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Over the last two decades, both experiments and simulations have demonstrated that
transverse wall oscillations with properly selected amplitude and frequency can reduce
turbulent drag by as much as 40 %. In this paper, we develop a model-based approach
for designing oscillations that suppress turbulence in a channel flow. We utilize eddy-
viscosity-enhanced linearization of the turbulent flow with control in conjunction with
turbulence modelling to determine skin-friction drag in a simulation-free manner. The
Boussinesq eddy viscosity hypothesis is used to quantify the effect of fluctuations on
the mean velocity in flow subject to control. In contrast to the traditional approach that
relies on numerical simulations, we determine the turbulent viscosity from the second-
order statistics of the linearized model driven by white-in-time stochastic forcing.
The spatial power spectrum of the forcing is selected to ensure that the linearized
model for uncontrolled flow reproduces the turbulent energy spectrum. The resulting
correction to the turbulent mean velocity induced by small-amplitude wall movements
is then used to identify the optimal frequency of drag-reducing oscillations. In addition,
the control net efficiency and the turbulent flow structures that we obtain agree well
with the results of numerical simulations and experiments. This demonstrates the
predictive power of our model-based approach to controlling turbulent flows and is
expected to pave the way for successful flow control at higher Reynolds numbers than
currently possible.
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1. Introduction
1.1. Background

Turbulent flows are ubiquitous in nature and engineering. Dissipation of kinetic energy
by turbulent flow around aeroplanes, ships, and submarines increases resistance to
their motion. This motivates design of control strategies for enhancing performance
of vehicles and other systems involving turbulent flows. The utility of different
approaches for maintaining the laminar flow, reducing skin-friction drag, and
preventing separation is surveyed in Joslin (1998) and Gad-el-Hak (2000). While
traditional flow control techniques combine physical intuition with costly numerical
simulations and experiments, model-based techniques utilize developments from
control theory to improve flow manipulation. Recent research suggests that traditional

T Email address for correspondence: mihailo@umn.edu


mailto:mihailo@umn.edu

206 R. Moarref and M. R. Jovanovi¢

strategies can be significantly enhanced by flow control design based on analytical
models and optimization tools (Kim & Bewley 2007).

The effectiveness of model-based feedback (Hogberg, Bewley & Henningson 2003)
and sensor-less (Moarref & Jovanovié 2010; Lieu, Moarref & Jovanovi¢ 2010)
techniques for controlling the onset of turbulence at low Reynolds numbers stems from
their ability to reduce receptivity and enhance robustness of the flow. The model-based
approach to flow control design was motivated by realization that a mechanism which
initiates transition is governed by the degradation of robustness (Trefethen et al. 1993;
Schmid 2007) and the consequential noise amplification (Farrell & Ioannou 1993;
Bamieh & Dahleh 2001; Jovanovi¢ 2004; Jovanovi¢ & Bamieh 2005). Consequently,
the above-mentioned techniques have utilized Navier—Stokes (NS) equations linearized
around the laminar flow as a control-oriented model with the objective of reducing
sensitivity to modelling imperfections. In addition, a fully developed turbulent channel
flow at low Reynolds numbers was relaminarized via a gain-scheduled linear state-
feedback controller (Hogberg, Bewley & Henningson 2003). Comparison between the
impulse responses of the NS equations linearized around the laminar and turbulent
mean velocities and the direct numerical simulations (DNS) of the turbulent flow
subject to small-amplitude impulsive perturbations has been provided by Luchini,
Quadrio & Zuccher (2006).

The role of linear mechanisms in formation and maintenance of streamwise streaks
in turbulent flows was examined by Lee, Kim & Moin (1990). It was shown that
the streaks are formed by linear amplification of eddies that interact with the large
mean shear. For homogeneous flows subject to high shear rates, Lee et al. (1990)
demonstrated that the DNS-based instantaneous velocity is similar to the velocity
that is predicted by the linearized equations in the rapid distortion limit (Pope
2000). Furthermore, Kim & Lim (2000) used DNS to demonstrate the importance
of the linear vortex tilting mechanism in maintaining the streamwise vortices in fully
developed turbulent channel flows.

Schoppa & Hussain (2002) conducted a thorough investigation of the role of near-
wall streaks in generation of streamwise vortices. By examining the evolution of
infinitesimal fluctuations around a streaky turbulent base flow, they determined the
amplitude of streaks above which modal instability occurs. It was noted that only
20% of the streaks in the fully developed turbulent buffer layer are strong enough
to trigger modal instability. Consequently, a secondary transient growth mechanism
for bypass transition in wall-bounded shear flows was proposed (Schoppa & Hussain
2002; Heepffner, Brandt & Henningson 2005); this mechanism appears to be capable
of producing much larger transient growth rates than the secondary streak instabilities.
Furthermore, Chernyshenko & Baig (2005) studied the origin of near-wall streaky
patterns and demonstrated that the combination of linear effects including lift-up of the
mean profile, tilting and stretching by the mean shear, and viscous dissipation induce
formation of these patterns. The ability of the linearized NS equations to qualitatively
predict both the streak spacing and its dependence on the wall-normal distance was
also shown.

1.2. Previous studies of drag reduction by transverse wall oscillations

Several experimental and numerical studies have shown the effectiveness of sensor-less
strategies for turbulence suppression in wall-bounded shear flows. The experiments
of Bradshaw & Pontikos (1985) and the DNS of Moin et al. (1990) showed that
imposing a constant transverse strain on a turbulent boundary layer can transiently
reduce the turbulent kinetic energy and the Reynolds stresses. Motivated by this
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observation, Jung, Mangiavacchi & Akhavan (1992) used DNS to establish a sustained
turbulence suppression in a channel flow subject to transverse wall oscillations. For
the flow with friction Reynolds number R, = 200, skin-friction drag reduction of up
to 40% was reported, with maximum drag reduction taking place for the period
of oscillations 7 ~ 100 (in viscous time units). The numerical results of Jung
et al. (1992) were experimentally verified by Laadhari, Skandaji & Morel (1994),
Choi, DeBisschop & Clayton (1998), Choi (2002) and Ricco (2004), where a drag
reduction of up to 45% was reported. Choi (2002) argued that wall oscillations
induce negative spanwise vorticity, thereby suppressing turbulence by hampering the
vortex-stretching mechanism. In addition, the experiments of Ricco (2004) showed that
the near-wall flow is dragged laterally by wall oscillations, which reduces the length
of the streaks and increases the spacing between them. Touber & Leschziner (2012)
also demonstrated that wall oscillations significantly distort the near-wall streaks and
reduce the contribution of turbulence to the wall shear stress. Recent DNS study of
Ricco et al. (2012) further revealed that wall oscillations directly affect the turbulent
dissipation. For T* < 100, it was shown that drag reduction scales linearly with the
volume integral of an enstrophy production term caused by the spanwise shear layer.

Several alternative mechanisms for inducing transverse oscillations have also been
investigated. For example, Berger et al. (2000) used DNS of conductive fluids in a
channel flow with R, = 100 to show that time-periodic spanwise Lorentz force can
reduce skin-friction drag up to 40%. The amount of drag reduction was found to
decrease for larger R,. In addition, Du & Karniadakis (2000) and Du, Symeonidis
& Karniadakis (2002) studied the effect of Lorentz force in the form of spanwise
travelling waves confined to the viscous sublayer. For R, = 150, their DNS showed
drag reduction of up to 30%. The drag-reducing mechanisms of transverse motions
induced by spanwise oscillations, spanwise travelling waves, and riblets have been
surveyed by Karniadakis & Choi (2003). Recently, turbulent drag reduction by waves
of spanwise velocity that travel in the streamwise direction has been examined
using DNS (Quadrio, Ricco & Viotti 2009), experiments (Auteri et al. 2010), and
generalized Stokes layer theory (Quadrio & Ricco 2011). It was shown that upstream
travelling waves reduce drag at any speed. On the other hand, downstream waves
reduce drag only at speeds that are much larger or much smaller than the convecting
speed of near-wall turbulent structures.

Quadrio & Sibilla (2000) used DNS to show that up to 40 % of drag reduction can
be achieved by oscillating a cylindrical pipe along its longitudinal axis. In a series of
papers, Baron & Quadrio (1996), Quadrio & Ricco (2003, 2004) and Ricco & Quadrio
(2008) further studied drag reduction by transverse wall oscillations in a channel flow;
see also the recent review by Quadrio (2011). In addition to quantifying the saved
power associated with drag reduction, they accounted for the input power necessary
for maintaining wall oscillations; for small oscillation amplitudes, it was established
that a net power gain with drag reduction of up to 10 % can be achieved. Furthermore,
for the same values of oscillation amplitude and frequency, the DNS of Choi, Xu &
Sung (2002) showed that the amount of drag reduction in a channel flow can drop
by as much as 25 % as the friction Reynolds number R, increases from 100 to 400.
More recent DNS studies by Ricco & Quadrio (2008) and Touber & Leschziner (2012)
confirmed deterioration in drag reduction by 15 and 18 % with increase in R; from
200 to 400 and from 200 to 500, respectively. On the other hand, for boundary layers
subject to plate oscillations with small periods (7* < 83), the experiments of Ricco &
Wu (2004) showed weak dependence of drag reduction on the Reynolds number. Ricco
& Quadrio (2008) argued that this discrepancy may arise from high experimental
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uncertainty, effects of geometry, and smaller values of oscillation periods relative to
DNS studies.

In contrast to the aforementioned experimental and numerical studies, there are
relatively few theoretical developments regarding drag reduction by wall oscillations.
We next briefly summarize notable exceptions (Dhanak & Si 1999; Bandyopadhyay
2006; Ricco & Quadrio 2008). Dhanak & Si (1999) used exact solutions of the NS
equations to study the interactions between the evolving streamwise vortices in a
turbulent boundary layer and the Stokes layer induced by wall oscillations. Simulations
of the resulting dynamical model showed that these interactions reduce the Reynolds
stresses, the turbulence production, and the skin-friction drag. Bandyopadhyay (2006)
proposed a vorticity reorientation hypothesis and showed that the negative spanwise
vorticity induced by the wall oscillations modifies the orientation of the total vorticity
field in the near-wall region and suppresses turbulence production. Furthermore, it
was shown that the developed model yields drag reduction that agrees well with
experimental data. Finally, in addition to conducting a thorough DNS study, Ricco
& Quadrio (2008) used the solution to the laminar Stokes problem to quantify the
dependence of the drag and the input power necessary for maintaining wall oscillations
on their period and amplitude.

1.3. Preview of key results

While most model-based efforts to date have considered the problem of maintaining
the laminar flow and relaminarization, in this paper we show that turbulence
modelling in conjunction with eddy-viscosity-enhanced linearization can extend the
utility of these methods to control of turbulent flows. Control-oriented turbulence
modelling is challenging because of complex flow physics that arises from strong
interactions between the turbulent fluctuations and the mean velocity. We build
on recent research that demonstrates considerable predictive power of non-modal
stability analysis (Schmid 2007) even in turbulent flows (del Alamo & Jiménez
2006; Cossu, Pujals & Depardon 2009; Pujals et al. 2009). These papers have shown
that the equations linearized around turbulent mean velocity, with molecular viscosity
augmented by turbulent viscosity, qualitatively capture features of turbulent flows
with no control. For flow with control, we examine the class of linearized models
considered by del Alamo & Jiménez (2006), Cossu et al. (2009) and Pujals et al.
(2009) and use turbulent viscosity hypothesis to quantify the influence of turbulent
fluctuations on the mean velocity. We demonstrate the ability of this approach to
quantitatively predict the effect of control on turbulent drag.

The difficulty here arises from the fact that the turbulent viscosity of flow with
control has to be determined. Even though we use the Boussinesq hypothesis to
capture the influence of control on turbulent viscosity, in contrast to current practice
we do not rely on numerical simulations for finding turbulent kinetic energy k and
its rate of dissipation €. Instead, we introduce a simulation-free method based on a
stochastically forced linearized model of controlled flow to obtain k and € from the
second-order statistics of velocity fluctuations. These statistics are used to determine
the turbulent viscosity for flow with control, and thereby to compute the effect of
control on the turbulent mean velocity and on the skin-friction drag.

We utilize linearized equations subject to white-in-time stochastic forcing with
appropriately selected second-order spatial statistics. Using analogy with homogeneous
isotropic turbulence (Jovanovi¢ & Georgiou 2010), we select these to be proportional
to the two-dimensional energy spectrum of uncontrolled flow. Note that while our
approach takes advantage of the turbulent viscosity and the energy spectrum resulting
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from DNS of uncontrolled flow (Kim, Moin & Moser 1987; Moser, Kim & Mansour
1999; del Alamo & Jiménez 2003; del Alamo et al. 2004), we do not rely on
numerical or experimental data for determining the effect of control on the turbulent
flow. To the best of our knowledge, the present work is the first to utilize publicly
available DNS data of uncontrolled flow to guide control-oriented modelling of
turbulent flows. Even though the aforementioned databases provide coarse one-point
correlations in the wall-normal direction, we demonstrate that they can be effectively
employed for model-based flow control design.

In this paper, we use a model-based approach to examine the effect of transverse
wall oscillations on the dynamics of a turbulent channel flow. We start by showing
that the power necessary for maintaining wall oscillations increases quadratically with
their amplitude, which is in agreement with the DNS of Quadrio & Ricco (2004)
and the theoretical study of Ricco & Quadrio (2008). Since large control amplitudes
yield poor net efficiency, we confine our study to small oscillation amplitudes and
use perturbation analysis (in the amplitude of oscillations) to identify the period of
oscillations that achieves largest drag reduction in a computationally efficient manner.
In addition, we quantify the net efficiency, discuss the drag reduction mechanisms and
the effects of the Reynolds number, and compare the dominant structures in flows
with and without control. The close agreement between our results and the results
obtained in experiments and DNS (Jung et al. 1992; Baron & Quadrio 1996; Choi
2002; Quadrio & Ricco 2004; Ricco & Quadrio 2008) demonstrates the predictive
power of our model-based approach to flow control design.

Our presentation is organized as follows. In §2, we formulate the problem and
provide a brief overview of the governing equations, turbulent mean velocity, skin-
friction drag coefficient, net efficiency, and the Boussinesq eddy viscosity hypothesis.
In §3, we use an eddy-viscosity-enhanced stochastically forced linearized model
to study the dynamics of infinitesimal fluctuations around the turbulent base flow.
We also describe an efficient method for computing the second-order statistics of
fluctuations. These statistics are used to determine the influence of control on turbulent
viscosity. In §4, we apply our theoretical developments to the problem of turbulent
drag reduction with transverse wall oscillations, and provide a thorough analysis of the
effect of control on skin-friction drag and net efficiency. In § 5, we use characteristic
eddy decomposition to visualize the effect of control on turbulent flow structures. We
conclude the paper with a brief summary of our contributions and outlook for future
research in § 6.

2. Problem formulation

The pressure-driven channel flow of incompressible Newtonian fluids, with geometry
shown in figure 1(a), is governed by the non-dimensional NS and continuity equations

u,=—@w-Vyu—VP+ (1/R,)Au, 2.1a)
0=V -u, (2.1b)

where u is the velocity, P is the pressure, V is the gradient, and A =V .V is the
Laplacian. The Reynolds number R, = u.h/v is defined in terms of the channel’s
half-height 4 and the friction velocity u, = \/1,/p, (x,y,z) are the streamwise,
wall-normal, and spanwise coordinates, and ¢ is time. Here, 7, is the wall-shear
stress (averaged over horizontal directions and time), p is fluid density, and v is
kinematic viscosity. In (2.1) and throughout the paper, spatial coordinates are non-
dimensionalized by h, velocity by u,, time by h/u,, and pressure by pu?. When
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FIGURE 1. (Colour online) (a) Pressure-driven channel flow, and (») channel flow subject to
transverse wall oscillations.

normalized by v/u., the wall-normal coordinate is denoted y* = R.(1 + y). The
subscripts x, y, z and ¢ are used to denote the spatial and temporal derivatives, e.g.
u, = du/ot = ou.

Throughout the paper we assume that the bulk flux, which is obtained by integrating
the streamwise velocity over spatial coordinates and time, remains constant. This
constraint is commonly imposed in experiments and DNS of turbulent flows and it can
be enforced by adjusting the uniform streamwise pressure gradient P,. In addition to
the driving pressure gradient, which balances the wall-shear stress (McComb 1991),
the flow is also subject to zero-mean transverse wall oscillations of amplitude « and
frequency w;; see figure 1(b). The period of oscillations normalized by h/u, (outer
units) is given by T = 2m/w,, which is equivalent to 7+ = R, T when normalized by
v/u? (viscous units). The streamwise and wall-normal velocities satisfy no-slip and
no-penetration boundary conditions at the walls.

Reynolds decomposition separates the velocity in a turbulent flow into the sum
of the turbulent mean velocity, U = [U V W], and the fluctuations around U,
v=1[uvwl,

u=U+v, U=u), (v)=0. (2.2)
Here, () denotes the expectation operator,
1 [
(u(x,y, z,1)) = lim / u(x,y,z,t+1)dr. (2.3)
ooty Jo

This decomposition yields the Reynolds-averaged Navier—Stokes (RANS) equations
for the turbulent mean velocity (McComb 1991; Durbin & Reif 2000; Pope 2000),

U=—U-VYU~-V(P)+ (1/R,) AU — V - (vv"), (2.4a)
0=V.U. (2.4b)

In a turbulent flow, the second-order statistics of fluctuations (vvT), i.e. the Reynolds
stresses, introduce additional flux. The Reynolds stress tensor quantifies the transport
of momentum arising from turbulent fluctuations and it has profound influence on the
mean velocity, and thereby on skin-friction drag (McComb 1991). The difficulty in
determining statistics of fluctuations arises from the non-linearity in the NS equations
which makes the nth velocity moment depend on the (n + 1)th moment (McComb
1991).

2.1. The turbulent mean velocity

The closure problem in (2.4) can be overcome by expressing the higher-order
moments in terms of the lower-order moments. According to the Boussinesq eddy
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viscosity hypothesis (McComb 1991; Durbin & Reif 2000; Pope 2000), the turbulent
momentum is transported in the direction of the mean rate of strain,

I 1 [ v
(") — (@)1= &z (VU+ 0T, 2.5)

where vr(y) is the turbulent viscosity normalized by v, the overline denotes averaging
over x and z, tr (-) is the trace of a given tensor, and / is the identity tensor. In the flow
subject to wall oscillations, vy is a function of both y and 7. However, in this paper, we
consider the averaged effect of control (over one period of oscillations 7) on vy. This
does not mean that the time-periodic flow is treated as time-independent. In fact, the
approach outlined in § 3.1 and in appendix C facilitates analysis of the time-periodic
flow.

The steady-state solution (after the influence of initial conditions disappears) of the
system (2.4)—(2.5) subject to a uniform pressure gradient, P,, and the transverse wall
oscillations,

W(y = =1, t) = 2a sin (o) , (2.6)

is determined by [U(y) 0 W(y, H]'. It can be shown that the streamwise mean
velocity averaged over one period of oscillations, U(y), arises from the uniform
pressure gradient, and that the spanwise mean velocity, W(y, ), is induced by the
wall oscillations,

0=(1+vr(YHU,(y), —R. Py,
{U(y::l:]):O, Y (2.7a)

R W,(y,t) = ((1 +vr(y) W, (y, 1)),
{W(y = =+1, ) = 2a sin(w;, 1). ’ (2.7b)

Here, (1 + vr) represents an effective viscosity that accounts for both molecular and
turbulent dissipation (Pope 2000).
For given turbulent viscosity vy and driving pressure gradient P,, (2.7) is an
uncoupled system of equations for U and W; U can be obtained by solving (2.7a),
N
vy =r.p, | d. 2.8
1 L+vr(§)
and W can be obtained by solving (2.7b). The imposed boundary conditions induce a
y-dependent time-periodic spanwise velocity,

W(y, 1) = a(W,(n)e” + Wiye ), (2.9)

where i =+/—1, and * denotes the complex conjugate. An equation for W,(y) is
obtained by substituting (2.9) in (2.75),

iR, W,(y) = (1 + v (W, () + v (") W, (), (2.10a)
W,(x1) = —i, (2.10b)

where prime represents differentiation with respect to y. The expression for W,(y) is
readily obtained from a solution to the resulting two-point boundary value problem
(2.10).

The difficulty in determining U and W from (2.7) arises from the fact that vr
depends on the fluctuations around the turbulent mean velocity, and thus it is not
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FIGURE 2. (Colour online) (@) The real part, and (b) the imaginary part of the solution
W,o(t; T*) to (2.10) (solid curves) in the flows with R, = 186 and 7* = 30 (blue), 100
(green) and 300 (red). The solution W,o(y*; T*) is obtained under the assumption that
the turbulent viscosity of uncontrolled flow captures the effect of fluctuations on the mean
velocity. The solutions of the laminar Stokes problem are shown for comparison (dashed
curves).

known a priori. A significant body of work has been devoted to finding an expression
for vr that yields the turbulent mean velocity in uncontrolled flow (Malkus 1956;
Cess 1958; Reynolds & Tiederman 1967). Reynolds & Tiederman (1967) extended the
turbulent viscosity model, originally introduced by Cess (1958), from the pipe flow to
the channel flow,

12
m(y)zé ((1 + (%Rfa — (1 + 200 —e“'y')R’/Cl))z) - 1) . @11)

This expression employs the law of the wall in conjunction with van Driest’s damping
function and Reichardt’s middle law (Reynolds & Tiederman 1967). The parameters
c; and ¢, appear in van Driest’s wall law and in von Karmdn’s log law (Pope 2000),
respectively. These two parameters are selected to minimize least-squares deviation
between the mean streamwise velocity (2.8) obtained with P, = —1 and turbulent
viscosity (2.11), and the mean streamwise velocity obtained in experiments or in
simulations. Application of this procedure yields {R, = 186, ¢; =46.2, ¢, =0.61; R, =
547,¢, =29.4,¢, = 0.45; R, =934, ¢, = 27, c; = 0.43} for the corresponding mean
velocities in a turbulent channel flow resulting from DNS (del Alamo & Jiménez 2003;
del Alamo et al. 2004).

Under the assumption that the turbulent viscosity (2.11) captures the effect of
background turbulence on the mean velocity, the system of (2.7)—(2.11) yields
a solution Uy = [Uy(y) 0 Wy(y, t)]T. By construction, U, approximates the mean
streamwise velocity in uncontrolled turbulent flow, and W, is the spanwise velocity
induced by the wall oscillations and obtained under the assumption that the turbulent
viscosity is not modified by control. As discussed below, this strong assumption is
only used as a starting point for our analysis. Figure 2 shows that W, (y*; T") in
flow with R, = 186 (solid curves) is localized in the viscous wall region, y* < 50. As
expected from the analogy to the solution of Stokes’ second problem (for example,
see Panton 1996), W, shifts away from the wall as 77 increases. In addition, for
small values of 7", we observe close correspondence between W,.0 and the solution to
the laminar Stokes problem (dashed curves) determined by Ricco & Quadrio (2008);
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both of these are in agreement with the DNS results of Quadrio & Sibilla (2000), Choi
et al. (2002) and Quadrio & Ricco (2003). For larger values of T*, the discrepancy
between these solutions increases. Ricco & Quadrio (2008) argued that in this case
the rapidly varying time evolution of the near-wall turbulent structures is not properly
captured by the slowly varying Stokes layer.

Therefore, if the turbulent viscosity of uncontrolled flow vz, is used to model vy, the
oscillations induce W, but have no impact on U, (which, in this case, arises only from
the uniform pressure gradient). The implications of this assumption for determining
the skin-friction drag coefficient and the control net efficiency are discussed in §2.2,
where we demonstrate the necessity of accounting for the effect of control on the
turbulent viscosity.

2.2. Skin-friction drag coefficient and net efficiency

As mentioned in § 2, the pressure gradient P, has to be adjusted in order to maintain
the constant bulk flux,

1 1

U = 3 / U(y) dy = const. (2.12)
—1

Since the skin-friction drag coefficient is proportional to |P,| and inversely

proportional to Uz (McComb 1991; Panton 1996),

C; =2|P,|/U}, (2.13)

for the flow with constant Up, reduction (increase) in |P,| induces drag reduction
(increase). The change in the skin-friction coefficient relative to uncontrolled flow is
given by
Cru—Cre
%Cr = 100% =100(1 + P...), (2.14)
fou

where the subscripts u and ¢ denote the quantities in uncontrolled and controlled flows,
respectively. Thus, the control leads to drag reduction when P, . > —1.

The drag reduction induces saving in power (per unit area of the channel surface
and normalized by pu?)

Hsave = 2UB(1 + Px,c) (215)

(Currie 2003). Compared to the power required to drive the uncontrolled flow,
IT, = 2Up, the saved power is determined by the relative change in the skin-friction
coefficient,

HS(IUE

=100(1 + P, .) = %C;. 2.16
20, (I +P.o) =%C (2.16)
On the other hand, an input power is required for balancing the spanwise shear
stresses at the walls (Currie 2003). The required power exerted by wall oscillations
expressed in fraction of the power necessary to drive the uncontrolled flow is given by
(see appendix A)

oIl =100

2

Im(W,|,__, — W.|,_y), (2.17)

y=-1

%I,y = 100 R“

tYB
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FIGURE 3. (Colour online) (a¢) The solid curve indicates the required power, %11, o(T"),
as a function of the period of oscillations 7+ for the flow with R, = 186. The symbols
indicate the DNS-based %I1,,,(T*; o) normalized by o? at R, =200 (Quadrio & Ricco 2004)
for three oscillation amplitudes: o, « = 2.25; U, « = 6; V, « = 9. (b) The solid curve and

the symbols show the dependence on 1/+/T+ for the same quantities as in figure 3(a). The
dotted curve (red) shows the required power obtained from the solution to the laminar Stokes
problem (Ricco & Quadrio 2008).

where Im (-) denotes the imaginary part of a complex number. The net efficiency of
control is quantified by the difference of the saved and required powers

%Hnel = %Hsave - %Hreq- (218)

Since the net efficiency is obtained from U and W, determining the turbulent mean
velocities is essential for assessing the efficiency of wall oscillations.

For the spanwise mean velocity W, determined in § 2.1, the required power grows
quadratically with «,

1
PDollyey = 0> olT,0g0,  FolT,eq0 = 1004

VB

Im (W oot = Wyglt) - (219)

Figure 3(a) shows that %IT,.,0(T*) decreases monotonically with 7" and that small
values of T require prohibitively large input power. The inset demonstrates close
correspondence between %I1,.,, (solid curve) and the DNS results of Quadrio &
Ricco (2004) (symbols). Using the solution of the laminar Stokes problem, Ricco &
Quadrio (2008) showed that the required power scales as «?/+/T+. For T+ < 150
(or, equivalently, for 1/+/T+ < 0.08), figure 3(b) illustrates that our approach leads
to similar scaling trends. For larger values of T*, %II,.,0(T*) deviates from the
value obtained using the laminar Stokes problem (red dotted curve). We note that for
T+ = 150, the solution of Ricco & Quadrio (2008) provides better agreement with the
DNS results. This implies that the Reynolds stress that drives the evolution of W in
RANS is not as strongly correlated with W, as suggested by the turbulent viscosity of
uncontrolled flow. In §4.2 we show that accounting for the effect of control on the
turbulent viscosity improves the prediction of the required power resulting from the
use of W.

The apparent lack of influence of the wall movements on U,, observed in §2.1,
is at odds with experiments and simulations that have shown that properly designed
oscillations can reduce drag by as much as 40% (Jung et al. 1992; Laadhari et al.
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1994; Baron & Quadrio 1996; Choi et al. 1998; Choi 2002; Quadrio & Ricco
2003, 2004; Ricco 2004). Thus, model-based control of turbulent flows requires
thorough examination of the influence of control on vr. For spanwise wall oscillations
we address this problem in § 3.2.

2.3. The model equation for vr

Direct numerical simulations can be used to study the effect of control on turbulent
flows. However, resolving all scales of motion at large Reynolds numbers may be
prohibitively expensive, which motivates use of the Reynolds-averaged equations in
conjunction with turbulence modelling. The challenge here is to establish a relation
between vr and the second-order statistics of velocity fluctuations. By choosing a
velocity scale k'/2 and a length scale k*?/e, turbulent viscosity can be expressed
as (Pope 2000)

k2
vr(y) = ¢ B Eéyy)),

where ¢ = 0.09 is a multiplicative constant (for validity of this assumption in the
near-wall region we refer the reader to Pope 2000). Both the turbulent kinetic energy k
and its rate of dissipation € are determined by averaging the second-order statistics of
fluctuations over the horizontal directions and one period of oscillations

(2.20)

T
k(y) = L / (uu 4 vv + ww)(y, 1) dt, (2.21a)
2T J,

1 T
e€(y) = T / (2 (uxux + VU, + W, + Uy v, + U w, + vzwy)
0

+Wylly + Wy Wy + TeUs + Wows + W, + ) (v, ) de. (2.21b)

The most widely used method for computing k¥ and € in engineering flows is the
k—e model (Jones & Launder 1972; Launder & Sharma 1974), where k and € are
determined by solving two transport equations (Pope 2000). Even though these are
less complex than the NS equations, they are still computationally expensive, and
not convenient for control design and optimization. In §3, we instead develop a
simulation-free method, which is computationally efficient and amenable to control
design and optimization, for determining the effect of fluctuations on vy in flow with
control.

3. Stochastically forced flow with control

Since vy in (2.20) is determined by the second-order statistics of velocity
fluctuations, we use the stochastically forced linearized NS equations to compute &
and ¢ in the flow with control. Here, we utilize the fact that the second-order statistics
of linear time-periodic systems can be obtained from the solution of the corresponding
Lyapunov equation (Jovanovi¢ & Fardad 2008). It is well known that the analysis of
the steady-state variance of infinitesimal fluctuations around the laminar flow can be
used to identify flow structures that initiate the onset of turbulence (Farrell & Ioannou
1993; Bamieh & Dahleh 2001; Jovanovi¢ & Bamieh 2005). In this paper, we show that
eddy-viscosity-enhanced linearization of the turbulent flow with control in conjunction
with turbulence modelling can be used to approximate the turbulent viscosity in a
computationally efficient way.
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Next, we examine the effect of control on small-amplitude fluctuations around
Uy = [Uy(y) 0 Wy(y, H1'. An equivalent expression for U, can be found from the
steady-state solution of the modified NS equations subject to wall-oscillations,

u=—w-Vyu—VP+{1/R)V - (1 +vp) (Vu+(Vw)")), (3.1a)
0=V -u. (3.1b)

Model (3.1) is obtained by augmenting the molecular viscosity in the NS (2.1) with
the turbulent viscosity vy, and it facilitates analysis of the dynamics of turbulent flow
fluctuations (up to first order),

v,=—Uy-V)v—@-V)Uy—Vp+ (1/R)V - ((1 + vro) (Vv + (V)')) ,(3:20)
0=V .v. (3.2b)

Recent research has demonstrated the ability of (3.2) to qualitatively predict the
spacing and length of near-wall turbulent structures observed in experiments and
simulations (del Alamo & Jiménez 2006; Cossu et al. 2009; Pujals et al. 2009). This
model was used by Reynolds & Hussain (1972) as a method for obtaining closure in
the equation for velocity fluctuations, and it can be traced back to Townsend (1956).
These authors noted that the eddy viscosity represents the influence of fluctuations
on the background turbulent stresses, and that this influence is best captured for the
fluctuations that have larger wavelengths relative to the dominant turbulent scales. A
different interpretation was provided by del Alamo & Jiménez (2006), who introduced
the eddy viscosity to model the dissipative effects of small-scale turbulent structures
on the large scales.

Our simulation-free design of drag-reducing transverse oscillations involves four
steps.

(i) The turbulent mean velocity in the presence of control is obtained from the
RANS equations (2.7), where closure is achieved using the turbulent viscosity of
uncontrolled flow (2.11).

(i1)) k and € are determined from the second-order statistics of fluctuations that
are obtained from the stochastically forced NS equations linearized around the
turbulent mean velocity determined in (i).

(ii1) For flow with control, the modifications to k and € are used to determine the
modification to the turbulent viscosity, vy.

(iv) The modified vy is used in the RANS equation (2.7) to determine the effect of
fluctuations on the mean velocity, and thereby skin-friction drag and control net
efficiency.

Figure 4 represents these four steps using a block diagram. We note that the
slow time evolution of the mean flow (relative to the time evolution of fluctuations)
is used to separate the update of the mean velocity (steps (i) and (iv)) from the
computation of the statistics (step (ii)) and the update of vy (step (iii)). Rather than
updating the turbulent viscosity and the mean velocity in an iterative fashion, we
update them only once; in §4, we show that the resulting correction to the mean
velocity reliably predicts the optimal period of drag-reducing oscillations. Also note
that step (1) amounts to finding the steady-state solution of system (3.1) subject to wall
oscillations, and that step (ii) amounts to the analysis of the linearized model (3.2) in
the presence of stochastic forcing.
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drag forcing
T Turbulent * Second-order
mean velocity . . statistics
Linearized
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flow dynamics
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vy = cR2 (k2/6)<

FIGURE 4. Block diagram representing steps (i)—(iv) of our simulation-free approach for
determining the effect of control on skin-friction drag in turbulent flows. The hollow arrows
indicate that some of the coefficients in the model of the output subsystems are determined
by the outputs of the corresponding input subsystems. The turbulent mean velocity is updated
only once in the present study.

3.1. Computation of the velocity correlations

The evolution form of the linearized model (3.2) that governs the dynamics of
fluctuations around [Uy(y) 0 Wy (y, 1" is given by

V.6, 0)=Ak, )Y, k, ) +f(y, k., 1), (3.3a)
v(y, K, ) =C) Y (y, Kk, 1), (3.3b)

where ¥ = [v n]" is the state, n = ik,u — ik,w is the wall-normal vorticity, and f is
the stochastic forcing with second-order statistics determined by (3.5). System (3.3)
represents a k-parametrized family of PDEs in y and ¢ with time-periodic coefficients.
Here, « denotes the streamwise and spanwise wavenumbers, k = (k,, k,), and the same
symbol is used to denote the variables in physical and wavenumber domains (when
necessary, we will highlight the distinction by explicitly stating the dependence on
(x, 2) and (ky, k), respectively). The operators A and C in (3.3) are given by

k0, —iKk
An 0 Cu 1 2) )
= , C=|C|l=—] « 0o |, (3.4a)
Ay Ap C K| )
w ik 0, ik
A=A ((1/R:) (1 + vro) A% + 207, Ay + vy (3] + 7))
+ ik (Uy — UpA) + ik, (W — WoA)) , (3.4b)
Ay = —ik, Uy + ik, Wy, (3.4¢)
Ap = (1/R;) ((1 4+ v7o) A + v7dy) — ik Uy — i, Wo, (3.4d)

where A = 9> — k? is the Laplacian, A = 8;,‘ — 2K23y2 + &%, k* =«k] + k2, and
v(xl, k, 1) =v (1, k,0) =n(El, Kk, 1) =0.

We next briefly describe a method for determining the steady-state statistics of the
linearized system (3.3) driven by a zero-mean temporally white stochastic forcing,
with second-order statistics

(f(',K,t]) ®f(7K’t2)>=M(K)8(tl _t2) (35)

Here, § is the Dirac delta function, f ® f is the tensor product of f with itself, and
M(k) is a spatial spectral-density of forcing. For homogeneous isotropic turbulence,
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the steady-state velocity correlation tensors can be reproduced by the linearized NS
equations subject to white-in-time forcing with second-order statistics proportional to
the turbulent energy spectrum (Jovanovi¢ & Georgiou 2010). Using this analogy, we
select M (k) to guarantee equivalence between the two-dimensional energy spectra of
the uncontrolled turbulent flow and the flow governed by the stochastically forced NS
equations linearized around U, = [Uy(y) O 0]". To this end, we use the DNS-based
energy spectrum of the uncontrolled flow (del Alamo & Jiménez 2003; del Alamo
et al. 2004), E(y, k), to define

M) = 2%y, (3.60)

Ey(x)
VEG. 1)1 0 VEG. 1)1 o 1"
0 E(, k)l 0 VE, k) 1|

Here, E(k) = fjl E(y,k)dy 1is the two-dimensional energy spectrum of the
uncontrolled flow, Ey(k) is the energy spectrum obtained from the linearized NS
equations subject to a white-in-time forcing f with spatial spectrum My(k), and *
denotes the adjoint of an operator. Note that the adjoints of the operator appearing in
the expression for My(k) and the operator A should be determined with respect to the
inner product that induces kinetic energy of flow fluctuations; for additional details,
see Jovanovi¢ & Bamieh (2005).
For the time-periodic system (3.3), the operator A in (3.4) can be written as

My(k) = (3.6b)

Ale, 1) =Ag(k) + o (A  (l)e ™" + Ay (k)e') (3.7)

where the expressions for Ag, A_; and A, are given in appendix B. It is a standard fact
that the response of the linear time-periodic system (3.3) subject to a stationary input
is a cyclo-stationary process (Gardner 1990), meaning that its statistical properties are
periodic in time. For example, the auto-correlation operator of ¥ is given by

X(IC’ t) = ('/’(, K, t) X 'ﬁ(v K, t))
= Xo(k) + X1 (k)€™ + X; (k)e ™" + X, (k)e™" + X (k)e > + ... .(3.8)

The averaged effect of forcing (over one period T') is determined by the operator X,:

T
1/ X(k,t)dt = Xy(k). 3.9
T Jo

In the remainder of the paper, we consider small-amplitude wall oscillations «.
This choice is motivated by the observation that the power required to maintain the
oscillations increases quadratically with « (see (2.17) and Ricco & Quadrio 2008).
Hence, large amplitudes may be prohibitively expensive from the control expenditure
perspective. Furthermore, for sufficiently small value of « the velocity correlations can
be computed efficiently using perturbation analysis in « (Jovanovi¢ 2008; Jovanovié¢ &
Fardad 2008). We thus use perturbation analysis to identify wall oscillation periods
that yield the largest drag reduction and net efficiency; note that these do not
necessarily coincide with each other.

Up to second order in «, the operator X in (3.9) is given by

Xo(ke) =X 0(k) + a* Xo» (k) + O(a*), (3.10)
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where X;o and X, are obtained from the set of decoupled Lyapunov
equations (Jovanovi¢ 2008; Jovanovi¢ & Fardad 2008); see appendix C for details.
The auto-correlation operator of the state ¥ of stochastically forced uncontrolled flow
is determined by X . On the other hand, the operator X, represents the second-order
correction to Xpo induced by wall oscillations. As shown in §§3.2 and 3.3, X,
determines the effect of fluctuations on k, €, vy and C; in flow with control.

3.2. Influence of fluctuations on turbulent viscosity

According to (2.20), vy is determined by the second-order statistics of velocity
fluctuations. By considering dynamics of infinitesimal fluctuations, these statistics can
be obtained from the auto-correlation operator X;. In flow subject to small-amplitude
wall oscillations, X is given by (3.10), implying that k£ and € can be expressed as

k() = ko) + > ko) + O(a®), (3.11a)
€() =€) + o’ &) + 0. (3.11b)
Here, the subscript 0 denotes the corresponding quantities in uncontrolled turbulent
flow, and the subscript 2 quantifies the influence of fluctuations in the controlled flow
at the level of o?>. A computationally efficient method for determining k, and €, from
Xo.» is provided in appendix D.
For small-amplitude oscillations, substituting k£ and € from (3.11) into (2.20) yields

R0) _ o (00) + k) + 0)”
€ T o) +a’ey) + 0@
which in conjunction with Neumann series expansion leads to

vr(y) = vro(y) + o v (y) + O(e®), (3.13a)
. 2k (y) _ &)
v (¥) = vro(y) ( ko (y) eo(y)> .

Therefore, up to second order in «, the influence of fluctuations on turbulent viscosity
in flow with control is determined by second-order corrections to the kinetic energy k,
and its rate of dissipation e,.

vr(y) = cR: , (3.12)

(3.13b)

3.3. Skin-friction drag coefficient and net efficiency

We next show how velocity fluctuations in flow subject to small-amplitude oscillations
modify the skin-friction drag coefficient and the net efficiency. As discussed in §2.2,
C; is determined by U and %1, is determined by both U and W. The influence
of fluctuations on U and W in flow with control can be obtained by substituting vr
from (3.13) into (2.7) and thereby expressing U, W and P, as

U®) = Up(y) + o’ Ur(y) + O, (3.14a)
W,(») = W,0(») + &’ W,2(») + O(a®), (3.14b)
P, =—14a’P,, + O(a*), (3.14¢)

where the expressions for U,, W, , and P, are provided in appendix E.
An expression for the saved power is obtained by substituting P, from (3.14¢)
into (2.14):

%Cf = %Hsave = (xz%nsaue,Z + 0(()[4)’ %Hmve,Z =100 Px,2- (315)
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Rr Nx ]Vy N” Kx,mw( KZA,max C1 (&) UB

z

186 50 101 51 42.5 845 462 0.61 15.73
547 50 151 51 128 2555 294 045 18.38
934 50 201 51 255 5113 27.0 0.43 19.86

TABLE 1. The parameters used in our study. At each R;, ¢; and ¢, are selected
to minimize the least-squares deviation between the mean streamwise velocity obtained

from (2.8)—(2.11) and the mean velocity obtained in DNS (del Alamo & Jiménez 2003; del
Alamo er al. 2004). The bulk flux Uy is kept constant by adjusting the pressure gradient.

In flows subject to small-amplitude oscillations, the above equation shows that a
positive (negative) value of %Il , signifies drag reduction (increase). On the other
hand, the required power can be obtained by substituting W, from (3.14b) into (2.17),

%Hreq = a2 (Hreq,O + az%nreq,z) + 0(a6)a (316)

where %I1,.,, is given in (2.19), and %I1,.,, is provided in appendix E. We note the
contrast in the way fluctuations influence saved and required powers: while fluctuations
make O(a?) contribution to %Iy, they affect %I1,., only at the level of a*. This
explains the close agreement, observed in § 2.2, between %I1,.,, and the DNS results
of Quadrio & Ricco (2004). Finally, the net efficiency is given by

%Hnet = 052 %Hnet,Z + 0((14), %Hnet,Z = Hmve,Z - Hreq,()' (317)

The developments of this section are used in §4 to determine the skin-friction drag
coefficient and the net efficiency in the flow subject to wall oscillations.

4. Turbulent drag reduction

In this section, we examine the effect of transverse wall oscillations on skin-friction
drag and net efficiency in flows with R, = 186, 547 and 934. For these Reynolds
numbers, the second-order statistics of the uncontrolled turbulent flow were obtained
using DNS (del Alamo & Jiménez 2003; del Alamo er al. 2004). As explained in
§ 3.1, we use available DNS data to determine the spatial spectrum of the stochastic
forcing (3.5) in the evolution model (3.3). The results of del Alamo & Jiménez
(2003) and del Alamo et al. (2004) also provide the turbulent kinetic energy in the
uncontrolled flow, kj, and thereby its rate of dissipation,

k()
V1o (y) ’

€(y) = cR? 4.1)
where vy is defined by (2.11).

The differential operators in the wall-normal direction are discretized using N,
collocation points (Weideman & Reddy 2000). In horizontal directions, we use N, x N,
wavenumbers with 0 <k, < Ky mer and 0 < k; < kg ar, Where Ky o and k., are the
largest wavenumbers used in the DNS of del Alamo & Jiménez (2003) and del Alamo
et al. (2004); table 1 provides a summary of parameters used in our study. The
DNS-based energy spectrum taken from http://torroja.dmt.upm.es/ftp/channels/data/ is
interpolated on the N, collocation points in y.
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FIGURE 5. The solid curve indicates the second-order correction to the saved power,
90l »(TT) normalized by max(%IT,.,(T")) = 2.8, as a function of the period of
oscillations 7+ for the flow with R, = 186. The symbols indicate the DNS-based %11, (T)
normalized by the corresponding largest values at R, = 200 (Quadrio & Ricco 2004) for three
control amplitudes: o, ¢ =2.25; [, =6; V,a =9.

4.1. Saved power

We first examine the effect of period of oscillations 7t on the turbulent drag
reduction and the saved power. The solid curve in figure 5 shows the second-order
correction to the saved power %I1,.,(T"), normalized by its maximum value
max(% 1. ,(TT)) = 2.8, for the controlled flow with R, = 186. The positive value
of %I, indicates that drag is reduced for all values of T* considered, with the
largest drag reduction taking place at 7T = 102.5. Our theoretical predictions are in
close agreement with DNS at R, =200 (Quadrio & Ricco 2004), where it was shown
that 7T ~ 100 yields the largest drag reduction for control amplitudes @ = 3.1 and 6.2.

Figure 5 also compares %I[l,,., (solid curve) obtained using our analysis with
911, (symbols) obtained using DNS at R, = 200 (Quadrio & Ricco 2004); both sets
of results are normalized by their corresponding maximal values. In DNS, the largest
drag reduction takes place at 7T ~ 100 for @« =2.25 and o = 6 and at T* ~ 125 for
o = 9. Thus, for small control amplitudes, perturbation analysis up to second order in
o reliably predicts the optimal period of drag-reducing oscillations. For the optimal
period of oscillations and o = 2.25, our perturbation analysis predicts 13.6 % drag
reduction, whereas 17.4 % drag reduction is obtained in DNS (Quadrio & Ricco 2004).
The quantitative difference between the DNS results and the results of perturbation
analysis may be attributed to the effects of higher-order corrections. Another factor
that warrants further scrutiny is modelling of the spatial spectrum of stochastic forcing.
Analysis of these effects is beyond the scope of the current study.

For small oscillation periods, T+ < 0.5, the second-order correction to the saved
power is negligible. Recent research has determined necessary conditions on the
amplitude and period of oscillations for drag reduction. For T% > 30, Ricco &
Quadrio (2008) used the solution to Stokes’ second problem to show that the smallest
oscillation amplitude that yields drag reduction is approximately equal to 1.8 (in
viscous units). It was also shown that the amplitudes of oscillations that achieve
drag reduction become prohibitively large as the Stokes layer thickness 85 ~ +/T+
approaches zero. In addition, Quadrio & Ricco (2011) showed that the smallest value
of the Stokes layer thickness that results in drag reduction by travelling waves of
spanwise wall motion is approximately equal to 1 in viscous units.



222 R. Moarref and M. R. Jovanovi¢

FIGURE 6. The solid curve indicates the fourth-order correction to the required power,
%I1..,,(T"), as a function of the period of oscillations 7F for the flow with R, = 186.
The solid symbols show the difference between the DNS-based required power %I1,., (shown
by open symbols in figure 3a) and the required power %I1,.,, (shown by the solid curve

in figure 3) that is obtained from the solution Wy(y, 1), %I1,.; — az%H,eq,o(Tﬂ. %Il,., is
obtained using DNS at R, = 200 (Quadrio & Ricco 2004) for: e, « =2.25; B, « =6; V,
o =9. The results are normalized by max(|%I1,.,,(T")|) = 0.0126 and the largest values of
|%Hreq - az%nreq.O(T+)|-

4.2. Required control power

We next study the power required to maintain wall oscillations. From (3.16) it follows
that, up to second order in o, %Il defined by (2.19) determines the required
power. From §2.2 we also recall that the discrepancy between %I1,.,, and the DNS-
based required power gets larger for Tt 2> 150: see figure 3(a). Here, we show that
accounting for the effect of fluctuations in flow with control reduces this discrepancy.
As shown in figure 6, the fourth-order correction to the required power, %IT,.,>(T™),
is negative for T+ 2 45 and it decreases with 7. This is in agreement with our earlier
observation that %I1,,,, overestimates the required power obtained in DNS. The solid
symbols in figure 6 represent the difference between the required power obtained
by Quadrio & Ricco (2004) using DNS (shown by open symbols in figure 3a) and the
required power that we obtain using %I/1,.,0 (shown by the solid curve in figure 3a).
For « =2.25, 6, and 9, %I1,., — a? %11, is in close agreement with the fourth-order
correction to the required power, %11, (the solid curve in figure 6).

4.3. Net efficiency

The net efficiency in flow subject to wall oscillations is determined by the difference
between the saved and required powers. The solid curve in figure 7 shows the second-
order correction to the net efficiency, %I1,..,(T*), in the flow with R, = 186. We
see that %I, > 0 for TT > 75, indicating that, for small control amplitudes, a
positive net efficiency can be achieved if the period of oscillations is large enough.
Our prediction is in close agreement with DNS at R, = 200 (Quadrio & Ricco
2004), where positive net efficiency of oscillations with o = 2.25 is obtained for
T+ > 70. Furthermore, up to second order in «, the largest net efficiency takes place at
T+ = 180. This value differs from the value of T that yields the largest saved power,
Tt =102.5 (cf. §4.1). This difference can be explained by the fact that the peak of
YoIT,012 = Yol uyer — %oll,., 0 takes place at a value of T+ where the derivatives (with
respect to T1) of %I, and %IT,.,0(T*) are equal to each other. Since %IT,.,0(T")
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FIGURE 7. Comparison between second-order correction to the net efficiency %I1,.,»(T")
(solid curve) for the flow with R, = 186, and %I1,.,/a* (symbols). The symbols show DNS
data at R, = 200 (Quadrio & Ricco 2004): o, o = 2.25.

is a monotonically decreasing function, its derivative is negative for all 7F. Therefore,
the largest net efficiency takes place at some 7 > 102.5 where the slope of the curve
9oIle2(TT) is also negative. (Our analysis shows that this happens at 7 = 180.)
The symbols in figure 7 show %I1,,,/a? obtained from DNS at R, = 200 (Quadrio &
Ricco 2004) for o = 2.25. Even though the essential trends are captured by %IT,.
(solid curve), the DNS net efficiency peaks at 7+ = 125, which is approximately 30 %
smaller than the value of T predicted by our perturbation analysis. This discrepancy
may be attributed to a slower rate of decay of %Il , relative to %Il,,, obtained in
DNS for Tt > 100: see figure 5.

We note that in DNS the net efficiency becomes negative for large control
amplitudes. At R, = 200, Quadrio & Ricco (2004) showed that %II,, becomes
negative for all T* if o = 3.5. Therefore, the positive net efficiency predicted by
perturbation analysis is only valid for small control amplitudes. This can be explained
by noting that perturbation analysis predicts quadratic increase of both saved and
required powers with «. On the other hand, Quadrio & Ricco (2004) showed that
saved power exhibits slower than linear growth with « for large control amplitudes.

4.4. Drag reduction in flows with larger Reynolds numbers

After assessing the utility of perturbation analysis for flows with R, = 186, we turn
our attention to the effect of control at R, = 547 and 934. Figure 8(a) shows that
the second-order correction to the saved power, %Il,.», is positive for all R,,
and that the optimal T+ slightly decreases with R, (Tt = 102.5, 96, and 94 for
R, =186, 547, and 934, respectively). The corresponding periods of oscillations in
outer units, 7 = T*/R,, are T = 0.55, 0.18, and 0.10. Therefore, as R, increases, a
larger frequency of oscillations is required for optimal drag reduction. In addition,
since %Il,., decreases with R,, the drag-reducing ability of wall oscillations
deteriorates at higher Reynolds numbers, which is in agreement with the observations
of Choi et al. (2002), Ricco & Wu (2004), Ricco & Quadrio (2008) and Touber
& Leschziner (2012). Our results suggest that the amount of drag reduction scales
as R7*15, which agrees fairly well with the decline in drag reduction R;°? found
by Choi et al. (2002) and Touber & Leschziner (2012). Our analysis also demonstrates
that for 7T+ = {40, 100, 160, 220} the second-order correction to the saved power
reduces by {10.4 %, 20.2 %, 20.8 %, 18.8 %} when R, increases from 186 to 547, and
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FIGURE 8. The second-order correction to (a) the saved power, %Il .,(TT), (b) the
required power, %I1,.,o(T"), and (d) the net efficiency, %I1,..,(T*), and (c) the fourth-order
correction to the required power, %I1,.,,(T"), as a function of the period of oscillations 7"
for the flows with R, = 186, 547, and 934.

by {16.6%,27.2%,28.1 %, and 26.1 %} when R, increases from 186 to 934,
respectively. This is in line with deterioration of 18 % observed in the DNS of Touber
& Leschziner (2012) when R, increases from 200 to 500. In addition, our predictions
qualitatively agree with the results of Ricco & Quadrio (2008), who showed that the
deteriorating effect of R, on drag reduction becomes stronger with increase in 7.

Figure 8(b) shows a monotonic decrease of %I1,.,o(T*) with both 7" and R,. We
also note that a product between the bulk flux U and %I1,., does not change with
R.. This demonstrates invariance under change in R, of the second-order correction to
the required power (before normalization is done). Ricco & Quadrio (2008) noted that
since Uy approximately scales as R%!13, the required power should approximately
scale as R;7%%®. For T+ = {40, 100, 160,220} and r = {0.145,0.141, 0.138, 0.135},
respectively, we indeed obtain very weak variations of %I[l.,o/R;" with R.. The
fourth-order correction to the required power, %I, is also reduced as R,
increases: see figure 8(c). The difference between the quantities shown in figure 8(a,b)
determines the second-order correction to the net efficiency, %I1,.,. From figure 8(d)
we see that the largest net efficiency reduces with R,, and that %I1,.,, saturates for
large Reynolds numbers.

4.5. Effect of control on turbulent viscosity and turbulent mean velocity

We next examine the effect of wall oscillations on the turbulent viscosity and the
turbulent mean velocity. Figure 9 shows vpo(yt) and Uy(yt) for R, = 186, 547,
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FIGURE 9. (a) The turbulent viscosity, vyo(y"), and (b) the turbulent mean streamwise
velocity, Uy(y™), in the uncontrolled flows with R, = 186, 547, and 934.
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FIGURE 10. Second-order correction to (a) the turbulent viscosity, vy, (y™; T1), and (b) the
mean streamwise velocity, U,(y™; T™), for R, = 186 and different values of 30 < T+ < 300,
where TV increases in the direction of the arrows. The thick curves correspond to the T that
yields the largest drag reduction (cf. figure 11).

and 934. We note that the profiles of U, for different R, lie on the top of each other,
and that vy, does not scale in wall units. In particular, the peak of vy, takes place at
y* &~ R,/2, approximately halfway between the walls and the channel centreline. On
the other hand, the effect of control on vy is strongest in the viscous wall region,
yt < 50: see figure 10(a).

Figure 10 shows the second-order corrections to vy, and U, for R, = 186 and
30 < T < 300. Since vy <0 for all T, perturbation analysis up to second-order
in « predicts turbulence suppression for all periods of oscillations: see figure 10(a).
Furthermore, the turbulence suppression region shifts away from the walls with
increase in TT. We note that suppression of the turbulent bursting process was
observed in DNS for 25 < T < 200 (Jung et al. 1992). Figure 10(b) shows that
the oscillations reduce the mean velocity gradient in the immediate vicinity of the
walls (U, < 0 for y* < 13). On the other hand, the mean velocity is shifted upward in
the log-law region. Both these trends were previously observed in experiments (Choi
2002) and DNS (Baron & Quadrio 1996; Choi et al. 1998). Choi (2002) argued
that the negative spanwise vorticity introduces near-wall modifications to the mean
streamwise velocity, and that it suppresses the production of turbulence by weakening
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FIGURE 11. The second-order correction to (a) the turbulent viscosity, v (y™), and (b) the
mean streamwise velocity, U, (y*), for the values of T that yield the largest drag reduction in
the flows with R, = 186, T+ = 102.5; R, =547, T =96; and R, =934, T+ =94.
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FIGURE 12. (Colour online) (a) Premultiplied DNS-based energy spectrum of the

uncontrolled flow, k.k,E(k), at R, = 186 (del Alamo & Jiménez 2003), and (b) second-
order correction to the energy spectrum, k.k,E,(k), for flow subject to wall oscillations with
optimal drag-reducing period T = 102.5.

the vortex-stretching mechanism. Our perturbation analysis underestimates the value
of y* above which the upward shift in U takes place: y* > 13 versus y™ = 30 in
DNS (Baron & Quadrio 1996; Touber & Leschziner 2012) and experiments (Laadhari
et al. 1994; Choi et al. 1998; Ricco & Wu 2004).

Figure 11 compares U, and vy, at three Reynolds numbers for the values of 7+ that
induce the largest drag reduction. We see that vy, peaks at y™ ~ 20 for all R,. This
suggests that the optimal drag-reducing frequency minimizes the turbulent viscosity
near the interface of the buffer layer and the log-law region. Even though the negative
peak of vr, increases with R, (see figure 1la), the ratio of vy, and vy, decreases
with R.. Thus, wall oscillations are less effective in suppressing turbulence at larger
Reynolds numbers. Finally, figure 11(b) shows that the slope of U, decreases with R;;
this is in agreement with our earlier observation that smaller drag reduction is achieved
at higher Reynolds numbers.

4.6. Effect of control on turbulent kinetic energy

We next examine the effect of control on the kinetic energy of fluctuations. Figure 12
compares the premultiplied two-dimensional energy spectrum of the uncontrolled
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flow, k.k.E(k), with the premultiplied second-order correction to the energy spectrum,
ki, E>(k), in flow subject to wall oscillations with the optimal drag-reducing period
T* = 102.5. The energy spectra are premultiplied by the spatial wavenumbers such
that the area under the log—log plot is equal to the total energy of fluctuations. We
see that the most energetic modes of the uncontrolled flow take place at «x, ~ 2.5
and x, &~ 6.5: see figure 12(a). In addition, wall oscillations further amplify the most
energetic modes of the uncontrolled flow with small streamwise wavelengths (see
the red regions in figure 12b), while they suppress the most energetic modes of
the uncontrolled flow with large streamwise wavelengths (see the blue regions in
figure 12b). This agrees well with the study of Ricco (2011), which examined the
effect of spanwise wall oscillations on free-stream vortical structures in a Blasius
boundary layer. Over a range of spanwise wavelengths, it was found that wall
oscillations amplify (attenuate) disturbances with small (large) streamwise wavelengths.
Figure 12(b) shows that the largest energy amplification takes place at x, ~ 4.4 and
Kk, ~ 10.2, and the largest energy suppression occurs at k, ~ 0.8 and x, ~ 8.8. The total
effect of control on the kinetic energy can be quantified by [ E,(k)dk/[, E(k) dk,
which for wall oscillations with 7+ = 102.5 is approximately —1.5%. This yields a
7.5 % reduction in the total energy of fluctuations for o = 2.25.

The effect of wall oscillations on the turbulent kinetic energy and its rate of
dissipation is shown in figure 13. We see that the second-order correction to
the kinetic energy, k», is negative for T+ = 102.5, suggesting that the turbulent
kinetic energy is reduced, with the largest suppression taking place at y* ~ 8.6:
see figure 13(a). In addition, the second-order correction to the rate of dissipation
of turbulent kinetic energy, €, is negative almost everywhere (except for a small
region 5.4 <yt < 8.9) and the largest reduction occurs in the viscous sublayer y*t < 5:
see Figure 13(c). Therefore, perturbation analysis up to second order in « captures
previous experimental and numerical observations that wall oscillations suppress both
the production and dissipation of the turbulent kinetic energy (Jung et al. 1992; Baron
& Quadrio 1996; Choi et al. 1998; Choi 2002). Figures 13(b) and 13(d) show that,
relative to the uncontrolled flow, the wall oscillations with 7+ = 102.5 and o = 2.25
have a more profound influence on the turbulent kinetic energy than on its rate of
dissipation. This suggests that the turbulent production is suppressed more than the
turbulent dissipation, which explains the reduced turbulent viscosity vy in flow with
control: see figure 11(a). We observe close agreement between the modification to
the turbulent kinetic energy in figure 13(b) and the modification to the dominant
component of the Reynolds normal stress reported in the DNS of Touber & Leschziner
(2012) at R, = 500 (their figure 5b).

5. Turbulent flow structures

In this section, we use the stochastically forced linearized model (3.2) to examine
the effect of wall oscillations on the turbulent flow structures. We only present results
for R, = 186 and note that similar flow structures are observed for all Reynolds
numbers that we have considered.

We decompose the velocity field into characteristic eddies (Moin & Moser 1989) by
determining the spatial structure of the fluctuations that contribute most to the kinetic
energy at a given k = (k,, k;): see appendix F for details. It is worth noting that the
dominant characteristic eddy resulting from the analysis of the stochastically forced
linearized model in uncontrolled flow qualitatively agrees with the results obtained
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FIGURE 13. (Colour online) (a,c) Second-order correction to (@) the turbulent kinetic energy
ka(y™), and (c) its rate of dissipation €,(y"), for flow subject to wall oscillations with optimal
drag-reducing period T+ = 102.5 at R, = 186. (b) Comparison between the turbulent kinetic
energy in uncontrolled flow ky (solid black) and in flow with control ky + a*k, (dashed red).
(d) Comparison between the rate of dissipation of turbulent kinetic energy in uncontrolled
flow €, (solid black), and in flow with control €; + o€, (dashed red), for o« = 2.25. (a) k,(y1);
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using eigenvalue decomposition of the DNS-based autocorrelation matrices; compare
figure 15 of this paper with figure 15 in Moin & Moser (1989).

We next examine the effect of wall oscillations on the dominant characteristic
eddy. Figure 14 compares the streamwise streaks and their surrounding vortex core
for the dominant characteristic eddies in uncontrolled flow (figure 14a,c,e,g) and in
flow subject to wall oscillations with 7% = 102.5 and o =2.25 (figure 14b,d.f, h).
In both cases, the iso-surfaces represent high-speed (red) and low-speed (blue)
streaks at 70 and 60% of their largest absolute values in uncontrolled flow,
respectively. The vortex core (green surface) is obtained based on the ‘swirling
strength’ criterion which identifies motions with large rate of rotation and large orbital
compactness (Chakraborty et al. 2005). This criterion can be expressed in terms of
the real and imaginary parts of the complex eigenvalues, A. =+ i\, of the rate of
strain tensor at each point inside the channel. The large rate of rotation requires
Aei > by, where b determines the strength of the swirling motion. In addition, orbital
compactness is guaranteed if |A./A.| < by, where b, determines the compactness of
the swirling motion in the plane spanned by the real and imaginary parts of the
eigenvector corresponding to A. £ iA.;,. For example, b, = 0 identifies a pure circular
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FIGURE 14. (Colour online) Three-dimensional iso-surfaces of the streamwise streaks (red
and blue) and the vortex core (green) for the characteristic eddy in uncontrolled flow
(a,c,e,g) and flow subject to wall oscillations (b, d, f, h) with optimal drag-reducing period
T+ =102.5 at R, = 186. (a, b) Bird’s-eye view; (c,d) side view; (e,f) front view; (g, h) top
view. The fast-moving (red) and slow-moving (blue) streaks are respectively shown at 70 and
60 % of their largest values in uncontrolled flow, and the vortex core is obtained based on
the ‘swirling strength’ criterion (Chakraborty, Balachandar & Adrian 2005) with A, > 12,
[Aer/Acil < 0.4, and A; /12 — |Aer/Aei| /0.4 = 1.2.
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FIGURE 15. (Colour online) Cross-sections of the streamwise velocity (coloured contours)
and the spanwise vorticity (black contours) for the characteristic eddy in uncontrolled flow
(a,c,e,g) and flow subject to wall oscillations (b, d,f, h) with optimal drag-reducing period
Tt =102.5 at R, = 186. (a,b) z+ =0; (c,d) xt =0; (e,f) y" =3.8; (g, h) yt =10.8. The
streamwise velocity is normalized by its largest absolute value in uncontrolled flow, and the
level sets for the spanwise vorticity correspond to 40, 60 and 80 % of its largest value in

uncontrolled flow.
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motion, and larger values of b, allow for inclusion of the in-plane converging or
diverging spiral motions to the vortex core. In figure 14, we use b =12 and b, =0.4
to identify the strong vortex core that surrounds the slow-moving streaks. We see that
wall oscillations reduce intensity and spatial spread of both the streamwise streaks and
the vortex core, which is in agreement with experiments of Ricco (2004).

Figure 15 shows the streamwise velocity, u(x,y,z), and the spanwise vorticity,
w, = V(x,y,2) — uy(x,y,z), for the characteristic eddy in uncontrolled flow
(figure 15a,c,e,g) and in flow subject to wall oscillations with 77 = 102.5 and
a =2.25 (figure 15b,d,f,h). The spanwise vortices are shown at 40, 60, and 80 %
of their largest values (black contours). The streamwise streaks (coloured contours) are
normalized by their largest absolute value. We see that, in the viscous sublayer y* < 5,
wall oscillations suppress the largest spanwise vorticity by approximately 6.5 %. In
addition, the magnitude of streamwise streaks is reduced by approximately 12 %. Choi
(2002) argued that transverse wall movements induce negative spanwise vorticity in
the flow, thereby suppressing intensity of the streamwise streaks. In addition, wall
oscillations slightly move the centre of the spanwise vortices away from the wall
(yt = 3.8 versus yt =4.3), and they significantly reduce the upstream extent of the
spanwise vortices.

6. Concluding remarks

This paper has introduced a model-based approach to controlling turbulent
flows. In contrast to standard practice, which embeds turbulence models in
numerical simulations, we have developed a simulation-free approach that enables
computationally efficient control design and optimization. This has been achieved by
merging turbulence modelling with techniques from linear systems theory. In particular,
we have used the turbulent viscosity hypothesis in conjunction with a model equation
for vy based on k and € to determine the influence of turbulent fluctuations on the
mean velocity in the flow with control.

We have shown that the study of dynamics is of prime importance in designing
drag-reducing wall oscillations. This has allowed us to determine the influence of
control on the turbulent viscosity in a simulation-free manner. This contribution goes
well beyond the problem that was used to demonstrate the predictive power of our
model-based control design: turbulent drag reduction by transverse wall oscillations.
The computational complexity of determining the turbulent viscosity (in flow with
control) has been significantly reduced by obtaining k& and € from the second-order
statistics of eddy-viscosity-enhanced linearized model with stochastic forcing.

The first step in our control-oriented modelling involves augmentation of the
molecular viscosity with the turbulent viscosity of uncontrolled flow. The resulting
model is then used to determine the turbulent mean velocity in flow with control, and
to study the dynamics of velocity fluctuations around it. By considering linearized
equations in the presence of white-in-time stochastic forcing (whose spatial spectrum
is selected to be proportional to the turbulent kinetic energy of uncontrolled flow),
we have quantified the influence of control on the second-order statistics of velocity
fluctuations and thereby on the turbulent viscosity. Finally, the modifications to the
turbulent viscosity determine the turbulent mean velocity and skin-friction drag in flow
with control.

Since the evolution model for flows subject to wall oscillations is periodic in time,
a wide-sense stationary stochastic forcing induces velocity fluctuations with cyclo-
stationary statistics. Computing these statistics is challenging even in the linearized
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case. Motivated by the observation that large control amplitudes yield poor net
efficiency, we have used perturbation analysis (in the amplitude of oscillations) to
quantify the effect of control on the turbulent statistics in a computationally efficient
manner.

We have shown that perturbation analysis up to second order reliably predicts the
optimal period of drag-reducing oscillations. Furthermore, even though the required
power obtained using the turbulent viscosity of uncontrolled flow agrees well with
the values obtained in DNS, this agreement has been further improved by accounting
for the effect of control on fluctuations (and, consequently, on turbulent viscosity). In
addition, the predicted net efficiency resulting from perturbation analysis qualitatively
agrees with the DNS results. Perturbation analysis has also captured suppression of
the turbulent kinetic energy and its rate of dissipation by wall oscillations, as well as
modifications to the streamwise component of the turbulent mean velocity (reduction
in the viscous sublayer and buffer layer and increase in the log-law region). Finally,
the spatial spectral density tensors of velocity fluctuations obtained from the solution
of the corresponding Lyapunov equations determine the effect of control on the
dominant flow structures. As previously observed in experiments, and confirmed by
our analysis, wall oscillations reduce the spatial spread and magnitude of the dominant
characteristic eddies and suppress the spanwise vorticity in the viscous sublayer.

It is noteworthy that simple turbulence modelling (that relies on the turbulent
viscosity hypothesis with vy expressed in terms of k and €), in conjunction with
eddy-viscosity-enhanced linearization of flow with control, has significant predictive
power for capturing full-scale phenomena. Even though this model does not reveal
all aspects of turbulent flow physics, we have shown that it is well-suited for
control design and optimization. Development of more sophisticated control-oriented
turbulence models may further reduce the gap between theoretical predictions and
experiments/simulations. In addition, the predictive power of the proposed approach
can be enhanced by optimization of the power spectrum of the forcing. We expect that
our model-based approach will find use in designing feedback-based and sensor-less
turbulence suppression strategies in other geometries, including pipes and boundary
layers.
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Appendix A. The required power to maintain wall oscillations

The wall oscillations require an input power to balance the spanwise shear stresses
at the walls. The required power over one period 7 per unit area of the channel walls
is obtained from

1 T
-7 / (W(y, 1) 1a3(y, 1)) dt (A1)
y=1 0

y=—1

1 T
M=o /0 W, 1) (3, 1) dt

(Currie 2003), where t,3(y, 1) = uW'(y, t) denotes the spanwise shear stress and wu is
viscosity. An equation for IT,,, (normalized by ,ouz) can be obtained by substituting W
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from (2.9) and using the boundary conditions on W), given in (2.10):
20 , )
Mg = MWyl =Wy, 2). (A2)

Relative to the power necessary for driving the uncontrolled flow, the required power
is given by %I1,., = 10011,,,/(2Ug), which yields (2.17).

Appendix B. Operators Ay, A;, and A_; in (3.7)

The operators Ag, A;, and A_; in (3.7) are obtained by substituting W from (2.9)
into the expression (3.4) for A:

AO,ll 0

Ag= . Ao = (1/R,) ((1 + vro) A + vidy) — ik Up, (B 1a)

. ’
—IICZUO A()_22

Aot = A7 ((1/Ry) ((1 4 vro) A% + 2030 Ady + v, (3] + &)

+ ik (Uy — UpA)) (B 1b)
i, ATV (W = W, 0A 0
A=l ( PO bod) . ] B 1¢)
1Kpr,o —ik; W,
i, AT (W) — WA 0
A= " ( 0 e ) ‘ . (B 1d)
i, W), —ik; Wi

Here, W,,0(y) = W;’O(y), and Uy, W, o, vyo and their y-derivatives denote multiplication
operators in the wall-normal direction.

Appendix C. Computing the velocity correlations

For the time-periodic system (3.3), the normal modes are determined by Bloch
waves (Odeh & Keller 1964; Bensoussan, Lions & Papanicolaou 1978),

FOe =Y fuly, k)@t (e3))
nez
YO0 =D ¥,0,0) e (C2)
nez
v K =) v, ) T (C3)
nez

where 0 € [0, ;) is the angular frequency. The frequency response of the time-periodic
system (3.3) is an operator that maps the bi-infinite input column vector col {f,},.s,
into the bi-infinite output column vector col{v,},.; (Jovanovi¢ 2008; Jovanovi¢ &
Fardad 2008). The system states can also be defined as a bi-infinite column vector
col {]pn}neZ'

As discussed in §3.1, ¥(-,k,?) is a cyclo-stationary process with second-order
statistics given by (3.8). The kernel representation Ky, (y, &, k) of the auto-correlation
operator X, of ¥ (-, k,1),

(YO, D P E 1, D)= Ky (7, &, 1) "™, (C4

reZ



234 R. Moarref and M. R. Jovanovi¢

can be expressed in terms of {¢,}, _,:
Ky, (0, &, 0) =Y ¥,0, 0¥ ©). (C5)

nez

Furthermore, the frequency representation of the auto-correlation operator of ¥ (-, k, t)
is a self-adjoint bi-infinite block-Toeplitz operator that is parametrized by k,

2 (k) =Toep{..., X3, X!, [ Xo |, X1, Xa, ...}, (C6)

where the box denotes the element on the main block diagonal of 2 .

For the case where f is a zero-mean white process in y and ¢ with second-order
statistics given by (3.5), we have fy =f, and f, = 0 for n # 0. Thus, the frequency
representation of the spectrum of f is given by a bi-infinite block-diagonal operator
A (k) with block diagonals equal to M(k). The auto-correlation operator of the
state, 2 (k), can be obtained from the following Lyapunov equation (Jovanovié 2008;
Jovanovi¢ & Fardad 2008):

F (k) X (k) + X (k) Ft(k)=—M(K), (C7a)
F (k) = (k) —9(0). (C7b)

Here, ¢ is a bi-infinite block-diagonal operator,
G0)=diag {i(@ +nw)l}, .z, (C8)

and .27 is a bi-infinite block-Toeplitz operator,
o (k) =Toep{....0, A, | Ao | €A_1,0, .. .}. (C9)

The solution to (C7) can be efficiently computed using perturbation analysis in
a (Jovanovié 2008; Jovanovi¢ & Fardad 2008). The operator .# is decomposed into a
block-diagonal operator .%, and an operator .%, that contains the first upper and lower
block sub-diagonals

y=¢g‘\0+(¥¢g‘\1, (ClOa)
Fo = diag {Ay — inw,l},,, (C 10b)
F, =Toep{...,0,A;,[0],A_,,0,...}. (C 10¢)

For sufficiently small «, the solution to (C7) can be written as (Jovanovi¢ & Fardad
2008)

X =2 +a 2 +* L+ 5+ (C11)

Substituting (C10) and (C11) into (C7) and collecting equal powers of « yields the
following set of Lyapunov equations:

a0390%+%90+=_%,
o' Fo X+ X0 Ty =—(F Lot + Lt F).

Since %, is block-diagonal, %, inherits the structure of the right-hand side of the
equation at O(«™"). The structure of the above equations reveals that 2, is a self-
adjoint block-diagonal operator, 27 is a self-adjoint block-Toeplitz operator where
only the first upper and lower block sub-diagonals are non-zero, and 2, is a self-
adjoint block-Toeplitz operator where only the main block diagonal and the second

(C12)
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upper and lower block sub-diagonals are non-zero:

Zoo(ic) = Toep{ oy 0 ,, 0, ... 1, (C 13a)
Zoe)y=Toep{ ..., 0,X:,[ 0 X, 0,... 1}, (C 13b)
Zor(k) =Toep{..., 0 ,X5,, 0 ,, 0,X,, 0,...). (C13c¢)

The above structure of the operator £, in conjunction with the fact that only the
element on the main block diagonal of 2~ contributes to the averaged effect of forcing
on the velocity correlations (cf. (3.9)), reveals that, up to second order in «, only X,
and Xy, contribute to Xj:

Xo(k) = Xo,0(k) + &’ Xo2 () + O(a). (C14)

The operators Xy and X, , are obtained from a set of decoupled Lyapunov equations
whose size is equal to the size of each block in the bi-infinite Lyapunov (C7)
(Jovanovié¢ & Fardad 2008):

AoXoo + Xo0Ag = —M, (C15a)
(Ao +io D) X, + X111 Ay = — (A1 Xoo + X0 A7), (C15b)
Ao Xor +Xop Ay = —(A_ X + X1 AT + A X + X7 AD). (C150)

The decoupling between different harmonics of X(k, ¢) for small « is used for efficient
computation of the second-order statistics of the time-periodic system (3.3).

Appendix D. Computing the modifications k, and ¢, to k and ¢

We next show that the averaged effect (over one period T) of fluctuations around
the mean velocity on k, and €, can be obtained from Xy, (k). Following (3.10), the
second-order correction (in «) to the auto-correlation operator of velocity fluctuations
v averaged over one period T, (1/7) fOT(v(-,lc, ) Q@ v(-,k,1))dt, is given by
C(k)Xo2(k)Ct (k). The kinetic energy of fluctuations around the base flow and its
rate of dissipation are given by (see (2.21))

k2<y>=/Kk(y,y,x)dx, 62(Y)=/Ks()”y,l€)dlf, D1

K

where K;(y, &, k) and K.(y, &, k) are the kernel representation of the operators N, and
N, respectively:

Ni(k) = (1/2) (Cu X0, Ci + Cy X0, CF + C,y X0 CyF) (D 2a)
Ne(re) =2 (k] Cu Xo2 Cf + 8, C, Xo2 CJ 0} 4«2 C X0, C}f

— i 8y Cy X0, CF + Kuk: C X0 C) + ik, C, X2 Cyf 9))

+ 09y, C, X2 C 3 +8,C X0 Cf 3 + 1 C, X0, C;

+ &2 Cy Xo2 C + k2 C, X0, C. (D 2b)

Appendix E. Computing the effect of fluctuations on the mean velocity and
the required power in flow with control

Here, we show how the effect of fluctuations on the turbulent mean velocity is
determined by the modification to the turbulent viscosity, vy, in flow with control.
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The second-order correction to the mean streamwise velocity, U,, is obtained by
substituting U and P, from (3.14) into (2.7), and collecting the terms quadratic in «,

(1 +v70)) U5 () + Vi) Us(0) = RePea — (v () Uy (0) + v 0) Up»)) » (E1)

which yields the following solution for U,:

Y vn(§) Uy(6)
Uy(y) = =P, Up(y) — ————dé. E2
2() 2Us(y) /1 I+ vro®) § (E2)
The second-order correction to the driving pressure gradient, P, ,, is obtained from the

requirement that the bulk flux of the flow with control remains constant, i.e.

1
| vwa=o (E3)
-1
Integrating U,(y) in (E2) from —1 to 1 and enforcing the above requirement yields
U/
P, = / / Urz(f) 0 (&) dt dy. (E4)
20U 1+ vro(§)

An equation for W, , is determined by substituting vy from (3.13) into (2.10):
(I +vr0)) W), () + v W, () — iR @, W, 2(y)
— (v W, + M W () - (ES5)

Finally, the fourth-order correction to the required power, %Il,.,,, is obtained by
substituting W, from (3.14b) into (2.17):

% IT,q2 = 100

Tm (W),1,_y — Wial,_) (E6)

tYB

Appendix F. Computing the dominant characteristic eddies

The most energetic flow structures are obtained from the principal eigenfunctions of
the averaged (over one period T) auto-correlation operator, Xo(k), defined in § 3.1:

[Xo(k) (-, 1) ] (v) = A(kc) $(y, k). (F1)

At each k, A(k) is the largest eigenvalue of Xy(k), and ¢(-,k) =[v n]" is the
corresponding eigenfunction. The magnitude of ¢ is determined by the requirement
that the kinetic energy of fluctuations associated with ¢ is equal to A(x). On the
other hand, the phase of ¢ is determined by requiring spatial compactness of v(x, y, 7)
around x = z =0 in the lower half of the channel (Moin & Moser 1989). This is
achieved by making sure that ffl v(y, k)dy is a positive real number for all k. We
note that enforcing compactness on u(x, y, z) yields similar results.

In uncontrolled flow, the principal eigenfunctions ¢( -, k) account for approximately
29 % of the total kinetic energy; compare kk.A(k) shown in figure 16 with x.«.E(k)
shown in figure 12(a). Furthermore, the two largest eigenvalues of Xy(x) are almost
equal to each other. As shown in figure 16, the difference between them is negligible
for the values of k that correspond to the most energetic modes of the uncontrolled
flow. In fact, the eigenfunctions corresponding to the second largest eigenvalue
account for almost 28 % of the total energy. This indicates that examining the
effects of the eigenfunction corresponding to the second largest eigenvalue is equally
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FIGURE 16. Premultiplied largest eigenvalue, «.k.A(k), of the auto-correlation operator
Xo(k) in the uncontrolled flow with R, = 186. The contours show the relative
difference between the premultiplied two largest eigenvalues of X,(k). The contour levels

{1071,1072, ..., 1073} decrease in the direction of the arrow.
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FIGURE 17. The real (thin) and imaginary (thick) parts of the principal eigenfunctions (v, a;
n, b) corresponding to the two largest eigenvalues of the auto-correlation operator X, (k) for
the most energetic mode «, = 2.5 and k, = 6.5 in the uncontrolled flow with R, = 186. The
two eigenfunctions are differentiated by solid and dotted curves.

important. Figure 17 illustrates that the eigenfunctions corresponding to the two largest
eigenvalues of X, at k, = 2.5 and «, = 6.5 are equal to each other in one half of
the channel and are the mirror image of each other in the other half. Imposing the
v-compactness criterion on these two eigenfunctions aligns them in the lower half
of the channel and it reflects them in the upper half. This implies that the flow
structures that are obtained from the principal eigenfunction of Xy(k) in the lower
half of the channel account for approximately 57 % of the total kinetic energy of
fluctuations.

The velocity components u, v and w in the wavenumber space are obtained by
acting with the operators C,, C,, and C,, on the principal eigenfunction of the operator
Xo(k); see (3.4) for the definition of these operators. We use the flow symmetries in
the spanwise direction (Moin & Moser 1989) to determine the velocity profiles for the
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dominant characteristic eddy in the physical space

u(x,y,z) =4 / Re (u(y, k) €") cos(k.z) dk, (F2a)
Ky,kz>0
v(x,y,z) =4 / Re (v(y, k) €*™) cos(k,z) di, (F2b)
Kx kz>0
w(x,y,z) = —4 / Im (w(y, &) €“%) sin(k.z) di. (F2¢)
Kx,kz>0
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