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We study transient growth in inertialess plane Couette and Poiseuille flows of viscoelastic fluids. For
streamwise-constant three-dimensional fluctuations, we demonstrate analytically the existence of
initial conditions that lead to quadratic scaling of both the kinetic energy density and the elastic
energy with the Weissenberg number, We. This shows that in strongly elastic channel flows of
viscoelastic fluids, both velocity and polymer stress fluctuations can exhibit significant transient
growth even in the absence of inertia. Our analysis identifies the spatial structure of the initial
conditions �i.e., components of the polymer stress tensor at t=0� responsible for this large transient
growth. Furthermore, we show that the fluctuations in streamwise velocity and the streamwise
component of the polymer stress tensor achieve O�We� and O�We2� growth, respectively, over a
time scale O�We� before eventual asymptotic decay. We also demonstrate that the large transient
responses originate from the stretching of polymer stress fluctuations by a background shear and
draw parallels between streamwise-constant inertial flows of Newtonian fluids and
streamwise-constant creeping flows of viscoelastic fluids. One of the main messages of this paper is
that at the level of velocity fluctuation dynamics, polymer stretching and the Weissenberg number
in elasticity-dominated flows of viscoelastic fluids effectively assume the role of vortex tilting and
the Reynolds number in inertia-dominated flows of Newtonian fluids. © 2010 American Institute of
Physics. �doi:10.1063/1.3299324�

I. INTRODUCTION

Newtonian fluids, such as air and water, transition to
turbulence under the influence of inertia. For low Reynolds
numbers �Re�, the behavior of Newtonian fluids is dominated
by viscous dissipation. As Re increases, the influence of in-
ertia becomes more important and, at large enough Re, flows
of these fluids become turbulent. In contrast to Newtonian
fluids, viscoelastic fluids may become turbulent �i.e., enter a
time-dependent disordered flow state� even at low Re due to
additional dynamics associated with the polymeric contribu-
tion to the stress tensor.1–6 Transition to turbulence in vis-
coelastic fluids is not only of fundamental scientific impor-
tance, but is also relevant to practical applications. Examples
include the design and control of polymer processing opera-
tions and the development of strategies to efficiently mix
fluids in microfluidic devices.7–10

By now it is well understood that standard linear stabil-
ity analysis is misleading when it comes to predicting the
early stages of transition in wall-bounded shear flows of
Newtonian fluids.11–13 The non-normal nature of the dynami-
cal generator in the linear stability problem allows for initial
conditions that grow considerably on finite time intervals
before decaying asymptotically due to viscosity.14 This large
growth of initially small perturbations to the linearized equa-
tions could put the flow into a regime where nonlinear inter-

actions are no longer negligible. Furthermore, stochastic dis-
turbances to the linearized Navier–Stokes �NS� equations can
be significantly amplified, indicating that these equations
have high receptivity �i.e., they are exceedingly sensitive to
external disturbances� and small robustness margins �i.e.,
they are exceedingly sensitive to small changes in the under-
lying model�.15–19 Thus, background disturbances and imper-
fections in the laboratory environment represent particular
examples of modeling uncertainty that may conspire to yield
experimental observations which are at odds with results
from standard linear stability analysis. Alternative analysis
methods, dubbed nonmodal stability theory,13 identify vortex
tilting or lift-up as the primary driving force in early stages
of transition in Newtonian fluids. This mechanism leads to
the creation of alternating regions of high and low stream-
wise velocity �i.e., streamwise streaks� that are ubiquitous in
both experimental20 and numerical21–23 studies of transition
in wall-bounded shear flows. In contrast, standard linear sta-
bility analysis identifies Tollmien–Schlichting �TS� waves as
the primary mechanism leading to transition. Yet, the TS
waves are only observed in carefully controlled laboratory
experiments with very little background noise.24

For wall-bounded shear flows of viscoelastic fluids, the
dynamical generator in the linear stability problem is also
non-normal. This has led a number of researchers to apply
the tools of nonmodal stability theory in order to better un-
derstand transition in these flows. These analyses have pri-
marily used the Oldroyd-B constitutive equation, the sim-
plest model for a dilute solution of polymer molecules.8 Both
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analytical and numerical studies of transient growth phenom-
ena in plane Couette and Poiseuille flows of viscoelastic flu-
ids have been carried out,25–29 and these show that initial
conditions exist which can grow significantly at short times
before decaying at long times. The transient growth can oc-
cur when fluid inertia is much weaker than fluid elasticity,
and even when inertia is completely absent. Except for Ref.
29, the disturbances considered are two dimensional �2D�
and in the plane of the base flow. In Ref. 29, three-
dimensional �3D� disturbances are studied using the upper
convected Maxwell model �a special case of the Oldroyd-B
model�, but these involve perturbations only to the stresses
and not to the velocity field. We note that for plane Couette
flow, standard linear stability analysis indicates that the flows
of both Newtonian and Oldroyd-B fluids are stable.30–34 For
plane Poiseuille flows, instability is predicted to occur in
both Newtonian and Oldroyd-B fluids only above a critical
Reynolds number.35–37

Experimental observations to date of “elastic turbulence”
have been made in curvilinear shear flows rather than in
parallel shear flows.1–5 3D direct numerical simulations of
elasticity-induced transition in such flows under conditions
where fluid inertia is present have also been conducted.38,39 It
thus remains an open question whether elastic turbulence can
occur in parallel shear flows, and whether elastic turbulence
can be sustained when fluid inertia is completely absent.
While these issues are beyond the scope of the present study,
we lay some groundwork here by considering transient
growth of velocity and polymer stress fluctuations in inertia-
less flows through straight channels. These results could ul-
timately be used in direct numerical simulations to follow the
formation and evolution of coherent structures, similar to
what has been done for high-Reynolds-number flows of vis-
coelastic fluids.40

In a recent effort, the present authors investigated non-
modal amplification of exogenous disturbances in plane
Couette and Poiseuille flows of Oldroyd-B fluids41,42 with
arbitrary but nonzero Re. The disturbances are 3D in nature,
varying harmonically in the streamwise and spanwise direc-
tions and stochastically in the wall-normal direction and in
time. The results show that the most amplified perturbations
are nearly streamwise constant and have an O�1� spanwise
wave number, i.e., they are inherently 3D. Amplification can
occur in flows with low �but nonvanishing� Re provided that
the level of fluid elasticity is sufficiently strong. The under-
lying mechanism involves polymer stretching, which trans-
fers energy between polymer stress and velocity
fluctuations.42 These results demonstrate the importance of
streamwise streaks even in strongly elastic wall-bounded
shear flows of polymer solutions. We note that the early
stages of amplification of streaky flow patterns are related to
the large receptivity of the linearized governing equations.

The block diagram in Fig. 1�a� provides a systems-level
view of the problem considered in Refs. 41 and 42. In these
studies, the initial conditions in both velocity and polymer
stress fluctuations were set to zero, and the kinetic energy
density of flows driven by a spatiotemporal stochastic body
forcing d was examined. Although this analysis revealed sev-
eral important aspects of the linearized dynamics of

Oldroyd-B fluids, it leaves open the question of how the
linearized system responds to initial conditions. This infor-
mation is needed in order to completely capture the dynam-
ics of flow fluctuations.13 In Newtonian fluids, responses to
initial conditions and exogenous disturbances reveal similar
trends: large transient growth/receptivity, unfavorable scaling
with the Reynolds number, and omnipresence of streamwise
streaks. However, we show in this paper that for viscoelastic
fluids, the presence of initial conditions in polymer stress
fluctuations uncovers essential features of the linearized dy-
namics that were not observed in viscoelastic fluids subject
only to stochastic body forces. In particular, we demonstrate
that both velocity and polymer stress fluctuations in vis-
coelastic fluids can experience significant transient growth
even in the absence of inertia.

We analyze in this work transient growth in plane
Couette and Poiseuille flows of viscoelastic fluids. In our
analysis we set the Reynolds number to zero, which yields a
static-in-time relationship between velocity and polymer
stress fields �i.e., inertialess or creeping flow of a polymeric
fluid�. The motivation for considering creeping flow comes
from the observation that polymeric fluids can become tur-
bulent even at very small Re.1,2 The dynamics of the polymer
stress tensor are represented using the Oldroyd-B constitu-
tive equation. In addition to being one of the simplest con-
stitutive models available for polymeric fluids, it has been
widely used to interpret experimental observations in vis-
coelastic fluid flows with constant shear viscosity.7 Although
velocity and polymer stress fluctuations are fully 3D in gen-
eral, we focus here on the case where the fluctuations are 3D
but streamwise constant �i.e., the streamwise wave number kx

is set to zero�; our prior work on stochastically driven flows
shows that such perturbations are most amplified by the lin-
earized dynamics. Additionally, considerably more analytical
progress can be made for this case compared with the case of
2D �streamwise-varying but spanwise-constant� fluctuations.
In particular, several explicit scaling relationships are devel-
oped and numerically stable results are obtained even at
large Weissenberg number, We, which is the ratio of the fluid
relaxation time to the characteristic flow time. We note that
none of numerical issues encountered in transient growth
studies of 2D problems at large We �Ref. 27� are observed
here. Furthermore, it should be noted that except for Ref. 29,
prior work on transient growth in viscoelastic fluids was re-
stricted to 2D disturbances, while Ref. 29 considers the
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FIG. 1. The block diagram of a flow of a polymeric fluid subject to �a�
external body forcing d and zero initial conditions in velocity and polymer
stress fluctuations and �b� initial conditions in polymer stress fluctuations
��0�. Note that in general, there may also be initial conditions in velocity
fluctuations. However, for creeping flows there is a static-in-time relation-
ship between velocity and polymer stress fluctuations, so only initial condi-
tions for the latter need to be considered.
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special case of 3D polymer stress �but not velocity� fluctua-
tions around a base state for an upper convected Maxwell
fluid.

For streamwise-constant 3D fluctuations, we show that
both velocity and polymer stress fluctuations can exhibit sig-
nificant transient growth even in inertialess flows. In particu-
lar, we analytically establish that the fluctuations in stream-
wise velocity and the streamwise component of the polymer
stress tensor achieve O�We� and O�We2� growth, respec-
tively, over a time scale O�We� before eventual asymptotic
decay. Furthermore, we identify the stretching of polymer
stress fluctuations by a background shear as the culprit be-
hind this large transient growth and determine the spatial
structure of the “worst-case” initial conditions in the polymer
stress tensor. Contrary to Ref. 29, these initial conditions
induce nonzero velocity fluctuations whose value is deter-
mined by the equation of motion for creeping flows of an
Oldroyd-B fluid.

Our presentation is organized as follows. In Sec. II we
describe the governing equations and introduce the
streamwise-constant linearized model. Transient responses of
velocity and polymer stress fluctuations are considered in
Secs. III and IV, respectively. Concluding remarks are of-
fered in Sec. V, and the mathematical developments are rel-
egated to Appendices A–D.

II. PROBLEM SETUP

A. Governing equations and base state

We consider an incompressible flow of a polymeric fluid
in a straight 3D channel �Fig. 2�. The fluid density is given
by �, � is the polymer relaxation time, and �s, �p are the
solvent and polymeric contributions to the shear viscosity,
respectively. By scaling length with the channel half-height
L, velocity with the largest base velocity Uo, time with �,
pressure with ��s+�p�Uo /L, and polymer stresses with
�pUo /L, the equations of motion, continuity, and the poly-
meric contribution to the stress tensor can be written as

Re V̇ = We���V + �1 − �� � · T − �P − Re V · �V� ,

�1a�

0 = � · V , �1b�

Ṫ = We�T · �V + �T · �V�T − V · �T�

+ �V + ��V�T − T . �1c�

Here, a dot identifies a partial derivative with respect to time
t, V is the velocity vector, P is the pressure, T is the polymer
stress tensor, � is the gradient, and �=� ·� is the Laplacian.
Equation �1� contains three parameters: the Reynolds num-

ber, Re=�UoL / ��s+�p�, characterizes the ratio of inertial
to viscous forces; the Weissenberg number, We=�Uo /L,
captures the product of the polymer relaxation time � and the
typical velocity gradient Uo /L; and the viscosity ratio,
�=�s / ��s+�p�, quantifies the contribution of the solvent to
the total viscosity. The constitutive equation �Eq. �1c�� is
given for an Oldroyd-B fluid. This equation describes
history-dependent elastic deformation and is obtained from
kinetic theory by representing each polymer molecule by an
infinitely extensible Hookean spring connecting two spheri-
cal beads.8,43

In shear-driven �Couette� and pressure-driven �Poi-
seuille� channel flows, Eq. �1� exhibits the steady-state solu-
tions for base velocity v and base polymer stress �,

v = �U�y�
0

0
�, � = �2 We�U��y��2 U��y� 0

U��y� 0 0

0 0 0
� ,

where y denotes the wall-normal coordinate, U�y�=y in
Couette flow, U�y�=1−y2 in Poiseuille flow, and U��y�
=dU�y� /dy.

In the limit of vanishing inertial forces, i.e., for Re=0,
one obtains a creeping flow of an Oldroyd-B fluid for which
Eq. �1a� simplifies to the following static-in-time equation:

0 = ��V + �1 − �� � · T − �P . �2�

Clearly, for �=1 Eq. �2� decouples from Eq. �1c� and creep-
ing flow of a Newtonian fluid is recovered.

B. Streamwise-constant linearized model

We confine our study to streamwise-constant 3D fluctua-
tions in creeping flows of an Oldroyd-B fluid. This signifies
that the dynamics evolve in the �y ,z�-plane, and that the flow
fluctuations in all three spatial directions are considered; for
example, v=v�y ,z , t�= �u v w�T, where u, v, and w, respec-
tively, denote the streamwise, wall-normal, and spanwise ve-
locity fluctuations. This particular model lends itself to an
explicit characterization of the transient growth dependence
on the Weissenberg number, as we will show below. We will
utilize this explicit We scaling to draw parallels between
streamwise-constant inertial flows of Newtonian fluids and
creeping flows of Oldroyd-B fluids.

The linearized dynamics can be obtained by decompos-
ing each field in Eqs. �2�, �1b�, and �1c� into the sum of base
and fluctuating parts �e.g., T=�+��, and by neglecting
quadratic terms in flow fluctuations in Eq. �1c� �see
Appendix A�. For streamwise-constant flows, the �y ,z�-plane
streamfunction � can be introduced to rewrite v and w as
�v=�z� ,w=−�y��, which implies that velocity fluctuations
automatically satisfy the continuity equation. Furthermore,
the pressure can be eliminated from Eq. �2� to express � and
u in terms of the polymer stress fluctuation tensor �. For
purely harmonic fluctuations in the z-direction, application of
this procedure yields
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FIG. 2. Schematic of 3D channel flow considered in this work.
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��2� = − �1 − ���ikz�y�22 − ��yy + kz
2��23 − ikz�y�33� ,

��u = − �1 − ����y�12 + ikz�13� ,

where the same notation is used to represent the field
�e.g., ��y ,z , t�� and its spanwise Fourier transform �e.g.,
��y ,kz , t��; the difference between the two should be clear
from the context. Here, �ij with i , j= �1,2 ,3� denotes the ijth
component of the polymer stress fluctuation tensor �,

� = ��11 �12 �13

�12 �22 �23

�13 �23 �33
� ,

kz is the spanwise wave number, i is the imaginary unit,
�=�yy −kz

2 with homogeneous Dirichlet boundary conditions,
and �2=�yyyy −2kz

2�yy +kz
4 with homogeneous Cauchy

�both Dirichlet and Neumann� boundary conditions. Thus,
the streamfunction �and consequently v and w� at each
time instant depends only on the current value of
�1= ��22 �23 �33�T; similarly, the streamwise velocity u is
instantaneously equilibrated with the gradient of �2

= ��12 �13�T. To highlight this dependence, we write

� = C��1, u = Cu�2, �3�

where operators C� and Cu are given by

C� = −
1 − �

�
�−2�ikz�y − ��yy + kz

2� − ikz�y � ,

�4�

Cu = −
1 − �

�
�−1��y ikz � .

We further rearrange the six independent components of the
polymer stress tensor � into the vector ��1

T �2
T �3�T, �3=�11,

and bring the linearization of Eq. �1c� to the form

�̇1 = − �1 + F1�� , �5a�

�̇2 = We�F21�1 + F2��� + �− �2 + F2uu� , �5b�

�̇3 = We2F3�� + We�F32�2 + F3uu� − �3, �5c�

where the F-operators are given by Eq. �A2� in Appendix A.
A careful examination of the linearized version of constitu-
tive equation �1c� shows that from a physical point of view,
F1� and F2u produce gradients of velocity fluctuations �i.e.,
�v�, F2� captures both transport and stretching of base poly-
mer stress by velocity fluctuations �i.e., v ·�� and � ·�v�, and
F21 and F32 represent stretching of polymer stress fluctua-
tions by base shear �i.e., � ·�v�. Furthermore, operators F3�

and F3u in Eq. �5c� quantify transport and stretching of a
base polymer stress by velocity fluctuations �i.e., v ·�� and
� ·�v�, respectively.

Substitution of Eq. �3� into Eq. �5� suggests a one-way
coupling from Eq. �5a� to Eq. �5b� and from Eqs. �5a� and
�5b� to Eq. �5c�,

�̇1 = A11�1, �6a�

�̇2 = We A21�1 + A22�2, �6b�

�̇3 = We2A31�1 + We A32�2 − �3, �6c�

where the We-independent operators A are given by Eq. �A3�
in Appendix A. Thus, for streamwise-constant fluctuations,
we conclude that �i� the dynamics of �1 are not influenced by
the other polymer stress fluctuations; �ii� the evolution of �2

depends on the evolution of �1; and �iii� there is no coupling
from �3=�11 to the other polymer stress components in Eq.
�6�. In particular, this demonstrates that in streamwise-
constant creeping flows of Oldroyd-B fluids, evolution of �11

does not influence evolution of �1 and �2. Since the velocity
fluctuation vector v only depends on �1 and �2, it follows
that evolution of �11 is inconsequential to the dynamics of u,
v, and w.

III. TRANSIENT RESPONSE OF VELOCITY
FLUCTUATIONS

One of the main objectives of this paper is to show that
velocity fluctuations in viscoelastic fluids can experience sig-
nificant transient growth even in the absence of inertia. This
necessitates study of the temporal evolution of the fluctua-
tions’ kinetic energy density. In this section, we examine
transient growth of this measure of the size of velocity fluc-
tuations as a function of the Weissenberg number. We estab-
lish that the presence of initial conditions in �1 leads to
O�We� responses of the streamwise velocity fluctuation. In
contrast, the responses from all other initial conditions to all
other velocity components are We independent. Since the L2

norm of velocity fluctuations determines kinetic energy, this
shows that initial conditions leading to quadratic scaling of
the energy density of the streamwise velocity fluctuation
with the Weissenberg number can be configured. Therefore,
in strongly elastic flows of Oldroyd-B fluids the streamwise
velocity can achieve significant transient growth even in the
absence of inertia if the initial configuration of the polymers
is such that �1�0��0. We also demonstrate that large tran-
sient responses arise from stretching of polymers by back-
ground shear and provide a comparison of streamwise-
constant inertial flows of Newtonian fluids and creeping
flows of Oldroyd-B fluids. In particular, we show that at the
level of velocity fluctuation dynamics, polymer stretching
and the Weissenberg number in elasticity-dominated flows of
viscoelastic fluids effectively assume the role of vortex tilt-
ing and the Reynolds number in inertia-dominated flows of
Newtonian fluids.

A. Kinetic energy density

At any spanwise wave number kz and time t, the kinetic
energy density of velocity fluctuations is captured by

E�kz,t� = 	v,v
 = Eu�kz,t� + E��kz,t� ,

where Eu�kz , t�= 	u ,u
 and E��kz , t�= 	v ,v
+ 	w ,w

=−	� ,��
. The angular brackets denote the standard
L2�−1,1� inner product, which induces the L2�−1,1� norm
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�v�2
2 = 	v,v
 = �

−1

1

v��y,kz,t�v�y,kz,t�dy ,

and the asterisk denotes the complex-conjugate transpose of
vector v. In view of the observation that v does not depend
on �3, we neglect Eq. �6c� in further analysis in this section,
yielding the following evolution model:


�̇1

�̇2
� = 
 A11 0

We A21 A22
�
�1

�2
� , �7a�

�u

v

w
� = �0 Cu

Cv 0

Cw 0
�
�1

�2
� . �7b�

The A-operators determine the dynamical properties of sys-
tem �7�, and the C-operators specify the static-in-time rela-
tions between velocity fluctuation components u, v, and w
and polymer stress components �1 and �2. These operators
are We independent and they are given by Eqs. �A3� and
�A4� in Appendix A. The system of equations �7� is in a form
suitable for the analysis carried out in Sec. III B, where we
provide an explicit characterization of the We dependence
for the transient growth of the velocity fluctuations.

B. Transient growth of kinetic energy density

By making use of basic results from linear systems
theory, the lower block-triangular structure of the operator on
the right-hand side of Eq. �7a� can be exploited to formally
determine the temporal evolution of �1 and �2,


�1�t�
�2�t� � = 
 S11�t� 0

We S21�t� S22�t�
�
�1�0�

�2�0� � . �8�

Here, �i�0� denotes the initial condition in �i, i.e.,
�i�0�=�i�y ,kz , t=0�, i=1,2. The operator Sii�t� represents the
solution to the equation44

Ṡii�t� = AiiSii�t�, Sii�0� = I ,

where I is the identity operator and

S21�t� = �
0

t

S22�t − ��A21S11���d� .

For notational convenience the dependence on y, kz, and � is
suppressed in the above expressions. More precisely, at any
fixed �We,� ,kz , t�, the S-symbols in Eq. �8� denote operators
that map initial values of �1 and �2 �as a function of y� to the
values of �1 and �2 �as a function of y� at time t, i.e.,

�1�y,kz,t� = �S11�kz,t��1�· ,kz,0���y� ,

�9�
�2�y,kz,t� = We�S21�kz,t��1�· ,kz,0���y�

+ �S22�kz,t��2�· ,kz,0���y� .

It should be also noted that operators Sij are parametrized by
� and that all of them are We independent. By substituting
these expressions for �1�t� and �2�t� into Eq. �7b� we finally
arrive at

u�y,kz,t� = We�Cu�kz�S21�kz,t��1�· ,kz,0���y�

+ �Cu�kz�S22�kz,t��2�· ,kz,0���y� ,

v�y,kz,t� = �Cv�kz�S11�kz,t��1�· ,kz,0���y� ,

w�y,kz,t� = �Cw�kz�S11�kz,t��1�· ,kz,0���y� .

Several conclusions can now be drawn about dynamics
of velocity fluctuations in streamwise-constant creeping
flows of Oldroyd-B fluids without doing any detailed com-
putations. First, the responses of wall-normal and spanwise
velocity fluctuations are We independent and they are caused
by �1�0�. Second, the streamwise velocity depends on both
�1�0� and �2�0�; the contribution of �2�0� to u�t� is We inde-
pendent and the contribution of �1�0� to u�t� scales linearly
with the Weissenberg number. Third, operator A21 in Eq. �7a�
is essential to providing affine dependence of u�t� on We;
this operator couples �1 to �2 and if it was zero the responses
of all velocity components would be We independent since
We would be gone from Eq. �7�.

Since the presence of initial conditions in �1 introduces
O�We� responses of the streamwise velocity fluctuation, we
next examine the maximal transient growth of u�t� �as a
function of kz, t, and �� arising from �1�0�. For any fixed
�We,� ;kz , t�, this quantity is determined by

Gu1�We,�;kz,t� = sup
�1�0��0, �2�0��0

�u�· ,kz,t��2
2

��1�· ,kz,0��2
2

= sup
��1�0��2=1, �2�0��0

�u�· ,kz,t��2
2

= We2	max�Cu�kz�S21��;kz,t��

= We2Ḡu1��;kz,t� , �10�

where 	max� · � denotes the largest singular value of a given

operator, and Ḡu1�� ;kz , t�=	max�Cu�kz�S21�� ;kz , t�� is a We-
independent function. We will also pay attention to the con-
tribution of different components of �1�0� to the transient

growth of u�t�. For example, Ḡu22�� ;kz , t� will denote the
maximal transient growth of u�t� arising from the initial con-
dition in �22 �with all other initial conditions being set to
zero� at We=1; similar notation will be used to quantify the
influence of the other two components of �1�0� on u�t�. A
comprehensive overview of transient growth analysis and its
utility in understanding early stages of transition in wall-
bounded shear flows of Newtonian fluids can be found in
Refs. 12–14.

C. Computation of the transient growth

A more convenient representation for determination of
velocity components can be obtained by applying the �tem-
poral� Laplace transform to Eqs. �5a� and �5b� and by sub-
stituting the resulting expressions into Eq. �3�. This proce-
dure effectively eliminates polymer stresses from the model
and transforms Eq. �7� into a system of equations for � and u
that are driven by the initial conditions in �1 and �2.
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The Laplace transform of Eq. �5a� yields

�1�s� =
1

s + 1
��1�0� + F1���s��, s � C , �11�

where �1�s� denotes the Laplace transform of �1�t�, with the
initial condition �1�t=0�=�1�0�. Substitution of this expres-
sion to �=C��1 leads to

��s� =
1

s + 1/�
C��1�0� , �12�

or equivalently in the time domain

��y,kz,t� = e−t/��C��1�· ,kz,0���y� . �13�

In arriving at Eq. �13� we have used the fact that C�F1�

=−�1−�� /�. Similarly, substitution of the Laplace transform
of Eq. �5b� to u=Cu�2 yields

u�s� =
Cu

s + 1
��2�0� + F2uu�s� + We�F21�1�s� + F2���s��� .

Now, by observing that CuF2u=−�1−�� /� and that, in both
Poiseuille and Couette flows, CuF2�=0, we substitute
Eqs. �11� and �12� to the last expression to obtain

u�s� = We�g1a�s�H1a + g1b�s�H1b��1�0� + g2�s�Cu�2�0� .

�14�

Here,

H1a = CuF21

= −
1 − �

�
�−1�U��y� + U��y��y ikzU��y� 0 � ,

�15�
H1b = CuF21F1�C�

=
�1 − ��2

�2 ikz�
−1�2U��y��y + U��y���


�−2�ikz�y − ��yy + kz
2� − ikz�y � ,

and

g2�s� =
1

s + 1/�
, g1a�s� =

g2�s�
s + 1

, g1b�s� = g1a�s�g2�s� .

We note that transformation of Eqs. �12� and �14� to the time
domain gives a system of equations for ��y ,kz , t� and
u�y ,kz , t� driven by the initial conditions in �1 and �2 men-
tioned above.

The inverse Laplace transform can now be used to ob-
tain an explicit expression for the streamwise velocity

u�y,kz,t� = We u1�y,kz,t� + u2�y,kz,t� ,

u1�y,kz,t� = u1a�y,kz,t� + u1b�y,kz,t� ,

�16�
u1r�y,kz,t� = g1r�t��H1r�1�· ,kz,0���y�, r = a,b ,

u2�y,kz,t� = g2�t��Cu�2�· ,kz,0���y� ,

where

g2�t� = e−t/�, g1a�t� =
�

1 − �
�e−t − e−t/�� ,

g1b�t� =
�

�1 − ��2 ���e−t − e−t/�� − �1 − ��te−t/�� .

Thus, we have managed to provide an explicit characteriza-
tion of the We dependence for the velocity fluctuations, and
to separate the temporal and the spatial parts of their re-
sponses. As evident from Eq. �16�, the temporal response of
streamwise velocity is determined by functions g1r�t� and
g2�t�, and the spatial response is characterized by the action
of operators H1r and Cu on �1�0� and �2�0�, respectively.

The above analysis facilitates the derivation of several
important conclusions about transient growth of streamwise
velocity fluctuations; these follow directly from Eq. �16� and
the expressions for operators �H1r ,Cu� and functions
�g1r�t� ,g2�t�� and do not require any numerical computations.
First, as Eq. �16� and the expression for g2�t� demonstrate,
the We-independent contribution to the streamwise velocity,
u2�y ,kz , t�, decays monotonically with time. Second, for
large values of kz the response of u�y ,kz , t� is governed by
viscous dissipation, i.e., the initial conditions in both �1 and
�2 are “filtered” by the system’s dynamics; this is an imme-
diate consequence of the definitions of operators H1r and Cu

�for additional details, see Appendix B�. Third, the We-
dependent contribution to the streamwise velocity,
u1�y ,kz , t�, exhibits a transient growth in time, as indicated
by the formulas for g1a�t� and g1b�t�; furthermore, from Eqs.
�15� and �16�, it follows that at kz=0, the response caused by
either �23�0� or �33�0� disappears �see Appendix B�. This
observation, in conjunction with the fact that viscous dissi-
pation “filters” responses for large spanwise wave numbers,
suggests the presence of peaks at nonzero kz in the transient

growth functions Ḡu23�� ;kz , t� and Ḡu33�� ;kz , t�. On the
other hand, Eq. �15� indicates that the initial conditions in �22

lead to nonzero responses of streamwise velocity even at
kz=0 �see Appendix B�. Thus, numerical computations are

necessary to determine the value of kz at which Ḡu22�� ;kz , t�
peaks; the computations conducted below suggest that this
function achieves its maximum at kz=0.

The function characterizing maximal transient growth of
streamwise velocity fluctuations arising from the initial con-
ditions in �1 �cf. Eq. �10�� in flows with �=0.1,

Ḡu1(0.1; kz, t): Ḡu1(0.1; kz, t):

(a) (b)

FIG. 3. �Color online� Maximal transient growth of streamwise velocity
fluctuations in �a� Couette and �b� Poiseuille flows with �=0.1 arising from
the initial condition in �1. All other initial conditions have been set to zero.

023101-6 M. R. Jovanović and S. Kumar Phys. Fluids 22, 023101 �2010�

Downloaded 23 Feb 2010 to 128.101.170.56. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Ḡu1�0.1;kz , t�, is shown in Fig. 3; results for other values of
� look similar and are not reported here for brevity. The
finite-dimensional approximations of the wall-normal opera-
tors H1a and H1b in the expression for u1�y ,kz , t� �cf. Eqs.
�15� and �16�� are obtained using the pseudospectral
method.45 All computations are performed in MATLAB with
50 Gauss–Lobatto points in the wall-normal direction; addi-
tional computations with a much larger number of grid
points in y were used to confirm convergence. We observe
similar trends in both Couette and Poiseuille flows with peak

values of Ḡu1�0.1;kz , t� occurring at kz=0 and t�0.25. From
the above discussion, it immediately follows that the largest
contribution to the transient growth of u comes from the
initial conditions in �22; this is because the maximal transient
growth happens at kz=0 and only �22�0� contributes to

Ḡu1�� ;kz=0, t�. This is further illustrated in Fig. 4, where
maximal transient growth of streamwise velocity fluctuations
caused by the different components of �1�0� in Couette flow
with �=0.1 is shown. The peak values in Fig. 4�a� are about
three times larger than the peak values in Fig. 4�b�, and about
60 times larger than the peak values in Fig. 4�c�. This sug-
gests that the initial conditions in �22 create the largest tran-
sient growth of the streamwise velocity fluctuations, fol-
lowed by the initial conditions in �23, followed by the initial
conditions in �33. It is also noteworthy that the peaks of

functions Ḡu23�0.1;kz , t� and Ḡu33�0.1;kz , t� occur at nonzero

values of kz; on the other hand, similar to Ḡu1�0.1;kz , t�,
function Ḡu22�0.1;kz , t� achieves its maximum at kz=0.
These computations confirm our a priori predictions ob-
tained from the analysis of Eqs. �15� and �16� above.

The functions characterizing the largest transient growth
of u caused by the initial conditions in �22, �23, and �33, in
Poiseuille flow with �=0.1, are shown in Fig. 5. We observe
similar trends as in Couette flow; �22�0� induces the largest
transient growth of the streamwise velocity fluctuations, fol-
lowed by �23�0�, followed by �33�0�. Relative to Couette

flow, the peak value of function Ḡu22�0.1;kz , t� is larger, and

the peak values of Ḡu23�0.1;kz , t� and Ḡu33�0.1;kz , t� are

smaller. We also note that Ḡu22�0.1;kz , t� looks very similar

in both flows, and that Ḡu23�0.1;kz , t� has a slightly broader
kz-spectrum in Poiseuille flow than in Couette flow; further-
more, the peak of this function has moved to slightly larger
value of kz �peaks in Figs. 4�b� and 5�b�, respectively, take
place at kz�1.29 and kz�1.64�. The most noticeable differ-
ence is observed in responses of u caused by the initial con-
ditions in �33; in Couette flow, transient growth function

Ḡu33�0.1;kz , t� has a single peak at �t�0.4, kz�2.35�,
whereas in Poiseuille flow, this function has two peaks at
�t�0.4, kz�2.44� and �t�0.4, kz�4.1�. The spatial distri-
bution of the initial conditions �in different components of

u22(0.1; kz, t): Ḡu23(0.1; kz, t): Ḡu33(0.1; kz, t):

(a) (b) (c)

ḠḠ

FIG. 4. �Color online� Maximal transient growth of streamwise velocity fluctuations in Couette flow with �=0.1 arising from the initial condition in �a� �22,
�b� �23, and �c� �33. All other initial conditions have been set to zero.

Ḡu22(0.1; kz, t): Ḡu23(0.1; kz, t): Ḡu33(0.1; kz, t):

(a) (b) (c)

FIG. 5. �Color online� Maximal transient growth of streamwise velocity fluctuations in Poiseuille flow with �=0.1 arising from the initial condition in �a� �22,
�b� �23, and �c� �33. All other initial conditions have been set to zero.
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�1� leading to the peaks observed in Figs. 4 and 5 is dis-
cussed in Sec. III D; the resulting streamwise velocity flow
structures are also described in Sec. III D.

Motivated by the observation that the largest transient
growth of energy density for streamwise-constant velocity
fluctuations takes place at kz=0, we next examine the linear-
ized model with both kx=0 and kz=0. From the analysis of
this model in Appendix C it follows that the streamwise ve-
locity u�y , t� can be represented as

u�y,t� = We u22�y,t� + e−t/�u�y,0� ,

�17�
u22�y,t� = − �e−t − e−t/����yy

−1�U��y� + U��y��y��22�· ,0���y� .

This indicates that the initial conditions in the streamwise
velocity �or, equivalently, in �12; from Eq. �C1� it follows
that u�y , t�=−�1 /�−1���yy

−1�y�12�· , t���y�� create monotoni-
cally decaying We-independent responses of u�y , t�, with a
rate of decay inversely proportional to the viscosity ratio �.
On the other hand, even though �22�y ,0��0 yields zero ini-
tial kinetic energy �see Appendix C�, the presence of initial
conditions in �22 generates streamwise velocity fluctuations,
We u22�y , t�, which scale linearly with the Weissenberg num-
ber and also exhibit temporal transient growth �see Fig. 6 for
an illustration�. We note that this feature arises solely from
viscoelastic nature of the underlying fluid, and that the ap-
proach that allows for fluctuations in polymer stresses but

not in velocities fails to identify it.29 Figure 6�a� shows the
maximal transient growth of u22 in Couette flow as a func-
tion of � and t. The black line in this plot indicates time
instants, as a function of �, at which maximal transient
growth is attained, t=� / �1−��log�1 /��. In Poiseuille flow,
the maximal transient growth at kz=0 has the same
�t ,��-dependence as in Couette flow; the only difference is
that the values shown in Fig. 6 should be multiplied by the
ratio of the maximal singular values of the operators in the
expression for u22�y , t� in Poiseuille and Couette flows,
2	max��yy

−1�1+y�y�� /	max��yy
−1�y��2.2. It should be noted that

if the time was normalized by the characteristic flow time
scale, L /Uo, the transient growth of u would take place over
an O�We� time scale before eventual asymptotic decay.

D. Dominant flow structures

In this section, we discuss the spatial distribution of the
initial conditions �in �22, �23, and �33� and the resulting
streamwise velocity flow patterns corresponding to the tran-
sient growth peaks observed in Figs. 4 and 5. These struc-
tures are purely harmonic in the spanwise direction and their
wall-normal shapes are determined by the principal singular
functions of the operators mapping different components of
�1�· ,kz ,0� to u�· ,kz , t�.14 The singular value decomposition is
performed at the values of kz and t, where the transient
growth functions of Figs. 4 and 5 achieve their respective
maxima.

Structures of the initial conditions in �23 and �33 leading
to the largest transient growth of u, in Couette flow with
�=0.1, are shown in Figs. 7�b� and 7�c�. The peaks of func-

tions Ḡ23 and Ḡ33 �cf. Figs. 4�b� and 4�c�� take place at
�kz�1.29, t�0.29� and �kz�2.35, t�0.4�, respectively,
and these worst case initial conditions are obtained by per-
forming a singular value decomposition of the operators
mapping �23�· ,1.29,0� to u�· ,1.29,0.29� and �33�· ,2.35,0� to
u�· ,2.35,0.4� at We=1. Similarly, Fig. 7�a� illustrates
the �22�0� that creates the largest transient growth of u at
kz=1.29. Since the underlying model driven by �22�0� is not
capable of selecting the preferential spanwise length scale,
this value of kz is chosen in order to compare the resulting
flow patterns with the ones obtained in a flow subject to the
worst case initial condition in �23. In Couette flow with

Ḡu22(β, 0, t): Ḡu22(0.1, 0, t):

(a) (b)

FIG. 6. �Color online� Maximal transient growth of streamwise velocity
fluctuations in Couette flow with kz=0 �a� as a function of � and t and �b� as
a function of t at �=0.1. The black line in plot �a� shows times as a function
of �, at which maximal transient growth is attained. Apart from �22�0�, all
other initial conditions have been set to zero.

FIG. 7. �Color online� Structures of the components of �1�0� leading to the largest transient growth of streamwise velocity fluctuations in Couette flow with
�=0.1 and �a� kz=1.29, t=0.23; �b� kz=1.29, t=0.29; and �c� kz=2.35, t=0.4.
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�=0.1 and kz=1.29, the transient growth function Ḡ22

achieves its largest value of 0.0560 at t�0.23 �in compari-

son, max Ḡ23�0.0586�. The initial conditions shown in Fig.
7 are normalized so that ��ij�· ,kz ,0��2=1, for each i , j=2,3,
and they are characterized by alternating regions of high and
low polymer stress values. The initial condition in �33 van-
ishes at the walls, while �22�0� and �23�0� have nonzero wall
values with the largest values of �22�0� being at the walls.
Furthermore, both �22�0� and �33�0� are antisymmetric, while
�23�0� is symmetric with respect to the channel centerline.
Dominant flow structures in Couette flow with �=0.1 subject
to the initial conditions of Figs. 7�a�–7�c� are shown in Figs.
8�a�–8�c�, respectively. The shaded plots represent stream-
wise velocity and the contour lines represent streamfunction
fluctuations; the solid �dashed� contour lines denote the posi-
tive �negative� values of �. As in inertial flows of Newtonian
fluids,14 the dominant flow patterns assume the form of
streamwise streaks that are symmetric with respect to the
channel centerline with pairs of counter-rotating streamwise
vortices in between them. Vortices in Fig. 8 occupy the entire
channel width; furthermore, they transport low-velocity fluid
away from the walls and redistribute it in the spanwise
direction.

The spatial distributions of the initial conditions in �23

and �33 leading to the peaks observed in Figs. 5�b� and 5�c�
�Poiseuille flow� are illustrated in Fig. 9, and the induced
dominant flow patterns are shown in Fig. 10. The worst-case
initial condition in �23 �cf. Fig. 9�a��, which is antisymmetric
with respect to the channel centerline with nonzero wall val-
ues, results in symmetric peaks in u with pairs of counter-
rotating vortices in both the upper and the lower halves of
the channel �cf. Fig. 10�a��. The developed structures are

reminiscent of the “best energy optima” determined in the
transient growth analysis in subcritical Poiseuille flow of
Newtonian fluids.14 We note that the dominant flow patterns
obtained in the presence of �22�· ,1.64,0� have similar spatial
profiles �not shown here�. In contrast, the two peaks in the

transient growth function Ḡ33 �cf. Fig. 5�c�� result in vastly
different initial conditions in �33 and corresponding dominant
flow structures. The peak at kz=2.44 in Fig. 5�c� is caused by
the antisymmetric initial condition �cf. Fig. 9�b�� which
yields the antisymmetric response in u with vortices occupy-
ing the entire channel width �cf. Fig. 10�b��. Conversely, the
peak at kz=4.1 in Fig. 5�c� comes from symmetric �33�0� �cf.
Fig. 9�c�� which induces the symmetric response in u with
two vortices that fit into the channel width �cf. Fig. 10�c��.

We close this section by computing the worst case initial
conditions of �22 and the resulting responses of u in both
Couette and Poiseuille flows. As described above, the tran-

sient growth function Ḡ22 achieves its peak value at kz=0
and t=� / �1−��log�1 /��. In Couette flow, the operator map-
ping �22�· ,0� into u22�· , t� simplifies to �cf. Eq. �17��

u22�y,t� = − �e−t − e−t/����yy
−1�y�22�· ,0���y� .

Singular value decomposition of this operator provides an
explicit characterization of the initial condition/response pair
��22�y ,0� ,u22�y , t�� corresponding to the largest transient
growth

�22�y,0� = c − cos��/2�y + 1�� ,

u22�y,t� = 2/��e−t − e−t/��sin��/2�y + 1�� ,

where c is an arbitrary constant. The initial conditions in �22

along with the corresponding streamwise velocity fluctua-

FIG. 8. �Color online� Dominant flow structures in Couette flow subject to the initial conditions shown in Figs. 7�a�–7�c�, respectively. The shaded plots
represent streamwise velocity and the contour lines represent streamfunction fluctuations.

FIG. 9. �Color online� Structures of �23�0� and �33�0� leading to the largest transient growth of streamwise velocity fluctuations in Poiseuille flow with
�=0.1 and: �a� kz=1.64, t=0.28; �b� kz=2.44, t=0.4; and �c� kz=4.1, t=0.4.
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tions, in both Couette and Poiseuille flows with �=0.1 and
t=� / �1−��log�1 /���0.25, are illustrated in Fig. 11.
The results in Poiseuille flow are obtained numerically in
MATLAB using the numerical scheme described in Ref. 45,
and �22�y ,0� in Couette flow is given for c=0.

Finally, we comment on the lack of intrinsic wavelength
selection in the Oldroyd-B model driven by �22�0�. Our
analysis is conducted in a channel that is infinitely long in
the horizontal directions and the question of spontaneous oc-
currence and physical realizability of these worst case initial
conditions in experiments remains; in particular, flow fluc-
tuations with large horizontal wavelength cannot be realized
in the laboratory. Thus, the presence of sidewalls in an ex-
perimental channel flow configuration, the level of back-

ground disturbances, and the initial distribution of polymer
stress components would all impact the length scale selec-
tion. Furthermore, we note that experimental and direct nu-
merical simulation results for Newtonian fluids are charac-
terized by the interaction of different modes rather than by a
dominance of one particular mode. Thus, the development of
the velocity fluctuations in a real viscoelastic flow is antici-
pated to be much more complicated than the structures
shown in this section. Nevertheless, the performed analysis
identifies the physical mechanism responsible for large tran-
sient growth �see Sec. III E� and it serves as an indication of
flow patterns that can be expected to be seen in both experi-
mental and numerical investigations of early stages of tran-
sition in viscoelastic fluids. It is also noteworthy that similar

FIG. 10. �Color online� Dominant flow structures in Poiseuille flow subject to the initial conditions shown in Figs. 9�a�–9�c�, respectively. The shaded plots
represent streamwise velocity and the contour lines represent streamfunction fluctuations.

τ22(y, 0): u22(y, 0.25):

(a)

τ22(y, 0):

(b)

u22(y, 0.25):

(c) (d)

FIG. 11. Structures of �22�y ,0� and u22�y ,0.25� corresponding to the largest transient growth of streamwise velocity fluctuations in Couette �first row� and
Poiseuille �second row� flows with kz=0, �=0.1, and t=� / �1−��log�1 /���0.25.
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lack of an intrinsic length scale was recently observed in the
analysis of the dynamics of a stochastically forced Lamb–
Oseen vortex;46 the authors eloquently explained the utility
of nonmodal stability theory in understanding the problem at
hand in spite of the issues with identification of the prevalent
wavelength.

E. Comparison to inertial flows of Newtonian fluids

We next provide comparison of the above results to
those for inertial flows of Newtonian fluids. By scaling
length with the channel half height L, velocity with the larg-
est base velocity Uo, and time with the diffusive time
�L2 /�s, the linearized evolution model for streamwise-
constant fluctuations assumes the following form:


�̇1

�̇2

� = 
 A11 0

Re A21 A22
�
�1

�2
� , �18a�

�u

v

w
� = �0 Cu

Cv 0

Cw 0
�
�1

�2
� . �18b�

This model is obtained by eliminating pressure from the lin-
earized NS equations and by expressing flow fluctuations in
terms of the �y ,z�-plane streamfunction �1=� �cf. Sec. II B�
and the streamwise velocity �2=u. Here, Re=�UoL /�s

denotes the Reynolds number, and operators A and C are
given by

A11 = �−1�2, A22 = �, A21 = − ikzU��y� ,

Cu = I, Cv = ikz, Cw = − �y ,

with Dirichlet boundary conditions on � and Cauchy bound-
ary conditions on �2. Note that A11, A22, and A21, respec-
tively, denote the Orr–Sommerfeld, Squire, and coupling op-
erators in the streamwise-constant linearized NS equations
with Re=1.12

Direct comparison of Eqs. �7� and �18� reveals a striking
structural similarity between streamwise-constant creeping
flows of Oldroyd-B fluids and inertial flows of Newtonian
fluids. In particular, these two equations can be represented
graphically by the corresponding block diagrams in Figs.
12�a� and 12�b�, respectively. The enabling mechanism for
transient growth in Newtonian fluids is vortex tilting, which
is embedded in operator A21=−ikzU��y�. In the absence of
vortex tilting, the responses of all velocity components are
Re independent and the dynamical properties of streamwise-
constant flows of Newtonian fluids are governed by viscous
dissipation. On the other hand, the key physical mechanism
for transient growth in creeping flows of Oldroyd-B fluids
is polymer stretching, which is embedded in operator
A21=F21+F2�C� �cf. Sec. II B and Appendix A�. We also

observe that the Weissenberg number in viscoelastic fluids
has a role similar to that of the Reynolds number in Newton-
ian fluids.

The above comparison suggests remarkable similarities
between streamwise-constant creeping flows of Oldroyd-B
fluids and streamwise-constant inertial flows of Newtonian
fluids. All these similarities are exhibited at the level of
velocity fluctuation dynamics. Namely, as far as kinetic en-
ergy density is concerned, it is conceptually useful to think
of creeping flows of Oldroyd-B fluids in terms of inertial
flows of Newtonian fluids. This analogy is made keeping in
mind that polymer stretching and the Weissenberg number in
elasticity-dominated flows of viscoelastic fluids effectively
take the role of vortex tilting and the Reynolds number in
inertia-dominated flows of Newtonian fluids.

Despite these similarities there are several important
fundamental differences between creeping flows of
Oldroyd-B fluids and inertial flows of Newtonian fluids.
First, as the results of Sec. III C demonstrate, O�We� re-
sponses of streamwise velocity fluctuations can be obtained
in viscoelastic fluids even at kx=kz=0. These responses
are caused by the initial conditions in �22 and they are
without parallel in Newtonian fluids. Namely, the linearized
NS equations with kx=kz=0 simplify to two decoupled dif-
fusion equations for the streamwise and spanwise velocity
fluctuations,

u̇ = �yyu, ẇ = �yyw ,

which shows dominance of viscous dissipation and mono-
tonic temporal decay of both u and w. On the other hand, in
the viscoelastic case w decays monotonically with time,
w�y , t�=e−t/�w�y ,0�, but the dynamics of u are governed by
�cf. Appendix C�

�
τ 1(0)

(sI − A11)
−1 � � WeA21

� ��
τ 2(0)

� (sI − A22)
−1 �

τ 2

Cu
�u

� � Cv
�v

� Cw
�w

τ 1

(a)

�
φ1(0)

(sI − Ā11)
−1 � � Re Ā21

� ��
φ2(0)

� (sI − Ā22)
−1 �

φ2

C̄u
�u

� � C̄v
�v

� C̄w
�w

φ1

(b)

FIG. 12. The block diagrams of �a� streamwise-constant creeping flows of
Oldroyd-B fluids, cf. Eq. �7�, and �b� streamwise-constant inertial flows of
Newtonian fluids, cf. Eq. �18�. In Newtonian fluids transient growth comes
from vortex tilting, i.e., operator A21, and in viscoelastic fluids it comes
from polymer stretching, i.e., operator A21. Note that the Weissenberg num-
ber in creeping flows of viscoelastic fluids assumes the role of the Reynolds
number in inertial flows of Newtonian fluids.
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��̇22 = − �22

�̇12 = − �12 + �yu + We U��y��22

u = − �1/� − 1��yy
−1�y�12

� ⇔ ��̇22 = − �22,

u̇ = − �1/��u − We�1/� − 1��yy
−1�U��y� + U��y��y��22.

�
We notice that the monotonically decaying response of �22,
�22�y , t�=e−t�22�y ,0�, couples into the equation for the
streamwise velocity through a term which is proportional to
We. This coupling, which physically comes from the stretch-
ing of �22 by a background shear �i.e., operator F21 in Eq.
�5b��, is the culprit behind the transient growth in time and
the linear scaling of u�y , t� with the Weissenberg number
observed earlier. Second, while kinetic energy density repre-
sents a relevant measure of the size of velocity fluctuations,
this quantity is not suitable for capturing evolution of poly-
mer stress fluctuations. The transient growth of stresses also
needs to be assessed as it could trigger nonlinearities and
cause secondary instability to streamwise-varying flow fluc-
tuations. In Sec. IV, we consider the response of polymer
stress fluctuations and examine the transient growth of the
elastic energy stored in polymers.

IV. TRANSIENT RESPONSE OF POLYMER
STRESS FLUCTUATIONS

In Sec. III, we have demonstrated that streamwise-
constant velocity fluctuations in creeping channel flows of
Oldroyd-B fluids can experience a significant transient
growth. We next examine the transient response of polymer
stress fluctuations and show that the nonzero initial contribu-
tion of �22 to the elastic energy leads to O�We2� responses of
the elastic energy. This We2-scaling comes from the stretch-
ing of polymer stress fluctuations by a background shear and
it is accompanied by a transient growth in time of �11. We
provide an explicit expression for the temporal transient
growth and identify time instants at which elastic energy
stored in polymers achieves its largest value in both Couette
and Poiseuille flows. Contrary to the results of Sec. III, the
transient response of polymer stress fluctuations does not
decay for large values of kz, which is a consequence of the
lack of a diffusion in the constitutive equations. Our numeri-
cal computations indicate that the addition of a small amount
of stress diffusion does not bring any significant changes into
the response of velocity fluctuations; conversely, this addi-
tion introduces a high-wavenumber roll-off into the response
of polymer stress fluctuations.

A. Elastic energy of polymer stress fluctuations

The elastic energy of polymer stress fluctuations in chan-
nel flows is captured by 
�t�=�i=1

3 
ii�t�, where 
ii�t� de-
notes the contribution of �ii to 
�t�,


ii�t� =
1

2
�

−1

1 �
−�

� �
−�

�

�ii�x,y,z,t�dxdzdy .

It should be noted that the trace of the polymeric contribu-
tion to the stress tensor is directly proportional to the mean-
square end-to-end distance of the Hookean dumbbell on

which the Oldroyd-B model is based �see Sec. 13.2 of Ref.
43�; 
�t� thus captures the deviation of the mean-square end-
to-end distance from its base value.

Since the Fourier transform of each �ii is given by

�ii�kx,y,kz,t� = �
−�

� �
−�

�

�ii�x,y,z,t�e−i�kxx+kzz�dxdz ,

it follows that 
ii�t� can equivalently be determined from


ii�t� =
1

2
�

−1

1

�ii�y,t�dy ,

where �ii�y , t� denotes the Fourier transform of �ii evaluated
at kx=kz=0, i.e., �ii�y , t�=�ii�kx=0,y ,kz=0, t�. Therefore, the
transient growth of elastic energy stored in infinitesimal
polymer stress fluctuations is governed by the linearized evo-
lution model at kx=kz=0.

From Eq. �C2a� in Appendix C we conclude that

�̇ii�y,t� = − �ii�y,t�, i = 2,3,

which implies that the contributions of both �22 and �33 to the
elastic energy decay monotonically with time, i.e.,


ii�t� = e−t
ii�0�, i = 2,3.

On the other hand, the temporal evolution of 
11 can be
ascertained by analyzing the following system of equations
�see Eq. �6� and Appendix C�:

�̇22 = − �22, �19a�

�̇12 = − �12 + �yu + We U��y��22, �19b�

�̇11 = − �11 + 2 We U��y���yu + �12� . �19c�

In Couette flow, Eq. �19� simplifies to

�̇22 = − �22,

�̇12 = − �12 + �yu + We �22,

�̇11 = − �11 + 2 We��yu + �12� ,

and the wall-normal integration of these equations, in con-
junction with Dirichlet boundary conditions on u, yields


̇22�t� = − 
22�t� ,


̇12�t� = − 
12�t� + We 
22�t� ,


̇11�t� = − 
11�t� + 2 We 
12�t� ,

where
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12�t� =
1

2
�

−1

1

�12�y,t�dy .

The Laplace transform can now be utilized to obtain the
expression for 
11,


11�s� =
1

s + 1

11�0� +

2 We

�s + 1�2
12�0� +
2 We2

�s + 1�3
22�0� ,

or equivalently in the time domain


11�t� = e−t
11�0� + 2 We t e−t
12�0� + We2 t2e−t
22�0� .

Therefore, in Couette flow, nonzero initial conditions in 
22

introduce an O�We2� response of 
11�t�. This response is
�-independent and it exhibits a temporal transient growth
that achieves its maximum at t=2. We note that this large
response is caused by the coupling from �22 to �12 and from
�12 to �11; physically, both these coupling terms represent
stretching of polymer stress fluctuations by a background
shear �cf. Eq. �19��.

On the other hand, the wall-normal integration of Eq.
�19� in Poiseuille flow �see Appendix D� gives

�̇22�t� = − �22�t� ,

�̇12�t� = − �1/���12�t� + We �22�t� ,


̇11�t� = − 
11�t� + We�2 − 1/���12�t� ,

where �12�t� and �22�t� are, respectively, determined by the
first and second moments of �12 and �22,

�12�t� = − 2�
−1

1

y�12�y,t�dy ,

�22�t� = 4�
−1

1

y2�22�y,t�dy .

The Laplace transform of the above equations can now be
used to obtain


11�s� =
1

s + 1
�
11�0� +

We�2 − 1/��
s + 1/�

�12�0�

+
We2�2 − 1/��

�s + 1��s + 1/��
�22�0�� ,

or equivalently in the time domain


11�t� = e−t
11�0� + We
1 – 2�

1 − �
�e−t/� − e−t��12�0�

+ We2 2� − 1

�1 − ��2 ���e−t/� − e−t�

+ �1 − ��te−t��22�0� .

Thus, in Poiseuille flow, nonzero initial conditions in �22

introduce an O�We2� response of 
11�t�. Contrary to Couette
flow, this response exhibits a temporal transient growth that
is �-dependent. Figure 13 shows contributions of different
components of the polymer stress tensor at t=0 to 
11�t� in
flows with We=1.

B. Transient growth of polymer stress fluctuations

In Sec. IV A, we have considered the transient response
of elastic energy stored in infinitesimal polymer stress fluc-
tuations. In this section, we study the transient growth of
different components of the polymer stress fluctuation tensor.
In particular, we show that the initial conditions in �1 and �2,

FIG. 13. �Color online� Functions mapping the initial conditions in �a� 
11�0�, �b� 
12�0�, �c� 
22�0�, �d� 
11�0�, �e� �12�0�, and �f� �22�0� to 
11�t� in Couette
�first row� and Poiseuille �second row� flows with We=1.
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respectively, lead to O�We2� and O�We� responses of the
streamwise component of the polymer stress tensor, �3=�11.
This transient growth takes place on O�We� time scales and
it is caused by the stretching of polymer stress fluctuations
by a background shear.

The time evolution of �1 and �2 is captured by Eq. �9� in
Sec. III B. On the other hand, system �6�, which governs the
dynamics of infinitesimal polymer stress fluctuations in
streamwise-constant creeping flows of Oldroyd-B fluids, can
be equivalently represented by the block diagram in Fig. 14.
From this block diagram it is easy to see that �3 can be
written as

�3�y,kz,t� = We2�S31�kz,t��1�· ,kz,0���y�

+ We�S32�kz,t��2�· ,kz,0���y�

+ �S33�kz,t��3�· ,kz,0���y� ,

where the We-independent operators S3i describe how the
initial conditions in �i influence the temporal evolution of �3

for each i= �1,2 ,3�. This expression implies that �3�0� in-
duces a We-independent response of �3; on the other hand,
�1�0� and �2�0� trigger responses of �3 that are proportional
to We2 and We, respectively. Thus, in strongly elastic creep-
ing flows of viscoelastic fluids the influence of initial condi-
tions in �1 should be most pronounced; the presence of �1�0�
has the strongest, i.e., O�We2�, effect on the streamwise
component of the polymer stress tensor, �3=�11. We also note
that this We2-scaling of �3 comes from operators A21, A31,
and A32 �see Fig. 14�, and that each of these operators con-
tains polymer stretching as its integral part �for definitions of
these operators, see Eq. �A3� and Sec. II B�.

Since �1�0� sets up an O�We2� response of �3�t�, we next
examine the maximal transient growth of �3 �as a function of
kz, t, and �� that comes from �1�0�. For any fixed
�We,� ;kz , t�, this quantity is determined by

G31�We,�;kz,t� = sup
�1�0��0, �2�0��0, �3�0��0

��3�· ,kz,t��2
2

��1�· ,kz,0��2
2

= sup
��1�0��2=1, �2�0��0, �3�0��0

��3�· ,kz,t��2
2

= We4	max�S31��;kz,t��

= We4Ḡ31��;kz,t� . �20�

Figure 15 illustrates the maximal transient growth of the
streamwise component of the polymer stress tensor, �3=�11,
arising from the initial conditions in �1 in flows with

�=0.1, Ḡ31�0.1;kz , t�. For each value of kz we observe two
transient growth peaks in Couette flow and a single peak in
Poiseuille flow. Contrary to the results of Sec. III, the tran-

sient response of �11 is fairly flat in kz and without a high-
wavenumber roll-off, which reflects the absence of diffusion
terms in Eq. �6�. The absence of stress diffusion in constitu-
tive equations describing rheological properties of viscoelas-
tic fluids is well documented �see, for example, Refs. 27 and
47–50�. Our numerical computations indicate that the addi-
tion of a small amount of diffusion to the constitutive equa-
tions, i.e., the addition of a term d�T to the right-hand side
of Eq. �1c� �as commonly done in direct numerical simula-
tions of viscoelastic fluids�, introduces a high-wavenumber
roll-off in the transient response of polymer stress fluctua-
tions �cf. Figs. 15�a� and 16�b��; on the other hand, the tran-
sient response of velocity fluctuations remains impervious to
this addition �cf. Figs. 3�a� and 16�a��. Figure 16 illustrates
the transient growth of u and �11 arising from the initial
conditions in �1 in Couette flow with �=0.1 and d=10−3.
Results in Poiseuille flow exhibit similar trends and are not
reported here for brevity. We note that diffusion in constitu-
tive equations can be obtained by accounting for the influ-
ence of Brownian motion on the center of mass of the
Hookean dumbbells representing polymer molecules.47

It is worth noting that in Couette flow with kx=kz=0, the

transient growth function Ḡ31�� ;0 , t� can be determined ex-
plicitly. As shown in Appendix D, the dynamics of the
streamwise component of the polymer stress tensor �11 in
Couette flow with kx=kz=0 are governed by �cf. Eq. �D1��

�̇22 = − �22,

�̇12 = − �1/���12 + �1/� − 1�
12�t� + We �22,

�̇11 = − �11 + 2 We��1/� − 1�
12�t� + �2 − 1/���12� .

The application of the Laplace transform to this system of
equations yields the following expression for �11:

�
τ 1(0)

(sI − A11)
−1 �

τ 1� WeA21
� ��

τ 2(0)

� (sI − A22)
−1 �

τ 2

WeA32
� ��

τ3(0)

� (sI + I)−1 �
τ3

�We2A31

�

FIG. 14. The block diagram of streamwise-constant creeping flows of Oldroyd-B fluids, cf. Eq. �6�. The initial conditions in �1 and �2, respectively, introduce
O�We2� and O�We� responses of the streamwise component of the polymer stress tensor, �3=�11.

Ḡ31(0.1; kz, t): Ḡ31(0.1; kz, t):

(a) (b)

FIG. 15. �Color online� Maximal transient growth of the streamwise com-
ponent of the polymer stress tensor �3=�11 in �a� Couette and �b� Poiseuille
flows with �=0.1 arising from the initial condition in �1. All other initial
conditions have been set to zero.
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�11�y,s� =
1

s + 1
�11�y,0� + We�s + 1��h1�s�
12�0�

− h2�s��12�y,0�� + We2�h1�s�
22�0�

− h2�s��22�y,0�� .

Here,

h1�s� =
2�1 − ���s + 2�
��s + 1��s + 1�3 , h2�s� =

2�1 – 2��
��s + 1��s + 1�2 ,

or equivalently in the time domain,

h1�t� = ���2�t + 2�2 − 2��t�t + 3� + 1� + t�t + 2��e−t

+ 2�1 – 2���e−t/��/�1 − ��2,

�21�
h2�t� = 2�1 – 2����e−t/� + �t − ��t + 1��e−t�/�1 − ��2.

It is now easy to show that the L2�−1,1� norm of �11 arising
from the initial conditions in �22 is determined by the follow-
ing linear combination of 
22

2 �0� and the L2 norm of �22�0�:

��11�· ,t��2
2 = We4�h2

2�t���22�· ,0��2
2 + 2h1�t�


�h1�t� − 2h2�t��
22
2 �0�� .

Using Eq. �20� and the fact that the only component of
�1�y ,0� that influences �11�y , t� at kz=0 is �22�y ,0�, we con-
clude that

Ḡ31��;0,t� = sup
��22�0��2=1, �11�0�=�12�0��0

��11�· ,t��2
2�We=1.

Thus, the transient growth function Ḡ31�� ;0 , t� for times at

which h1�t��h1�t�−2h2�t���0 is determined by Ḡ31�� ;0 , t�
=h2

2�t�. On the other hand, for times at which function
h1�t��h1�t�−2h2�t�� is positive we have

Ḡ31��;0,t� = sup
��22�0��2=1, �11�0�=�12�0��0

�h2
2�t���22�· ,0��2

2

+ 2h1�t��h1�t� − 2h2�t��
22
2 �0�� .

Now, we can use the Cauchy–Schwarz inequality to upper
bound 
22

2 �0�,


22
2 �0� = 1

4 	�22�· ,0�,1
2 �
1
4 ��22�· ,0��2

2 �1�2
2 = 1

2 ��22�· ,0��2
2.

For unit norm initial condition �22�y ,0�, ��22�· ,0��2=1, this
upper bound on 
22

2 �0� is strict �i.e., it can be achieved with
�22�y ,0�=1 /�2�. Therefore, if h1�t��h1�t�−2h2�t���0 then

Ḡ31�� ;0 , t�=h2
2�t�+h1�t��h1�t�−2h2�t��. A bit of algebra can

be used to simplify this expression for Ḡ31�� ;0 , t�,
which finally yields h2

2�t�+h1�t��h1�t�−2h2�t��= t4e−2t.

Alternatively, this formula for Ḡ31�� ;0 , t� can readily be ob-
tained from Eq. �19�. Namely, in Couette flow with
��22�y ,0�=1 /�2;�12�y ,0�=�11�y ,0��0�, Eq. �C4� implies
that u�y , t��0 and, thus, Eq. �19� simplifies to

�̇22 = − �22,

�̇12 = − �12 + We �22,

�̇11 = − �11 + 2 We �12.

It is now straightforward to determine the response of
�11 caused by the initial condition in �22, �11�y , t�
=We2t2e−t�22�y ,0�, which consequently leads to the above

expression for Ḡ31�� ;0 , t�.
To recap, in Couette flow with kx=kz=0 the transient

growth function Ḡ31�� ;0 , t� is determined by

Gu1(0.1; kz, t): Ḡ31(0.1; kz, t):

(a) (b)

FIG. 16. �Color online� Maximal transient growth of �a� the streamwise
velocity fluctuation u and �b� the streamwise component of the polymer
stress fluctuation tensor �3=�11 in Couette flow with �=0.1 and d=10−3,
arising from the initial condition in �1. All other initial conditions have been
set to zero.

(a) h2
2(t) (solid), t4 e−2t (circles) (b) h1(t) (h1(t) − 2h2(t)) (c) Ḡ31(0.1; 0, t)

FIG. 17. The time dependence of functions �a� h2
2�t� �solid�, t4e−2t �circles�; �b� h1�t��h1�t�−2h2�t��; and �c� Ḡ31�0.1;0 , t� in Couette flow with �=0.1 and kz=0.
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Ḡ31��;0,t� = sup
��22�0��2=1, �11�0�=�12�0��0

��11�· ,t��2
2�We=1

= � h2
2�t� , h1�t��h1�t� − 2h2�t�� � 0,

t4e−2t, h1�t��h1�t� − 2h2�t�� � 0,
�

where h1�t� and h2�t� are given by Eq. �21�. Figure 17 illus-
trates the functions h2

2�t�, t4e−2t, h1�t��h1�t�−2h2�t��, and

Ḡ31�0.1;0 , t� in Couette flow with �=0.1. Our analytical re-
sults agree with the above numerical computations �cf. Fig.
15�a� for small values of kz� and justify the existence of the
“kinks” observed in Fig. 15�a�. These take place because of
the existence of a time instant at which function h1�t��h1�t�
−2h2�t�� vanishes �for illustration at �=0.1, see Fig. 17�b��;
at this value of t, the transient growth function changes its
character from h2

2�t� to t4e−2t �cf. Fig. 17�c��.

V. CONCLUDING REMARKS

We have studied transient responses of velocity and
polymer stress fluctuations in inertialess channel flows of
Oldroyd-B fluids. By focusing on the analysis of streamwise-
constant fluctuations, we are able to obtain a number of new
analytical results. In contrast, most prior work on this topic
has focused on the analysis of spanwise-constant fluctua-
tions, which does not yield analytical results as readily and is
prone to numerical difficulties in high-Weissenberg-number
flows.27 In addition, both velocity and polymer stress fluc-
tuations may be nonzero in our work, which sets it apart
from a recent paper that considered only nonzero �but 3D�
polymer stress fluctuations in an upper convected Maxwell
fluid.29

We have shown that both velocity and polymer stress
fluctuations may experience a significant transient growth.
For velocity fluctuations, the streamwise component u is
most sensitive to elasticity and it exhibits an O�We� growth
over an O�We� time scale before eventually decaying. This
growth arises from the initial conditions in the wall-normal/
spanwise polymer stress components �i.e., �22�0�, �23�0�, and
�33�0��, with �22�0� generating the largest contribution. Our
results indicate that the Oldroyd-B model is not capable of
selecting a preferential spanwise length scale in flows subject
to only �22�0�; this is a consequence of the fact that the
largest transient growth of u�t� caused by �22�0� takes place
at zero spanwise wave number kz. On the other hand, the
transient growth peaks of streamwise velocity fluctuations
arising from the initial conditions in �23 and �33 occur at
O�1� values of kz. This suggests that the length scale selec-
tion in experiments may very much be influenced by the
initial distribution of the polymer stress fluctuations and by
the presence of physical boundaries and background distur-
bances in a laboratory setup. It is also striking that for
streamwise-constant fluctuations, creeping flows of vis-
coelastic fluids have velocity fluctuation dynamics that are
structurally similar to those of inertial flows of Newtonian
fluids, with the Weissenberg number playing the role of the
Reynolds number �cf. block diagrams in Figs. 12�a� and
12�b��. In Newtonian fluids, vortex tilting is the underlying
mechanism for transient growth, whereas in viscoelastic flu-
ids, we have shown that it is polymer stretching by a back-

ground shear which produces large transient responses. For
polymer stress fluctuations, the streamwise component �11 is
most sensitive to elasticity, exhibiting an O�We2� growth
over an O�We� time scale, with polymer stretching once
again being the culprit behind the observed transient growth.
Our analysis shows that the transient response of �11 is fairly
flat in kz with a high-wavenumber roll-off being observed
only upon inclusion of a small amount of stress diffusion in
the constitutive equations. We note that this addition does not
have a pronounced influence on the transient behavior of
velocity fluctuations.

The present work makes clear that streamwise-constant
fluctuations in channel flows of viscoelastic fluids can un-
dergo a significant transient growth even in the absence of
inertia. It also reveals remarkable similarities between iner-
tial flows of Newtonian fluids and creeping flows of
Oldroyd-B fluids. Since prior work has identified that
spanwise-constant fluctuations can also experience a consid-
erable transient growth, this raises the question of the struc-
ture of flow fluctuations that grow most robustly in practice.
Direct numerical simulations and experimental studies of the
early stages of transition in wall-bounded shear flows of di-
lute polymer solutions would provide insight into this ques-
tion, and observations made in this paper may provide guid-
ance in interpreting the results of such investigations.
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APPENDIX A: DYNAMICS OF THE
STREAMWISE-CONSTANT FLOW FLUCTUATIONS

In this appendix we describe the equations governing the
evolution of streamwise-constant flow fluctuations in creep-
ing flows of an Oldroyd-B fluid. We also define the underly-
ing operators in Eqs. �5�–�7�.

By decomposing the velocity, pressure, and polymer
stress fields into the sum of base and fluctuating parts �i.e.,

V=v+v, P= P̄+ p, and T=�+��, Eqs. �2�, �1b�, and �1c� can
be brought to the form

0 = ��v + �1 − �� � · � − �p , �A1a�

0 = � · v , �A1b�

�̇ = L��,v� + N��,v� , �A1c�

where L�� ,v� and N�� ,v�, respectively, denote linear and
nonlinear flow fluctuation terms, i.e.,

L��,v� = �v + ��v�T − � − We�v · �� + v · ���

+ We�� · �v + �� · �v�T + � · �v + �� · �v�T� ,
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N��,v� = We�� · �v + �� · �v�T − v · ��� .

The linearized dynamics are obtained by neglecting qua-
dratic term N�� ,v� in Eq. �A1c�. For purely harmonic fluc-
tuations in the spanwise direction, e.g.,

v�y,z,t� = R�v�y,kz,t�eikzz� ,

the linearized evolution model is given by Eq. �5�. Here,
R� · � denotes the real part of a given quantity, and the
F-operators in Eq. �4� are given by

F1� = �2ikz�y − ��yy + kz
2� − 2ikz�y �T,

F2� = 
ikz�U��y��y − U��y��
− U��y��yy

�, F2u = 
 �y

ikz
� ,

�A2�

F21 = 
U��y� 0 0

0 U��y� 0
�, F3� = − 4ikzU��y�U��y� ,

F3u = 2U��y��y, F32 = �2U��y� 0 � .

Substitution of Eq. �3� into Eq. �5� leads to the set of evolu-
tion equations �6� for the polymer stress components with the
A-operators given by

A11 = − I + F1�C�, A22 = − I + F2uCu,

�A3�
A21 = F21 + F2�C�, A31 = F3�C�, A32 = F32 + F3uCu.

The C-operators appearing in Eq. �7�, which is convenient
for quantifying the scaling of the kinetic energy density with
the Weissenberg number, are given by

Cu = − �1/� − 1��−1��y ikz �, Cv = ikzC�,

�A4�
Cw = − �yC�,

where C� is defined in Eq. �4�. The expressions for operators
Cv and Cw are obtained by substituting �=C��1 �cf. Eq. �3��
into the equation relating the wall-normal and span-
wise velocity fluctuations with the streamfunction,
�v=ikz� , w=−�y��.

APPENDIX B: OPERATORS Cu AND H1r
AT LARGE AND SMALL VALUES OF kz

We next briefly discuss the properties of Cu and H1r at
large and small values of kz. From Eqs. �4� and �15� we recall
that these operators are given by

Cu = −
1 − �

�
�−1��y ikz � ,

H1a = −
1 − �

�
�−1�U��y� + U��y��y ikzU��y� 0 � ,

H1b =
�1 − ��2

�2 ikz�
−1�2U��y��y + U��y���


�−2�ikz�y − ��yy + kz
2� − ikz�y � .

At kz=0, operator H1b becomes identically equal to zero,
whereas Cu and H1a simplify to

Cu�kz = 0� = − �1/� − 1��yy
−1��y 0 � ,

H1a�kz = 0� = − �1/� − 1��yy
−1�U��y� + U��y��y 0 0 � .

These observations in conjunction with Eq. �16� imply that at
kz=0, only the initial conditions in �12 and �22 contribute to
the response of streamwise velocity fluctuations. On the
other hand, in the limit of infinitely large values of kz, the
influence of both Cu and H1r becomes negligibly small. This
is because operators �−1 and �−2 at large kz approximately
scale as 1 /kz

2 and 1 /kz
4, respectively, which implies that

lim
kz→�

�Cu�2�· ,kz,0���y� = 0, lim
kz→�

�H1r�1�· ,kz,0���y� = 0.

Now, using Eq. �16�, we conclude that limkz→� u�y ,kz , t�=0.

APPENDIX C: LINEARIZED EQUATIONS AT kz=0

Motivated by the observation that the largest transient
growth of streamwise-constant fluctuations takes place at kz

=0 �cf. Sec. III C�, we examine the linearized model with
kx=kz=0. In this case, the continuity equation simplifies to
�yv=0, which—in view of homogeneous Dirichlet boundary
conditions on v—implies that v�y , t��0. Furthermore, the
linearized momentum and constitutive equations are, respec-
tively, given by

��yyu = − �1 − ���y�12,

��yyw = − �1 − ���y�23, �C1�

�yp = �1 − ���y�22

and

�̇1 = − �1 + � 0

�y

0
�w , �C2a�

�̇2 = − �2 + 
�y

0
�u + We�
 0

U��y��y
�w

+ 
U��y� 0 0

0 U��y� 0
��1� , �C2b�

�̇3 = − �3 + 2 We�U��y��yu + �U��y� 0 ��2� . �C2c�

Following the procedure outlined in Sec. III C, we obtain

w�s� =
− �1/� − 1�

s + 1/�
�yy

−1�y�23�0� ,

or equivalently in the time domain,

w�y,t� = − �1/� − 1�e−t/���yy
−1�y�23�· ,0���y� . �C3�

Similarly, the streamwise velocity can be expressed as

u�s� = We u22�s� + u12�s� ,

u12�s� =
− �1/� − 1�

s + 1/�
�yy

−1�y�12�0� ,
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u22�s� =
− �1/� − 1�

�s + 1/���s + 1�
�yy

−1�U��y� + U��y��y��22�0� ,

or equivalently in the time domain,

u�y,t� = We u22�y,t� + u12�y,t� ,

u12�y,t� = − �1/� − 1�e−t/���yy
−1�y�12�· ,0���y� , �C4�

u22�y,t� = − �e−t − e−t/����yy
−1�U��y� + U��y��y��22�· ,0���y� .

Now, from Eqs. �C1�, �C3�, and �C4� we conclude that

w�y,t� = e−t/�w�y,0�, u12�y,t� = e−t/�u�y,0� ,

which implies that the initial conditions in the streamwise
and the spanwise velocity create monotonically decaying
We-independent responses of u�y , t� and w�y , t�, with a rate
of decay inversely proportional to the viscosity ratio �. On
the other hand, even though �22�y ,0��0 yields zero initial
kinetic energy,51 the presence of initial conditions in �22 gen-
erates streamwise velocity fluctuations, We u22�y , t�, which
scale linearly with the Weissenberg number and also exhibit
temporal transient growth. We note that this feature arises
solely due to viscoelastic nature of the underlying fluid.

APPENDIX D: ELASTIC ENERGY OF POLYMER
STRESS FLUCTUATIONS IN POISEUILLE FLOW

Here we examine the contribution of �11 to the elastic
energy in Poiseuille flow. Before we turn our attention to Eq.
�19�, we note that Eq. �C1�, in conjunction with Dirichlet
boundary conditions on u, can be used to obtain

�yu�y,t� = �1/� − 1��
12�t� − �12�y,t�� ,

which in turn implies

�yu�y,t� + �12�y,t� = �1/� − 1�
12�t� + �2 − 1/���12�y,t� ,

�yu�y,t� − �12�y,t� = �1/� − 1�
12�t� − �1/���12�y,t� .

Substitution of these two auxiliary equalities to Eq. �19�
yields

�̇22 = − �22, �D1a�

�̇12 = − �1/���12 + �1/� − 1�
12�t� + We U��y��22, �D1b�

�̇11 = − �11 + 2 We U��y���1/� − 1�
12�t� + �2 − 1/���12� .

�D1c�

We note that Eq. �D1� is valid in both Couette and Poiseuille
flows. In particular, in Poiseuille flow U�y�=1−y2 and the
wall-normal integration of Eq. �D1c� thus yields


̇11�t� = − 
11�t� + We�2 − 1/���12�t� ,

where

�12�t� = �
−1

1

U��y��12�y,t�dy .

Similarly, multiplication of Eqs. �D1a� and �D1b� by U��y�
and subsequent integration in y gives

�̇22�t� = − �22�t� ,

�̇12�t� = − �1/���12�t� + We �22�t� ,

where

�22�t� = �
−1

1

�U��y��2�22�y,t�dy .

The analysis of the temporal evolution of 
11�t� is given in
Sec. IV A.
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