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The matrix in (3) denotes the closed-loop observability Gramian

(4)

which can be obtained by solving the Lyapunov equation

(5)

While the communication architecture of the controller in (SH2) is
a priori specified, in this note our emphasis shifts to identifying favor-
able communication structures without any prior assumptions on the
sparsity patterns of the matrix . We propose an optimization frame-
work in which the sparsity of the feedback gain is directly incorporated
into the objective function.
Consider the following optimization problem:

(6)

where

(7)

denotes the cardinality function, i.e., the number of nonzero elements
of a matrix. In contrast to problem (SH2), no structural constraint is
imposed on ; instead, our goal is to promote sparsity of the feed-
back gain by incorporating the cardinality function into the optimiza-
tion problem. The positive scalar characterizes our emphasis on the
sparsity of ; a larger encourages a sparser , while renders a
centralized gain that is the solution of the standard LQR problem. For

, the solution to (6) is given by , where is
the unique positive definite solution of the algebraic Riccati equation,

A. Sparsity-Promoting Penalty Functions

Problem (6) is a combinatorial optimization problem whose solution
usually requires an intractable combinatorial search. In optimization
problems where sparsity is desired, the cardinality function is typically
replaced by the norm of the optimization variable [10, Chapter 6]

(8)

Recently, a weighted norm was used to enhance sparsity in signal
recovery [4]

(9)

where are non-negative weights. If ’s are chosen
to be inversely proportional to the magnitude of , i.e.,

,
then the weighted norm and the cardinality function of coincide,

This scheme for the weights, however,
cannot be implemented, since the weights depend on the unknown
feedback gain. A reweighted algorithm that solves a sequence of
weighted optimization problems in which the weights are deter-
mined by the solution of the weighted problem in the previous
iteration was proposed in [4], [11]. This reweighted scheme was
recently employed by the authors to design sparse feedback gains for
a class of distributed systems [12], [13].
Both the norm and its weighted version are convex relaxations

of the cardinality function. On the other hand, we also examine utility
of the nonconvex sum-of-logs function as a more aggressive means for
promoting sparsity [4]

(10)

Remark 1: Design of feedback gains that have block sparse structure
can be achieved by promoting sparsity at the level of the submatrices
instead of at the level of the individual elements. Let the feedback gain
be partitioned into submatrices that need not have

the same size. The weighted norm and the sum-of-logs can be gen-
eralized to matrix blocks by replacing the absolute value of in (9)
and (10) by the Frobenius norm of . Similarly, the cardi-
nality function (7) should be replaced by where

does not promote sparsity within the block; it instead pro-
motes sparsity at the level of submatrices.

B. Sparsity-Promoting Optimal Control Problem

Our approach to sparsity-promoting feedback design makes use of
the above discussed penalty functions. In order to obtain state feedback
gains that strike a balance between the quadratic performance and the
sparsity of the controller, we consider the following optimal control
problem

(SP)

where is the square of the closed-loop norm (3) and is a
sparsity-promoting penalty function, e.g., given by (7), (8), (9), or
(10). When the cardinality function in (7) is replaced by (8), (9), or
(10), problem (SP) can be viewed as a relaxation of the combinatorial
problem (6)–(7), obtained by approximating the cardinality function
with the corresponding penalty functions .
As the parameter varies over , the solution of (SP) traces

the trade-off path between the performance and the feedback
gain sparsity . When , the solution is the centralized feedback
gain . We then slightly increase and employ an iterative algorithm
– the alternating direction method of multipliers (ADMM) – initial-
ized by the optimal feedback matrix at the previous . The solution of
(SP) becomes sparser as increases. After a desired level of sparsity is
achieved, we fix the sparsity structure and find the optimal structured
feedback gain by solving the structured problem (SH2).
Since the set of stabilizing feedback gains is in general not convex

[14] and since the matrix exponential is not necessarily a convex func-
tion of its argument [10], need not be a convex function of . This
makes it difficult to establish convergence to the global minimum of
(SP). Even in problems for which we cannot establish the convexity of

, our extensive computational experiments suggest that the algo-
rithms developed in Section III provide an effective means for attaining
a desired trade-off between the performance and the sparsity of the
controller.

III. IDENTIFICATION OF SPARSITY-PATTERNS VIA ADMM

Consider the following constrained optimization problem:

(11)

which is clearly equivalent to the problem (SP). The augmented La-
grangian associated with the constrained problem (11) is given by

where is the dual variable (i.e., the Lagrange multiplier), is a pos-
itive scalar, and is the Frobenius norm. By introducing an ad-
ditional variable and an additional constraint , we have
simplified the problem (SP) by decoupling the objective function into
two parts that depend on two different variables. As discussed below,
this allows us to exploit the structures of and .
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where is the linear function of

and , are the solutions of the following Lyapunov equations:

By completing the squares with respect to in the augmented La-
grangian , we obtain the following equivalent problem to (12a)

where Setting to zero
yields the necessary conditions for optimality

(NC-F)

where and are determined by (NC-L) and (NC-P).
Starting with a stabilizing feedback , the Anderson-Moore method

solves the two Lyapunov equations (NC-L) and (NC-P), and then
solves the Sylvester equation (NC-F) to obtain a new feedback gain
. In other words, it alternates between solving (NC-L) and (NC-P)

for and with being fixed and solving (NC-F) for with
and being fixed. It can be shown that the difference between two
consecutive steps forms a descent direction of ; see [9]
for a related result. Thus, line search methods [18] can be employed
to determine step-size in to guarantee closed-loop stability
and the convergence to a stationary point of .
Remark 3 (Closed-Loop Stability): Since the norm is well de-

fined for causal, strictly proper, stable closed-loop systems, we set to
infinity if is not Hurwitz. Furthermore, is a smooth func-
tion that increases to infinity as one approaches the boundary of the set
of stabilizing gains [9]. Thus, the decreasing sequence of en-
sures that are stabilizing gains.

C. Solving the Structured Problem

We next turn to the problem subject to structural constraints on
the feedback gain. Here, we fix the sparsity patterns identified
using ADMM and then solve (SH2) to obtain the optimal feedback gain
that belongs to . This procedure, commonly used in optimization [10,
Section 6.3.2], can improve the performance of sparse feedback gains
resulting from the ADMM algorithm.
As noted in Remark 3, the sparse feedback gains obtained in ADMM

are stabilizing. This feature facilitates the use of descent algorithms
(e.g., Newton’s method) to solve (SH2). Given an initial gain ,
a decreasing sequence of the objective function is gener-
ated by updating according to ; here, is
the step-size and is the Newton direction that is determined
by the minimizer of the second-order approximation of the objective
function (3). Equivalently, is the minimizer of

where structural identity of
subspace (under entry-wise multiplication of two matrices) is used
to characterize structural constraints

if is a free variable
if is required

To compute Newton direction, we use the conjugate gradient method
that does not require forming or inverting the large Hessian matrix ex-
plicitly; see [18, Chapter 5]. It is noteworthy that techniques such as
the negative curvature test [18, Section 7.1] can be employed to guar-
antee the descent property of the Newton direction; consequently, line
search methods, such as the Armijo rule [18, Section 3.1], can be used
to generate a decreasing sequence of .

D. Convergence of ADMM

For convex problems the convergence of ADMM to the global
minimizer follows from standard results [1]. For nonconvex problems,
where convergence results are not available, extensive computational
experience suggests that ADMM works well when the value of is
sufficiently large [19], [20]. This is attributed to the quadratic term

that tends to locally convexify the objective function
for sufficiently large ; see [21, Chapter 14.5].
For problem (SP) with determined by the weighted norm (9),

we next show that when ADMM converges, it converges to a critical
point of (SP). For a convergent point of the sequence

, (12c) simplifies to Since min-
imizes and since minimizes , we
have where is the
subdifferential of the convex function in (9). Therefore,
satisfies the necessary conditions for the optimality of (SP) and ADMM
converges to a critical point of (SP).

IV. EXAMPLES

We next use three examples to illustrate the utility of the approach
developed in Section III. The identified sparsity structures result in
localized controllers in all three cases. Additional information about
these examples, along with MATLAB source codes, can be found at

www.ece.umn.edu/~mihailo/software/lqrsp/

A. Mass-Spring System

For a mass-spring system with masses on a line, let be the
displacement of the th mass from its reference position and let the
state variables be and . For unit masses
and spring constants, the state-space representation is given by (1) with

where is an tridiagonal Toeplitz matrix with on its main
diagonal and 1 on its first sub- and super-diagonal, and and are

identity and zero matrices. The state performance weight is
the identity matrix and the control performance weight is .
We use the weighted norm as the sparsity-promoting penalty func-

tion, where we follow [4] and set the weights to be inversely pro-
portional to the magnitude of the solution of (SP) at the previous
value of , This places larger relative weight on
smaller feedback gains and they are more likely to be dropped in the
sparsity-promoting algorithm. Here, is introduced to have
well-defined weights when .
The optimal feedback gain at is computed from the solution of

the algebraic Riccati equation. As increases, the number of nonzero
sub- and super-diagonals of both position and velocity gains
decreases; see Fig. 1(a) and (b). Eventually, both and become
diagonal matrices. It is noteworthy that diagonals of both position and
velocity feedback gains are nearly constant except for masses that are
close to the boundary; see Fig. 1(c) and (d).
After sparsity structures of controllers are identified by solving (SP),

we fix sparsity patterns and solve structured problem (SH2) to ob-
tain the optimal structured controllers. Comparing the sparsity level
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Fig. 1. Sparsity patterns of for the mass-spring
system obtained using weighted norm with (a) and (b)

. As increases, the number of nonzero sub- and super-diagonals of
and decreases. The diagonals of (c) and (d) for different values of
: ( ), 0.0281 ( ), and 0.1 ( ). The diagonals of the centralized position
and velocity gains are almost identical to ( ). (a) . (b) .
(c) . (d) .

Fig. 2. (a) Sparsity level and (b) the performance degradation of compared
to the centralized gain for mass-spring system. (c) Sparsity vs. performance:
using 2% of nonzero elements, performance of is only 7.8% worse than
performance of . (a) . (b) .
(c) .

and the performance of these controllers to those of the centralized con-
troller , we see that using only a fraction of nonzero elements, the
sparse feedback gain achieves performance comparable to the
performance of ; see Fig. 2. In particular, using about 2% of nonzero
elements, performance of is only about 8% worse than that
of .

B. Network With 100 Unstable Nodes

Let nodes be randomly distributed with a uniform distribu-
tion in a square region of 10 10 units. Each node is an unstable second
order system coupled with other nodes through the exponentially de-
caying function of the Euclidean distance between them [22]

with . The performance weights and are set to iden-
tity matrices.
We use theweighted norm as the penalty function with the weights

given in Section IV-A. As increases, the underlying communication

Fig. 3. (a)–(c) Localized communication graphs of distributed controllers ob-
tained by solving (SP) for different values of for the network with 100 nodes.
Note that the communication graph does not have to be connected since the
nodes are dynamically coupled to each other and allowed to measure their own
states. (d) The optimal trade-off curve between the performance degradation
and the sparsity level of compared to the centralized gain . (a) .
(b) . (c) . (d).

graphs gradually become localized; see Fig. 3(a)–(c). With about 8%
of nonzero elements of , performance of is about 28% worse
than performance of the centralized gain . Fig. 3(d) shows the op-
timal trade-off curve between the performance and the feedback
gain sparsity.
We note that the truncation of the centralized controller could result

in a non-stabilizing feedback matrix [22]. In contrast, our approach
gradually modifies the feedback gain and increases the number of zero
elements, which plays an important role in preserving the closed-loop
stability.

C. Block Sparsity: A Bio-Chemical Reaction Example

Consider a network of systems coupled through the fol-
lowing dynamics:

where denotes the th block of a matrix and

The performance weights and are set to identity matrices. Sys-
tems of this form arise in bio-chemical reactions with a cyclic negative
feedback [23].
We use the weighted sum of Frobenius norms as the sparsity-pro-

moting penalty function and we set the weights to be inversely
proportional to the Frobenius norm of the solution to (SP) at the
previous value of , i.e., with As
increases, the number of nonzero blocks in decreases. Fig. 4 shows
sparsity patterns of feedback gains and the corresponding communica-
tion graphs resulting from solving (SP) with sparse and block sparse
penalty functions. Setting to values that yield the same number of




