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Distributed proximal augmented Lagrangian method
for nonsmooth composite optimization

Sepideh Hassan-Moghaddam and Mihailo R. Jovanovié

Abstract— We study a class of nonsmooth composite opti-
mization problems in which the convex objective function is
given by a sum of differentiable and nondifferentiable terms.
By introducing auxiliary variables in nondifferentiable terms,
we provide an equivalent consensus-based characterization
that is convenient for distributed implementation. The Moreau
envelope associated with the nonsmooth part of the objective
function is used to bring the optimization problem into a
continuously differentiable form that serves as a basis for
the development of a primal-descent dual-ascent gradient flow
method. This algorithm exploits separability of the objective
function and is well-suited for in-network optimization. We
prove global asymptotic stability of the proposed algorithm and
solve the problem of growing undirected consensus networks
in a distributed manner to demonstrate its effectiveness.

Index Terms— Proximal augmented Lagrangian method, al-
ternating direction method of multipliers, consensus, distributed
feedback design, large-scale systems, optimization, primal-dual
method, sparsity-promoting optimal control.

I. INTRODUCTION

We study a class of nonsmooth composite optimization
problems in which the convex objective function is a sum of
differentiable and nondifferentiable functions. Among other
applications, these problems emerge in machine learning,
compressive sensing, and control. Recently, regularization
has been used as a promising tool for enhancing utility
of standard optimal control techniques. In this approach,
commonly used performance measures are augmented with
regularization functions that are supposed to promote some
desired structural features in the distributed controller, e.g.,
sparsity. Such an approach has received significant attention
in recent years [1]-[7], but computing optimal solutions in
large-scale problems still remains a challenge.

Distributed control techniques are critically important in
the design of large-scale systems. In these systems, conven-
tional control strategies that rely on centralized computation
and implementation are often prohibitively expensive. For
example, finding the optimal controller requires computation
of the solution to the algebraic Riccati equations which is
often infeasible because of high computational requirements.
This necessitates the development of theory and techniques
that utilize distributed computing architectures to cope with
large problem sizes.

Generic descent methods cannot be used in the nonsmooth
composite optimization problems due to the presence of
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a nondifferentiable component in the objective function.
Moreover, these standard methods are not well-suited for
distributed implementation. An alternative approach is to
separate the smooth and nonsmooth parts of the objective
function and use the alternating direction method of multipli-
ers (ADMM). In [8], we exploit separability of the objective
function and utilize an ADMM-based consensus algorithm to
solve the regularized optimal control problem in a distributed
manner over multiple processors. Even though the optimal
control problem is in general non-convex, recent results can
be utilized to show convergence to a local minimum [9].
However, in an update step of the ADMM algorithm, all
the processors halt to compute the weighted average (the
gathering step) [10].

Herein, we build on recent work [11] in which the structure
of proximal operators associated with nonsmooth regulariz-
ers was exploited to bring the augmented Lagrangian into
a continuously differentiable form. Such an approach is
suitable for developing an algorithm based on primal-descent
dual-ascent gradient method. We use the Arrow-Hurwicz-
Uzawa gradient flow dynamics [12] and propose an algo-
rithm that can be implemented in a fully distributed manner
over multiple processors. This increases the computational
efficiency and reduces the overall computation time. By
exploiting convexity of the smooth part of the objective
function, we show asymptotic convergence of our algorithm.

The point of departure of our work from [11] is that
we study a more general form of consensus optimization
problems in which the optimization variable is a matrix and
develop a fully distributed algorithm. Furthermore, while
most existing primal-dual techniques for nonsmooth dis-
tributed optimization employ subgradient flow methods [13]—
[15], our approach yields a gradient flow dynamics with a
continuous right-hand side even for nonsmooth problems.

The rest of the paper is structured as follows. In Section II,
we formulate the nonsmooth composite optimization prob-
lem, discuss a motivating example, and provide background
on proximal operators and the consensus-based ADMM
algorithm. In Section III, by exploiting the structure of
proximal operators, we introduce the proximal augmented
Lagrangian. In Section IV, we use the Arrow-Hurwicz-
Uzawa method to develop the gradient flow dynamics that
are well-suited for distributed computations and prove global
asymptotic stability. In Section V, we discuss distributed
implementation, in Section VI, we provide examples, and,
in Section VII, we offer concluding remarks.
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II. PROBLEM FORMULATION

We consider a composite convex optimization problem,

minimize Y fi(z) + g(x) (1)
i=1
where z € R™ is the optimization variable, the functions
fi are continuously differentiable, and the function g is
possibly nondifferentiable. This problem can be brought into
a standard consensus form by introducing n local variables
z; and a global variable z,

mir%;mrzlize Z filxi) + g(2) 2

i=1

subject to x; — 2z =0, i =1,...,n.

Even though this reformulation increases the number of
optimization variables, it facilitates distributed computations
by bringing the objective function into a separable form.
Clearly, the solutions to (1) and (2) coincide but, in contrast
to (1), optimization problem (2) is convenient for distributed
implementation. Solving (2) on a single processor is not nec-
essarily more computationally efficient than solving the orig-
inal problem via a centralized algorithm. However, optimiza-
tion problem (2) can be split into n separate subproblems
over n different processors. In such a setup, each processor
solves an optimization problem that involves a local objective
function f; of a single local variable x;. This is advantageous
for large-scale systems where centralized implementation is
prohibitively complex and cannot be afforded.

A. Motivating application

Problem (1) arises in feedback design when a performance
metric, e.g., the H5 norm, is augmented with a regularization
function to promote structural features in the optimal con-
troller. Herein, we discuss the problem of growing undirected
consensus networks and show that the objective function is
separable; thereby, it completely fits into the framework (2).

We consider the controlled undirected network,
= —LpYp + d + u
_[Qw 0

¢ = { 0 Y+ Rz | U
where d and w are the disturbance and control inputs,
is the state, and ( is the performance output. The dynamic
matrix L, is the Laplacian matrix of the plant network and
symmetric matrices @ > 0 and R > 0 specify the state and

control weights in the performance output. For memoryless
control laws,

_wa

where L, is the Laplacian matrix of the controller graph, the
closed-loop system is given by

1/.} = _(Lp""Lz)w‘f'd

1/2 3)
¢ = |: _gl/ng :|¢

u =

In the absence of exogenous disturbances, the network
converges to the average of the initial node values ¢ =
(1/n) >, 44(0) if and only if it is connected [16]. Let
Q := I — (1/n)117 penalizes the deviation of individual
node values from average. The objective is to minimize the
mean square deviation from the network average by adding
a few additional edges, specified by the graph Laplacian L,
of a controller network. If E is the incidence matrix of the
controller graph, L, can be written as

L, = Ediag(z)ET

where diag (z) is a diagonal matrix containing the opti-
mization variable x € R™ (i.e., the vector of the edge
weights in the controller graph). Regularization terms may
be used to promote sparsity of the controller network or to
impose some additional constraints on the edge weights. The
matrix L, that optimizes the closed-loop performance and
has certain structural properties can be obtained by solving
the regularized optimal control problem

miniTmize f(z) + g(x). 4)

Here, f is the function that quantifies the closed-loop perfor-
mance, i.e. the Hy norm, and g is the regularization function
that is introduced to promote certain structural properties of
L,. For example, when it is desired to design L, with a
specified pattern of zero elements, g is an indicator function
of the set that characterizes this pattern [17]. When it is
desired to promote sparsity of L, the ¢; norm g(x) =
v >_;|zi| can be used as a sparsity-enhancing regularizer,
where 7 is the positive parameter that characterizes emphasis
on sparsity [2].

Next, we exploit the square-additive property of the Ho
norm to provide an equivalent representation that is conve-
nient for large-scale and distributed optimization. As shown
in [6], up to an additive constant, the square of the Hs norm
(from d to () is determined by

f(z) = trace ((Ediag (z) ET + L,)'(I + L, RLy))+
diag (ETRE)" &

where the pseudo-inverse of the closed-loop graph Laplacian
is given by

(Ediag(z)ET+L,)" = (Ediag(z) ET+(1/n) 117 4-L,) 1.

It is easy to show that f(x) can be written as

where
fix) = ¢ (Ediag (x) ET + (1/n) 117 + L,) " & +

(1/n) diag (ETRE)" x.
&)
Here, & = (I + L, RL,)"?e; is the ith column of the
square root of the matrix (I + L, R L,). Moreover, it can
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be shown that the gradient of f;(z) is given by
Vii(z) = (1/n)diag (E"RE) — vi(z)ovi(x) (6)
where o is the elementwise multiplication and

vi(z) = ET (Ediag(z) ET + (1/n) 117 + L,,)il &.
(N
In what follows, we provide essential background on the
proximal operators that we utilize for the latter developments.

B. Background

1) Proximal operators: The proximal operator of the
function g is given by

. 1
prox,,(v) = argmin g(z) + o ||z — v|?,
and the Moreau envelope determines the corresponding value
function,

1
Myg(v) i= g(prox,,(v)) + 57 [[prox;, (v) — vf3- ®)

Irrespective of differentiability of g, Moreau envelope is a
continuously differentiable function and its gradient is given
by [18],
1
VMyg(v) = m (v — prox, (v)). 9)
The above defined functions play essential role in our sub-
sequent developments.

2) Alternating Direction Method of Multipliers (ADMM ):
We next demonstrate that a standard consensus algorithm
based on the ADMM [10] can be used to solve the prob-
lem (2). This algorithm is well-suited for distributed imple-
mentation in which each processor solves an optimization
problem. More details can be found in [8].

The augmented Lagrangian associated with (2) is given by
Ly (@i, 2 ) =
= 1
9(2) + > (filw) + (iywi — 2) + Y i — =]13)
i=1 ¢
(10)

where \;’s are the Lagrange multipliers and p;’s are positive
parameters. The distributed ADMM algorithm consists of the
following iterative steps,

. 1
xf"‘l = argmin f;(z;) + 3 s — uf|3
"1
Zk""l = argmin g(Z) + ZT ||Z - ’Uf”%
z i=1 Mg
1
>\§+1 _ )\i; + = (xi_c-i-l _ Zk+1)
i
where
uic = zk — p,l )\iC
vk = xiﬁl + pi AF.

The z;-minimization step can be done via distributed com-
putation by spreading subproblems to n different processors.

On the other hand, the update of z amounts to the evaluation
of the proximal operator of the function g,

A = prox;, (ﬂ Z 1vf> .
= M
where i := (3°,1/p;)~". Thus, the update of z requires
gathering each xf“ and the associated Lagrange multipliers
A¥ in order to form vf.

The above presented consensus algorithm is standard
(e.g., see [10]). We have previously used this algorithm
for distributed design of structured feedback gains in [8].
Recently, convergence of this algorithm was established even
for problems with non-convex objective functions f; [9].

III. PROXIMAL AUGMENTED LAGRANGIAN

The interconnection graph between the nodes in the
consensus-based formulation in (2) is given by a star graph.
Each node has access to the internal node of the star
graph with the state z. This topology yields the z-update in
ADMM that requires gathering the states of all subsystems.
Recently, an algorithm based on the proximal augmented
Lagrangian for solving (2) was developed in [11]. To avoid
the above described computational requirement in the z-
update of the ADMM algorithm, we propose a primal-dual
algorithm based on the proximal augmented Lagrangian that
can be implemented in a fully distributed manner.

Problem (2) can be equivalently written as,

minimize Z fi(zs) + g(2)

Ti, 2 4
i=1 (11)

subject to x; — x; =0, (i,j) €T

zp — 2z =0,

where Z is the set of indices between 1 and n such that any
index appears in one pair of the set at least once. This set
characterizes structure of the information exchange network
between the agents. The interaction topology is given by a
connected graph. Moreover, the index k € {1,...,n} can be
chosen arbitrarily. In what follows, we study one particular
instance of problem (11).

Without loss of generality, we assume that £ = n and that
the underlying communication network between different
nodes in (11) is given by a path graph. By introducing the
optimization variable X,

X = [ xr1 Tn ] S RMXn
the column vector e,
€n = [ 0 0 1 ]T € R*
and the matrix 7,
1 0 0
-1 1 0
T — . c Rnx(n—l)
0 0 -1

2049



we can rewrite (11) as,
mir)l{imize f(X) + g(2)

subject to XT = 0, (12)

Xe, —z = 0.

In (12), the matrix 7T is the incidence matrix of an
undirected path network that connects n nodes. We note that
any connected network can be used to build the information
exchange structure between the nodes. For an arbitrary
connected graph with m edges, the matrix 7 € R"*™ has
to satisfy the following properties,

71 =0, TTT = L,

where 1 is the vector of all ones and L. € R"*™ is the
Laplacian matrix of the underlying graph.

The augmented Lagrangian associated with (12) is given
by

L, (X,zz0Y) = f(X) +g(2) + (A Xe, — 2) +

V. XT) + g X en =18 + 3 IX T

(13)
where A € R™ and Y € R™*(»~1) are the Lagrange
multipliers and p; and po are positive parameters. The
proximal augmented Lagrangian is obtained by evaluating
the augmented Lagrangian on the manifold that results from
the explicit minimization of £,,, with respect to z [11]. This
yields a function that is once but not twice continuously
differentiable with respect to both the primal variable X and
the dual variables A and Y.

The proximal augmented Lagrangian associated with (12)
is given by
L (XGNY) = L£,,(X, 25 (X;A);0,Y) =

7T

FOX) + Myyg(Xew + mA) = EHIME + (VX T) +

1
> IX T,
2 pi2
(14
where M), , is the Moreau envelope of the function g(z)
and 2 (X;A) is given by

25, (X57) = prox, ,(Xe, + 1)

H1g9

and by substituting z* in the augmented Lagrangian (13), the
proximal augmented Lagrangian can be written as (14).

IV. ARROW-HURWICZ-UZAWA GRADIENT FLOW

The proximal augmented Lagrangian is a continuously
differentiable function because the Moreau envelope is con-
tinuously differentiable. This facilitates the use of the Arrow-
Hurwicz-Uzawa algorithm which is a primal-descent dual-
ascent gradient flow method. In this algorithm, the primal
variable X and the dual variables A and Y are updated

simultaneously. The gradient flow dynamics are given by

X = —VxL,(X;\Y)
A= F VoL (X;\Y)
Y = +VyL,(X;\Y).

By taking the derivatives, the updates can be written as

X = - (Vf(X) + VMmg(X en + p1 ) eg—i—
L xppr + Y TT)
o (15)
A= M1 VMmg(Xen + H1 )\) — ,ul)\
Y = XT.

It is worth to note that if f(x) is separable, ie. f(z) =
>, fi(x;), the gradient V f(X) is an m X n matrix and can

be written as
Vi(X) = [Vfi(z1)

Asymptotic convergence

Our subsequent developments are based on the following
assumption

Assumption 1: The function f is continuously differen-
tiable and convex, and the function g is proper, lower
semicontinuous, and convex.

We show that under Assumption 1, dynamics (15) are
globally asymptotically stable and converge to (X™*, A*, V™)
where each of the columns of X* is the optimal solution
to (1). The optimal primal and dual points (X™*, \*,Y™*)
satisfy the following first order optimality conditions

VAX*S) + el + Y77 =0 (16a)
X*e, — 25 =0 (16b)
dg(z*) =X 20 (16c¢)

X*T = 0 (16d)

where Jg is the subgradient of g.

Proposition 1: Let Assumption 1 hold. Then, gradient
flow dynamics (15) are globally asymptotically stable, i.e.,
they converge globally to the optimal primal and dual points
(X%, A5, Y™) of (12).

Proof: We introduce a change of variables
X =X-X* A=X—-X\, YV =Y -Y*
and a Lyapunov function

VIEAY) = (XX + L (AR) + (7.7

where (X, ,Y) satisfy

X = Vf(X*)— Vf(X) - —mel — —XTTT —
- 1251 H2
Y17,

)L\ = —mA+m, Y =XT,

a7
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with

=y (VM g(X en + i A) = VM (X ¥ ey + 1 A))

Based on [11, Lemma 2], we can write

P(Xen + /,Llj\) = Mg(Xen + u1 )\) —
. . (18)
,ulg(X €n +,LL1>\ )7

prox

prox

where [ is the identity matrix and P is a positive semidefinite
matrix such that P < I. Thus, from (9) we have,

m = (I — P)(Xep 4 p N). (19)
The derivative of the Lyapunov function candidate along
the solutions of (17) is determined by

(£.X) + () + (7,7)

~(X.9/(X) = V(X)) = m (A PX) ~

1 S5 1 /5 -

- <(I — P Xe,L,Xe,L> - = <XTTT,X>.
1 H2

Since f is convex, the first term in nonpositive. Moreover,
by utilizing 0 < P =< [, it follows that V' < 0. We next
invoke LaSalle’s invariance principle [19] to establish global
asymptotic stability.

v

The points (X, \,Y) in the set
S ={(X,\Y)|V(X,\Y) = 0},
satisfy
VX" +X) = VX, (20a)
A € ker(P), (20b)
Xe, € ker(I — P), (20c)
XT € span{[1--- 1]}, (20d)

where ker(A) denotes the null space of the matrix A and
A € span{[1---1]} signifies that each column of the matrix
A is given by a scalar multiple of the vector of all ones, 1.
From (19), for the points in this set, we have m = m;\. In
order to identify the largest invariant set in S, we evaluate
dynamics (17) under constraints (20) to obtain

X = Xl —VTT, X=0, Y =0 @D

Thus, the invariant set is characterized by Xl +YTT =0
for constant A and Y. To complete the proof, we need to
show that the largest invariant set in .S yields

(X,\Y) = (X* MY + (X,)\Y),
that satisfy optimality conditions (16).
Points (X, \,Y") satisfy optimality condition (16a) if
VX)) + A+ el + (Y +Y9TT = 0.

For any (X' A, )7) in the invariant set, we can use (20a) to
replace Vf(X) with Vf(X*). Furthermore, since Ael +
YTT = 0, the resulting (X, \,Y) satisfy (16a). Moreover,
the substitution of PA = 0 and (I - P)f(en =0 to (18)

yields
Xe, — X*e, = Xen 4+ ) —

X*ep + 11 V).

proxmg(

proxmg(

The optimality condition (16b) leads to

Xe, = prox, ,(Xe, + py1\) = z

#1g(

which implies that the pair (X, z) satisfies (16b). We next
show that the optimality condition (16¢) holds for any (z, A)
in this set. Taking sub-differential of the proximal operator
of the function g in (8) yields

0g9(z) + M%(z —v) 30

where v is an arbitrary vector. Choosing v = Xe,, + u1 A and
utilizing the fact that Xe, = z yields the third optimality
condition (16¢c). Furthermore, XT = 0 yields XT = 0.
Thus, X satisfies (16d) and the dynamics (15) converges
asymptotically to the optimal points (X™*, \*, Y™). ]

V. DISTRIBUTED IMPLEMENTATION

In this section, we exploit the structure of the problem
and show that the gradient flow dynamics (15) is well-suited
for distributed implementation. In this case, the underlying
interconnection network is given by a path graph. We first
discuss how the gradient flow of the primal variable X can be
implemented in a distributed manner and then show that the
dual variables can be also updated in a distributed fashion.

A. Primal update

The vector x; denotes the kth column of the matrix X.
Each of the columns from k = 2,...,(n—1) can be updated
in a distributed manner as follows

i = —Vifi(ar) — i@m — Tho1 — Tht1) —
Yk + Yk-1,

(22a)
where the vector yj is the kth columns of the matrix Y.
Thus, each agent only uses its neighbors’ states and the
corresponding dual variables to update its own state. The
updates for the first and last column of X which are z; and
x,, are different than the other updates and can be written as
follows

. T — T
iy = —Vfi(z) - —2 — (22b)
25
iy = —=Via(@n) = VM g(zn + p1A) —
1 (22¢)
— (xn - xn—l) + Yn—1-
M2

Similarly, we can see only local information exchange and
access to local dual variable is required for these two updates.

B. Dual updates

The dual variable A is a column vector and its update can
be done by using the following column update
X =

w1 VM g(xn + 1 A) — 1 A (22d)
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Speedup

2 4 6 8

Number of cores

Fig. 1: Speedup ratio versus the number of the cores used
for growing connected resistive networks with n nodes.

Thus, we only need the state of the nth agent to update its
value. The second dual variable Y is an m x (n — 1) matrix
and the kth column of it, y;, can be updated using only the
states of x, and x4 agents for k=1,...,(n—1),

Y = Tk — T4l (22e)

VI. COMPUTATIONAL EXPERIMENTS

In this section, we employ our algorithm for growing con-
nected resistive Erdos-Rényi networks with edge probability
1.051og(n)/n for different number of nodes using multiple
cores. We choose the control weight matrix R = [ and a
state weight matrix that penalizes the mean-square deviation
from the network average, Q = I — (1/n) 117 Moreover,
the incidence matrix of the controller is such that there are
no joint edges between the plant and the controller graphs.
This algorithm is implemented in a distributed fashion by
splitting the problem into /N separate subproblems over N
different cores. We have provided a parallel implementation
in MATLAB and have executed tests on a machine featuring
an Intel Core i7-3770 with 16GB of RAM to measure the
performance of the algorithm.

The solve times are averaged over 10 trials and the
speedup relative to a single core is displayed in Fig 1. It
demonstrates that the algorithm is scalable. In particular,
multi-core execution outperforms running just on a single
core. Moreover, the speed-up is even higher for larger
networks since overheads of parallel execution are less and
more time is spent on actual parallel computation.

VII. CONCLUDING REMARKS

We have studied a class of convex nonsmooth composite
optimization problems in which the objective function is
a combination of differentiable and nondifferentiable func-
tions. By exploiting the structure of the probelm, we have
provided an equivalent consensus-based characterization and
have developed an algorithm based on primal-descent dual-
ascent gradient flow method. This algorithm exploits the
separability of the objective function and is well-suited for
distributed implementation. Convexity of the smooth part of
the objective function is utilized to prove global asymptotic
stability of our algorithm. Finally, by exploiting the structure

of the H2 norm, we have employed this algorithm to design
a sparse controller network that improves the performance of
the closed-loop system in a large-scale undirected consensus
network in a distributed manner. An example is provided to
demonstrate the utility of the developed approach. We are
currently working on implementing this algorithm in C++
and will use it to solve structured optimal control problems
for large-scale systems in a distributed manner.
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