ðkz; bÞ þ Oð�Þ:

As shown in Section 3.2, this function is responsible for a quartic
scaling of (Es) with We (cf. (Es)).

In this section we only present the procedure that can be used
to compute the function c0 which quantifies the variance sustained
in s11 by d2 and d3 in inertialess channel flows. In the absence of
inertia, the operator that maps the wall-normal and spanwise
forces to the streamwise component of the polymer stress tensor
can be expressed as

/5 ¼We2 S51 nþ S54 S41
1

ixþ 1
nþ S54 S42 S21

1

ðixþ 1Þ2
n

 !

þWe2 b� 1
b

S53 S�1
sq Cp2

1
ixþ 1=b

1
ixþ 1

nþ 1

ðixþ 1Þ2
n

 !
;

n ¼ � 1=b
ixþ 1=b

S�1
os Fj dj; j ¼ 2;3: ðC:17Þ

Now, by selecting c1 ¼ n; c2 ¼ c1=ðixþ 1Þ; c3 ¼ c2=ðixþ 1Þ;
c4 ¼ ðc2 þ c3Þ=ðixþ 1=bÞ, the operator C/5 ;j that relates d2 or d3 to
/5 in (C.17) can be represented by the following evolution equation

_c1

_c2

_c3

_c4

26664
37775 ¼

�1=b 0 0 0
1 �1 0 0
0 1 �1 0
0 1 1 �1=b

26664
37775

c1

c2

c3

c4

26664
37775þ

�ð1=bÞS�1
os Fj

0
0
0

26664
37775dj;

/5 ¼ S51 S54 S41 S54 S42 S21
b�1

b S53 S�1
sq Cp2

h i c1

c2

c3

c4

26664
37775;

ðC:18Þ

with homogeneous Cauchy boundary conditions on c1; c2; c3, and c4.
This equation is in a form suitable for computing the variance sus-
tained in /5 ¼ s11 by wall-normal and spanwise forces in inertialess
flows (i.e., the function c0ðkz; bÞ). In Poiseuille flow, the explicit
expression for c0ðkz; bÞ is rather involved, but in Couette flow some
tedious algebraic manipulations can be used to derive the following
formula,

c0ðkz; bÞ ¼
4b4 þ 16b3 þ 29b2 þ 6bþ 1

ðbþ 1Þ3
~c0ðkzÞ;

~c0ðkzÞ ¼ k2
z trace @y D�2 DD�2 @y

� �
:

ðC:19Þ

The analysis of the functions a0; b0, and c0 in (C.9) that determine
spatial frequency responses of polymer stress fluctuations in iner-
tialess Couette and Poiseuille flows of Oldroyd-B fluids has been
conducted in Section 4.2.

Appendix D. Scaling of functions f in (Ev) and a in (Es) with �

We outline here the procedure that is most convenient for
uncovering explicit �-scaling of the We-independent functions f
and a in the expressions for variance amplification of velocity
(Ev) and polymer stress (Es) fluctuations. This approach utilizes
the fact that the variance amplification can be determined from
the solution of the corresponding Lyapunov equation.
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D.1. Scaling of function f in (Ev) with �

From Section 3.1 we recall that the function f in (Ev) is deter-
mined by

f ¼ f u1 þ
X3

j¼ 2

fvj þ fwj
� �

¼ f sq þ fos;

where functions fsq and fos, respectively, quantify the variance
amplification of the frequency response operators from d1 to u

and from ½d2 d3�T to ½v w�T . From Appendix B.1 it follows that these
operators admit evolution representations with

Ak ¼
�I I

1�b
� Sk

b
� Sk

" #
; Bk ¼

0
1
� Fk

" #
; Ck ¼ 0 Gk½ �; k ¼ fos;sqg;

where

Fsq ¼ F1 ¼ I; Gsq ¼ Gu ¼ I; Fos ¼ F2 F3½ �; Gos ¼
Gv

Gw

� �
:

Each fk is then determined by

fk ¼ trace PkC
kCk

� �
; k ¼ fos;sqg;

where Pk denotes the solution to the Lyapunov equation

AkPk þ PkA
k ¼ �BkB
k:

Now, since both Sos and Ssq are self-adjoint, and since
fF1F
1 ¼ I; F2F
2 þ F3F
3 ¼ Ig; fG
uGu ¼ I; G
vGv þ G
wGw ¼ Ig we have

A
k ¼
�I 1�b

� Sk

I b
� Sk

" #
; BkB
k ¼

0 0
0 1

�2 I

" #
; C
kCk ¼

0 0
0 I

� �
; k ¼ fos;sqg:

We represent the self-adjoint operators Pkð�Þ as

Pkð�Þ ¼
Xkð�Þ Y
kð�Þ
Ykð�Þ Zkð�Þ

� �
; k ¼ fos;sqg; ðD:1Þ

where the components of Pk are determined from the following sys-
tem of equations

� 2Xkð�Þ þ Ykð�Þ þ Y
kð�Þ ¼ 0; ðD:2aÞ

ð1� bÞSkXkð�Þ þ bSkYkð�Þ � �Ykð�Þ þ �Zkð�Þ ¼ 0; ðD:2bÞ

Sk bZkð�Þ þ ð1� bÞY
kð�Þ
� �

þ bZkð�Þ þ ð1� bÞYkð�Þð ÞSk ¼ �ð1=�Þ I:

ðD:2cÞ

Since the operators Sk with k ¼ fos;sqg in (D.2) are self-adjoint,
they can be diagonalized using their respective eigenfunctions as
the orthonormal basis of the underlying function space (see Appen-
dix B of [7]). Thus, the solutions Xk;Yk, and Zk of (D.2) also admit
diagonal representation. This observation in conjunction with the
fact that all coefficients in (D.2) are real can be used to obtain
Y
kð�Þ ¼ Ykð�Þ, which consequently simplifies system (D.2) to

Ykð�Þ ¼ Xkð�Þ; ðD:3aÞ
SkXkð�Þ � �Xkð�Þ þ �Zkð�Þ ¼ 0; ðD:3bÞ
Sk bZkð�Þ þ ð1� bÞXkð�Þð Þ þ bZkð�Þ þ ð1� bÞXkð�Þð ÞSk ¼ �ð1=�Þ I:

ðD:3cÞ

Now, Lemma 1 from [50] can be utilized to solve (D.3c),

bZkð�Þ þ ð1� bÞXkð�Þ ¼ �
1

2�
S�1

k ;

which in combination with (D.3b) yields the following expressions
for the operators Xkð�Þ and Zkð�Þ,

Xkð�Þ ¼
1
2

S�1
k ðbSk � �IÞ�1

; ðD:4aÞ

Zkð�Þ ¼
1
2

S�1
k ðbSk � �IÞ�1 � 1

2�
ðbSk � �IÞ�1

: ðD:4bÞ

From the above decomposition of Pkð�Þ, the definitions of fk and
C
kCk, and (D.4b) it follows that the We-independent functions fk are
determined by

fk ¼ trace Zkð�Þð Þ

¼ 1
2

trace S�1
k ðbSk � �IÞ�1 � ð1=�Þ ðbSk � �IÞ�1

� �
; k ¼ fos;sqg:

Since both Sos and Ssq are stable self-adjoint operators, the operators
ðbSk � �IÞ are invertible. Consequently, this expression for fk holds
for all positive values of � and for all b 2 ð0;1Þ. Furthermore, for
�� 1, the Neumann series can be utilized to rewrite the inverse
of the operator ðbSk � �IÞ as

bSk � �Ið Þ�1 ¼ ð1=bÞS�1
k I� � ð1=bÞS�1

k

� ��1

¼ ð1=bÞS�1
k

X1
n¼ 0

ð�=bÞS�1
k

� �n

¼ ð1=bÞS�1
k þ � ð1=b

2ÞS�2
k þ �2 ð1=b3ÞS�3

k þOð�3Þ:

Hence, for 0 < �� 1, the function f in (Ev) can be expressed as

f ðkz; b; �Þ ¼
1
�

X1
n¼ 0

�nfnðkz; bÞ; f 0ðkz; bÞ ¼ �
1

2b
trace S�1

os þ S�1
sq

� �
;

fnðkz; bÞ ¼ �
ð1� bÞ
2bnþ1 trace S�ðnþ1Þ

os þ S�ðnþ1Þ
sq

� �
; n ¼ 1;2; . . . :

D.2. Scaling of function a in (Es) with �

From Section 3.2 we recall that the function a in (Es) is deter-
mined by

a ¼ asq þ aos;

where asq ¼ a12;1 þ a13;1 and aos ¼
P3

j¼ 2 a22;j þ a23;j þ a33;j
� �

, respec-
tively, quantify the variance amplification of the frequency response
operators from d1 to /4 ¼ s12 s13½ �T and from ½d2 d3�T to /2 ¼
s22 s23 s33½ �T . Since these operators admit evolution equations gi-

ven by (C.10) we conclude that the autocorrelation operator of
the state in (C.10) is determined by Pkð�Þ in (D.1). Therefore,

aðkz;b;�Þ¼asqðkz;b;�Þþaosðkz;b;�Þ
¼trace Xsqð�ÞS
43 S43

� �
þ trace Xosð�ÞS
21 S21

� �
¼1

2
trace S�1

sq ðbSsq��IÞ�1S
43 S43þS�1
os ðbSos��IÞ�1 S
21 S21

� �
;

and this expression holds for all kz, non-negative values of �, and
b 2 ð0;1Þ.

Appendix E. Singular perturbation analysis of Hrj with
fr ¼ u; j ¼ 1g and fr ¼;w; j ¼ 2;3g

Here, we apply singular perturbation methods to examine how
the We-independent frequency response operators

Hu1 ¼ ð1þ ixÞGuKsqF1; Hrj ¼ ð1þ ixÞGrKosFj; r ¼ v;w; j¼ 2;3;

depend on � in flows with � ¼ 1=l� 1. The aggregate steady-state
variance of these operators is captured by the function f in (Ev)
whose unfavorable scaling with � was demonstrated in Appendix
C.1.1. Here, we show that the origin of this unfavorable scaling
arises from the broadening of the temporal spectrum of these
operators with a decrease in �. Furthermore, we demonstrate that
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while the inertialess model correctly predicts behavior of these
operators at low temporal frequencies, it provides a poor approxi-
mation at high temporal frequencies. We also show that, from a
physical point of view, no important viscoelastic effects take place
in the contribution of the function f to the spatial frequency re-
sponses of velocity fluctuations in elasticity-dominated flows.

As shown in Appendix B.1, the operators Hrj with fr ¼ u; j ¼ 1g
and fr ¼ v ;w; j ¼ 2;3g admit evolution equations given by

_xrj

� _zrj

� �
¼

�I I
ð1� bÞSk bSk

� �
xrj

zrj

� �
þ

0
Fj

� �
dj;

r ¼ 0 Gr½ �
xrj

zrj

� �
;

ðE:1Þ

with fk ¼ sq for r ¼ u; k ¼ os for r ¼ v;wg, homogeneous Dirichlet
boundary conditions on xu1 and zu1, and homogeneous Cauchy
boundary conditions on xrj and zrj for fr ¼ v;w; j ¼ 2;3g. From a
physical point of view, zrj and xrj with fr ¼ v;w; j ¼ 2;3g are,
respectively, determined by the streamfunction w and the scalar
field n that represents a low-pass version of w, i.e.,

zrj ¼ w; xrj ¼ n ¼ w=ðixþ 1Þ; fr ¼ v;w; j ¼ 2;3g:

Note that, at any time instant, /2 is obtained from the wall-normal
and spanwise gradients in n;/2 ¼ S21n (for details, see Appendix
B.1). On the other hand,

zu1 ¼ u; xu1 ¼ f ¼ u=ðixþ 1Þ;

where f is obtained by filtering high temporal frequencies in the
streamwise velocity fluctuation. This scalar field determines /4

through a static-in-time relationship, /4 ¼ S43f.
The approximate solutions for xrj and zrj in (E.1) can be found by

performing a slow-fast decomposition of the system’s dynamics.
By setting � ¼ 0 in the zrj-equation of system (E.1), we obtain

�zrj ¼ �ð1=bÞ ð1� bÞ�xrj þ S�1
k Fjdj

� �
: ðE:2Þ

As in Appendix C.1.2, the white noise component dj in the expres-
sion for �zrj prevents it from being a valid approximation of zrj. Nev-
ertheless, �zrj can still be employed as an approximation of an input
zrj to the xrj-subsystem in (E.1) as the slow system filters out the
white noise component in �zrj. On the other hand, an approximation
of the fast subsystem is given by

� _zrj;f ¼ bSkzrj;f þ Fjdj;

with

zrjðtÞ ¼ zrj;f ðtÞ � ð1� bÞ=bð Þxrj;sðtÞ þ Oð�1=2Þ:

Thus, the slow component of zrj arises from a contribution of
ð1� bÞSkxrj and not from a contribution of the white noise input
dj, as would be common in singularly perturbed systems subject
to slow inputs [40]. To summarize, the slow-fast decomposition of
system (E.1) is given by

_xrj;s

_zrj;f

" #
¼

Arj;s 0

0 1
�Arj;f

" #
xrj;s

zrj;f

" #
þ

Bj;s

1
�Bj;f

" #
dj;

r ¼ Cr;s Cr;f½ �
xrj;s

zrj;f

� �
;

where

Arj;s ¼ �ð1=bÞI; Bj;s ¼ �ð1=bÞS�1
k Fj; Cr;s ¼ ðb� 1Þ=bð ÞGr ;

Arj;f ¼ bSk; Bj;f ¼ Fj; Cr;f ¼ Gr:

Consequently, each velocity component can be decomposed into its
slow and fast parts,

r ¼ rs þ rf ; rs ¼ Hrj;sdj; rf ¼ Hrj;f dj;

where the slow frequency response is a function of x

Hrj;sðkz;x; bÞ ¼ 1� b
b b ixþ 1ð Þ GrS

�1
k Fj;

and the fast frequency response is a function of �x ¼ �x

Hrj;f ðkz; �x; bÞ ¼ Gr i �xI� bSkð Þ�1Fj; �x ¼ �x:
In this scaling, the frequency �x becomes important, i.e. Oð1Þ, only
for x of Oð1=�Þ or higher [40]. Hence, for low temporal frequencies
x ¼ Oð1Þ, the fast frequency response can be approximated by its
steady-state gain, Hrj;f � �ð1=bÞGrS

�1
k Fj. On the other hand, since

Hrj;s exhibits a low-pass property it becomes negligible at high tem-
poral frequencies. Therefore, a low-frequency approximation of Hrj

is given by

Hrjðkz;x; b; �Þ ¼ Hrj;sðkz;x; bÞ þHrj;f ðkz;0; bÞ þ Oð�Þ

¼ � ixþ 1
b ixþ 1

GrS
�1
k Fj þOð�Þ; jxj 6 x1; ðE:3Þ

for some fixed positive x1, and a high-frequency approximation of
Hrj is given by

Hrjðkz; �x=�; b; �Þ ¼ Hrj;f ðkz; �x; bÞ þ Oð�Þ

¼ Gr i �xI� bSkð Þ�1Fj þOð�Þ; j �xj P x2; ðE:4Þ

for some fixed positive x2.
Intuition about the temporal spectrum of the above frequency

response operators in elasticity-dominated flows can be developed
by analyzing properties of the operator Hu1. The spectral decompo-
sition of the operator Ssq in the expressions for Hu1;s and Hu1;f can
be used to represent these two operators as

Hu1;sðkz;x; bÞ ¼ diag
�ð1� bÞ

b jcnðkzÞj ðb ixþ 1Þ


 �
n2N

;

Hu1;f ðkz; �x; bÞ ¼ diag
1

b jcnðkzÞj
i �x

b jcnðkzÞj
þ 1

� �
8>><>>:

9>>=>>;
n2N

;

where cnðkzÞ ¼ �ðk2
z þ ðnp=2Þ2Þ are the eigenvalues of the Squire

operator, and N denotes the set of natural numbers,
N ¼ f1; 2; . . .g. By projecting Hu1;s and Hu1;f on the first eigenfunc-
tion of Ssq, we obtain the following approximate expression for Hu1

Hu1ðkz;x; b; �Þ � ixþ 1

jc1ðkzÞj b ixþ 1ð Þ � ix
b jc1ðkzÞj

þ 1
� �þOð�Þ: ðE:5Þ

The breakpoint frequencies in (E.5) are determined by x1 ¼ 1;
x2 ¼ 1=b, and x3 ¼ b jc1ðkzÞj=�, and the power spectral densities
of Hu1 in flows with b ¼ 0:1 and � ¼ f10�6;10�8g are shown in
Fig. E.1(a). For simplicity, the spanwise wavenumber is set to zero
but similar trends are observed for other values of kz. The solid lines
represent the results obtained by approximating Hu1 with (E.5), and
the symbols represent the results for the full operator Hu1. We note
that the projection of Hu1 on the first eigenfunction of Ssq captures
well all essential trends, especially in the region of low temporal
frequencies. Furthermore, we see that the peaks of the power spec-
tral densities remain invariant under the change in �. Instead, in-
creased elasticity spreads Pu1 over a broader range of temporal
frequencies. Since the cutoff frequency (i.e., the bandwidth) of Hu1

scales as 1/�, it is not surprising that the variance maintained in u
by d1 (which is obtained by integrating Pu1 over all x) is also inver-
sely proportional to �.

We note that, at � ¼ 0, i.e. in creeping flow of an Oldroyd-B fluid,
the operators Kos and Ksq simplify to

Kk ¼ �
1

b ixþ 1
S�1

k ; k ¼ fos;sqg;

776 M.R. Jovanović, S. Kumar / Journal of Non-Newtonian Fluid Mechanics 166 (2011) 755–778



Author's personal copy

which yields the expression for Hrj that corresponds to the low-
frequency approximation in (E.3). As illustrated in Fig. E.1(b), this
representation is characterized by the absence of a roll-off at high
temporal frequencies and it is a poor approximation of the high-
frequency dynamics (E.4). In particular, this implies that in
inertialess flows stochastic forcing d1 induces infinite variance in
the streamwise velocity component; similarly, stochastic forcing
in either d2 or d3 yields wall-normal and spanwise velocities with
unbounded variances. While the analysis conducted in Appendix
C.1.1 confirms that in the limit of infinitely large elasticity number
this is indeed the case, the analysis of this section shows that this
is simply a consequence of the temporal spectrum of Hrj becoming
broader and broader with an increase in l (cf. Fig. E.1(a)). Further-
more, the increased elasticity does not change the value of the
peaks of the frequency responses from d1 to u and from d2 or d3

to v or w. Finally, we have shown that, from a physical point of view,
no important viscoelastic effects take place in the variance amplifi-
cation of operators Hrj with fr ¼ u; j ¼ 1g and fr ¼ v ;w; j ¼ 2;3g.
Namely, in strongly elastic flows, the ð1=�Þ-term in the expression
for the function f ðkz; b; �Þ in (C.3) only depends on the Orr-Sommerfeld
and Squire operators in the streamwise-constant model of
Newtonian fluids with Re ¼ 1 and it is thus characterized by viscous
dissipation effects.

As a consequence of the above analysis, we conclude that deter-
mination of the function f in inertialess flows is an ill-posed prob-
lem. In the absence of inertia, white noise forcing – which has
contributions from arbitrarily large frequencies – has a direct influ-
ence on certain velocity components (d1 on u and ðd2; d3Þ on ðv ;wÞ;
cf. low-frequency approximation (E.3) and Fig. E.1(b)). Thus, at suf-
ficiently high temporal frequencies, inertial effects become impor-
tant and need to be retained in order to compute variance
amplification from these forcing to these velocity components.
As we have shown in Appendices C.1.2 and C.2, functions g in
(Ev) and ða; b; cÞ in (Es) become independent of � in the high-
elasticity-number limit and consequently do not suffer from this
problem.

References

[1] L.N. Trefethen, A.E. Trefethen, S.C. Reddy, T.A. Driscoli, Hydrodynamic stability
without eigenvalues, Science 261 (1993) 578–584.

[2] K.M. Butler, B.F. Farrell, Three-dimensional optimal perturbations in viscous
shear flow, Phys. Fluids A 4 (1992) 1637–1650.

[3] S.C. Reddy, D.S. Henningson, Energy growth in viscous channel flows, J. Fluid
Mech. 252 (1993) 209–238.

[4] L.N. Trefethen, M. Embree, Spectra and Pseudospectra: The Behavior of
Nonnormal Matrices and Operators, Princeton University Press, 2005.

[5] B.F. Farrell, P.J. Ioannou, Stochastic forcing of the linearized Navier–Stokes
equations, Phys. Fluids A 5 (1993) 2600–2609.

[6] B. Bamieh, M. Dahleh, Energy amplification in channel flows with stochastic
excitations, Phys. Fluids 13 (2001) 3258–3269.
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