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Abstract— We study the problem of designing optimal struc-
tured feedback gains for large-scale systems in a distributed
manner. We quantify performance using the H2 norm and
introduce regularization functions to promote desired structural
properties in the controller. The key challenge is to evalu-
ate the objective function and its gradient without solving
the large-scale Lyapunov equations. We exploit the square-
additive property of the H2 norm and provide an equiva-
lent consensus-based characterization that is convenient for
distributed implementation. The resulting constrained optimal
control problem is in general non-convex and we solve it using
an algorithm based on the alternating direction method of
multipliers. This algorithm exploits separability of the objective
function and is guaranteed to converge to a local minimum.
For the optimal control of symmetric systems and undirected
consensus networks we establish convexity and demonstrate
how the underlying structure can be exploited to further
simplify computations.

Index Terms— Alternating direction method of multipliers,
consensus, distributed feedback design, large-scale systems,
optimization, sparsity-promoting optimal control.

I. INTRODUCTION

In large-scale systems, conventional control strategies
that rely on centralized computation and implementation
are often prohibitively expensive. For example, finding the
optimal controller requires computation of the solution to
the algebraic Riccati equations which is often infeasible
because of the overwhelming computational requirements.
This necessitates the development of theory and techniques
that utilize distributed computing architectures to cope with
large problem sizes.

Modern control applications impose additional require-
ments on controller design that cannot be addressed using
standard optimal control tools. These requirements may
arise from limited communication and computation resources
or the size of the problem. The standard optimal control
techniques typically induce an all-to-all communication re-
quirements in the controller which is infeasible in large-scale
setting. Recently, regularization has emerged as a promis-
ing tool for enhancing utility of standard optimal control
techniques. In this approach, commonly used performance
measures (e.g., H2 or H∞) are augmented with regulariza-
tion functions that are supposed to promote some desired
structural features in the distributed controller, e.g., sparsity.
Such an approach has received significant level of attention
in recent years [1]–[7], but computing optimal solutions in
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large-scale problems still remains a challenge. Distributed
computing techniques have been commonly used to cope
with large problem sizes; for example, stability and synthesis
of cooperative distributed model predictive controllers for
linear systems have been recently studied in [8].

In this paper, for the regularized H2 optimal control
problem, we exploit the square-additive property of the H2

norm to provide an equivalent consensus-based character-
ization that is convenient for distributed implementation.
Furthermore, we demonstrate that the objective function and
its gradients can be evaluated without solving large-scale
Lyapunov equations. In part, our approach is inspired by the
framework developed in [9], [10] where an iterative method
for computing the structured linear quadratic regulator is
proposed. Instead of solving the Lyapunov equations, the
authors have developed a gradient algorithm that forms a
search direction via numerical integration of the primal and
adjoint systems. In contrast to [9], [10], we exploit separa-
bility of the objective function and utilize an ADMM-based
consensus algorithm to solve the regularized optimal control
problem in a distributed manner over multiple processors.

Even though the optimal control problem is in general non-
convex, recent results can be utilized to show convergence to
a local minimum [11]. The ADMM-based consensus algo-
rithm that we use is standard (e.g., see [12]) but, to the best of
our knowledge, it has not been previously used for distributed
design of structured feedback gains. In [2], [13], ADMM
was used as a general optimization tool to compute sparsity-
promoting controllers in a centralized fashion. Herein, we
exploit structure of the underlying optimal control problem
to compute structured feedback gains in a distributed manner.

The rest of the paper is structured as follows. In Section II,
we formulate regularized H2 optimal control problem, pro-
vide the decomposition of the H2 norm, and specialize the
problem to symmetric systems and undirected networks.
In Section III, we develop an ADMM-based consensus
algorithm which is well-suited for large-scale systems and
distributed computations. In Section IV, we provide exam-
ples and, in Section V, we offer concluding remarks.

II. PROBLEM FORMULATION

We consider the LTI systems

ψ̇ = Aψ + B1 d + B2 u

ζ =

[
Q1/2

0

]
ψ +

[
0

R1/2

]
u

where d ∈ Rp and u ∈ Rq are the disturbance and control
inputs, ψ ∈ Rn is the state, and ζ ∈ Rn+q is the performance
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output. The dynamic matrix A ∈ Rn×n determines interac-
tions in the open-loop system, the matrices B1 ∈ Rn×p and
B2 ∈ Rn×q determine how disturbances and controls enter
into the dynamics, and symmetric matrices Q � 0 and R � 0
specify the state and control weights in the performance
output. For memoryless control laws, u = −K ψ where
K ∈ Rq×n is the constant feedback gain matrix, the closed-
loop system is given by

ψ̇ = (A − B2K)ψ + B1 d

ζ =

[
Q1/2

−R1/2K

]
ψ.

(1)

The matrix K that optimizes the closed-loop performance
and has certain structural properties can be obtained by
solving the regularized optimal control problem

minimize
K

f(K) + g(K). (2)

Here, f is the function that quantifies the closed-loop perfor-
mance and g is the regularization function that is introduced
to promote certain structural properties of K. For example,
when it is desired to design K with a specified pattern of
zero elements, g is an indicator function of the set that
characterizes this pattern [14]. When it is desired to promote
sparsity of K, the `1 norm g(K) = γ

∑
i, j |Kij | can be used

as a sparsity-enhancing regularizer, where γ is the positive
parameter that characterizes emphasis on sparsity [2].

We quantify the closed-loop performance using the square
of the H2 norm of system (1),

f(K) =

{
trace

(
BT1 PB1

)
K stabilizing

∞ otherwise

where P is the closed-loop observability gramian,

(A − B2K)TP + P (A − B2K) + Q+KTRK = 0.

Over the set of stabilizing feedback gain matrices K, the
gradient of f with respect to K is given by [15]

∇f(K) = 2 (RK − BT2 P )L

where L is the closed-loop controllability gramian,

(A − B2K)L + L (A − B2K)T + B1B
T
1 = 0

The objective function and its gradient depend on the
controllability and observability gramians L and P of the
closed-loop system. These matrices can be obtained by
solving the corresponding Lyapunov equations but this is
prohibitively expensive for most large-scale systems. Thus,
the key challenge is to evaluate the objective function and
the corresponding gradient without solving the large-scale
Lyapunov equations.

A. Decomposition of the H2 norm

In this section, we exploit the square-additive property of
the H2 norm to provide an equivalent representation that is
convenient for large-scale and distributed optimization.

Using the definition of the matrix trace, for a stabilizing

K, we can express the closed-loop H2 norm as

f(K) =

N∑
i= 1

fi(K)

where
fi(K) = (B1ei)

TPB1ei = bTi P bi.

Here, ei is the ith canonical basis vector in RN and bi is
the ith column of the matrix B1 ∈ Rn×N . Furthermore, the
closed-loop controllability gramian L and the gradient of f
can be written as

L =

N∑
i= 1

Li, ∇f(K) =

N∑
i= 1

∇fi(K)

where

(A − B2K)Li + Li (A − B2K)T + bi b
T
i = 0

and
∇fi(K) = 2 (RK − BT2 P )Li.

We now show that fi(K) and ∇fi(K) can be evaluated
without the requirement to solve the corresponding Lyapunov
equations for P and Li (for similar developments in the
structured LQR design see [9], [10]).

The function fi is given by

fi(K) = trace
(
P bib

T
i

)
= trace

(
(Q + KTRK)Li

)
where

Li =

∫ ∞
0

eAclt bib
T
i eA

T
clt dt (3)

and Acl := A−B2K. Clearly, Li can be obtained from

Li =

∫ ∞
0

ψi(t)ψ
T
i (t) dt

where ψi is the solution to

ψ̇i = Acl ψi, ψi(0) = bi. (4)

Similarly,

KLi = −
∫ ∞

0

ui(t)ψ
T
i (t) dt

where ψi is the solution to (4) and ui = −Kψi. Finally,
following [10], it can be shown that

PLi = −
∫ ∞

0

φi(t)ψ
T
i (t) dt

where φi is obtained from the solution of the adjoint system

φ̇i = −ATcl φi + (Q + KTRK)ψi

φi(∞) = 0
(5)

and ψi is the solution to (4). Thus, numerical simulations
of the primal and adjoint systems (4) and (5) along with
numerical computations of the corresponding integrals can
be used to evaluate fi(K) and ∇fi(K).

Remark 1: We note that the integral in (3) can be com-
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puted from the matrix exponential of the matrix [16][
ATcl 0
bib

T
i −ATcl

]
.

In large-scale problems the computation of the entire matrix
exponential is prohibitively expensive and we refrain from
using this approach. Furthermore, since bibTi is a rank-one
matrix, efficient computation of Li is possible [17]. However,
since Q+KTRK is typically a full rank matrix, computation
of the observability gramian P is challenging.

B. Systems with special structure

If the underlying system has additional structure, evalu-
ation of both the objective function and the corresponding
gradients can be further simplified. We next illustrate how
structure of symmetric systems and undirected consensus
networks can be exploited to simplify computations. In both
cases, the closed-loop H2 norm has an explicit convex
dependance on the optimization variable and there is no need
to conduct simulations of the adjoint system and numerically
evaluate the underlying integrals.

1) Symmetric systems: Let A and K in (1) be symmetric
matrices and let B1 = B2 = I . For a stabilizing K, the
square of the H2 norm of system (1) is determined by

f(K) =
1

2
trace

(
(K − A)−1(Q + KRK)

)
.

Convex dependence of f on K can be established via a
straightforward use of the Schur complement. Furthermore,
the design for symmetric systems provides a useful starting
point for the design of non-symmetric systems [18].

Equivalently, f(K) can be written as

f(K) =
1

2
trace

(
(K − A)−1(Q + ARA)

)
+

1

2
trace (RK) +

1

2
trace (RA)

=
1

2

n∑
i= 1

fi(K)

where

fi(K) = qTi (K − A)−1qi + aTi (K − A)−1ai +

rTi (K + A) ri.

The vectors indexed by i in this expression are given by

qi = Q1/2 ei, ri = R1/2 ei, ai = Ari

where ei is the ith canonical basis vector in Rn. Furthermore,
the gradient of fi with respect to K is given by

∇fi(K) = ri r
T
i − (K − A)−1qi q

T
i (K − A)−1 −

(K − A)−1ai a
T
i (K − A)−1

Thus, there is no need to compute and store the inverse
of the matrix K − A in order to evaluate fi(K) and
∇fi(K); only actions of (K − A)−1 on the vectors qi and
ai is necessary. For example, the preconditioned conjugate
gradients method can be used to compute them efficiently.

Remark 2: The vector (K −A)−1qi represents the steady-
state solution of a stable linear system

ψ̇i = (A − K)ψi + qi

and it can be computed via numerical integration. This illus-
trates that the symmetric nature of the closed-loop system (1)
allows us to avoid the need for numerical integration of the
corresponding adjoint system.

2) Undirected consensus networks: For undirected con-
sensus networks with n nodes, the matrices A and K∈ Rn×n
in (1) determine the graph Laplacians of the plant and con-
troller networks, respectively. In the absence of exogenous
disturbances, the network converges to the average of the
initial node values ψ̄ = (1/n)

∑
i ψi(0) if and only if

it is connected [19]. Let B1 = B2 = I and let Q :=
I − (1/n)11T penalize the deviation of individual node
values from average. The objective is to minimize the mean
square deviation from the network average by adding a few
additional edges, specified by the graph Laplacian K of
a controller network. If E is the incidence matrix of the
controller graph, K can be written as

K(x) = E diag (x)ET

where diag (x) is a diagonal matrix containing the optimiza-
tion variable x ∈ Rm (i.e., the vector of the edge weights
in the controller graph). Regularization terms may be used
to promote sparsity of the controller network or to impose
some additional constraints on the edge weights.

As shown in [7], up to an additive constant, the square of
the H2 norm (from d to ζ) is determined by

f(x) = trace
(
(E diag (x)ET − A)†(I + ARA)

)
+

diag
(
ETRE

)T
x

where the pseudo-inverse of the closed-loop graph Laplacian
is given by

(E diag (x)ET−A)† = (E diag (x)ET+(1/n)11T−A)−1.

It is easy to show that f(x) can be written as

f(x) =

n∑
i= 1

fi(x)

where

fi(x) = ξTi
(
E diag (x)ET + (1/n)11T −A

)−1
ξi +

(1/n) diag
(
ETRE

)T
x.

(6)
Here, ξi = (I + ARA)1/2 ei is the ith column of the square
root of the matrix (I + ARA). Moreover, it can be shown
that the gradient of fi(x) is given by

∇fi(x) = (1/n) diag
(
ETRE

)
− νi(x) ◦ νi(x) (7)

where ◦ is the elementwise multiplication and

νi(x) = ET
(
E diag (x)ET + (1/n)11T −A

)−1
ξi. (8)

As for symmetric systems, there is no need to compute and
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store the inverse of the matrix in (8) and the preconditioned
conjugate gradients method can be used to compute the
gradient efficiently.

We next provide a proposition on the Lipschitz continuity
of the gradient of fi for connected resistive networks. In such
networks, the plant graph is connected and all edge weights
in both the plant and the controller graphs are non-negative.

Proposition 1: The gradient of fi for connected resistive
networks is Lipschitz continuous with the Lipschitz constant

Li = ξTi Â(0)−1E ET Â(0)−1 ξi ‖ET Â(0)−1E‖2 (9)

where Â(x) = E diag (x)ET + (1/n)11T −A.

Proof: For a convex and twice differentiable function
fi, the gradient ∇fi is Lipschitz continuous with Lipschitz
constant Li, if

∇2fi(x) � Li I

or, equivalently, zT ∇2fi(x) z ≤ Li ‖z‖2. It can be shown
that the second order derivative of fi is given by

∇2fi(x) = (νi ν
T
i ) ◦ (ET Â(x)−1E).

Thus, zT ∇2fi(x) z can be written as

ξTi Â(x)−1EDz E
T Â(x)−1EDz E

T Â(x)−1ξi

where Dz := diag(z). For positive definite matrices S and
T with S � T , we have zTS z ≤ zTT z and

zTS z ≤ λmax(S) ‖z‖2 ≤
√
λmax(STS) ‖z‖2 = ‖S‖2 ‖z‖2

for any vector z. Therefore,

Dz E
T Â(x)−1EDz � ‖ET Â(0)−1E‖2 ‖z‖2.

As a result,

zT ∇2fi(x) z ≤ νi(0)T νi(0) ‖ET Â(0)−1E‖2 ‖z‖2

where νi(0) = ET Â(0)−1 ξi.

III. AN ADMM-BASED CONSENSUS ALGORITHM

We next demonstrate that a standard consensus algorithm
based on the Alternating Direction Method of Multipliers
(ADMM) is well-suited for distributed design of optimal
structured feedback gains. As shown in Section II, the
regularized optimal H2 problem can be written as

minimize
K

N∑
i= 1

fi(K) + g(K). (10)

This characterization is suitable for distributed implemen-
tation in which each processors solves an optimization
problem. By introducing N local variables Ki and a global
variable K0, problem (10) can be brought into a standard
consensus form,

minimize
Ki, K0

N∑
i= 1

fi(Ki) + g(K0)

subject to Ki − K0 = 0, i = 1, . . . , N.

(11)

This formulation increases the number of optimization vari-
ables but it brings the objective function into a separable form
and facilitates distributed computations. When implemented
on a single machine, solving the reformulated problem is not
necessarily more computationally efficient than solving the
original problem using centralized algorithms. However, this
formulation allows to work with a local objective function
fi that depends on a single local variable Ki. This is advan-
tageous for large-scale systems where centralized algorithms
cannot be afforded (e.g., because of the computational cost
associated with solving the large-scale Lyapunov equations).

The augmented Lagrangian associated with (11) is

L(Ki,K0; Λ) = g(K0) +
N∑
i=1

( fi(Ki) + 〈Λi,Ki −K0〉 +
ρi
2
‖Ki −K0‖2F )

(12)
where Λi’s are the Lagrange multipliers and ρi’s are positive
parameters. The ADMM algorithm consists of the following
iterative steps,

Kk+1
i = argmin

Ki

fi(Ki) +
ρi
2
‖Ki − Uki ‖2F

Kk+1
0 = argmin

K0

g(K0) +

N∑
i=1

ρi
2
‖K0 − V ki ‖2F

Λk+1
i = Λki + ρi

(
Kk+1
i − Kk+1

0

)
where

Uki := Kk
0 − (1/ρi) Λki

V ki := Kk+1
i + (1/ρi) Λki .

The Ki-minimization step can be done via distributed
computation by spreading subproblems to N different pro-
cessors. On the other hand, the update of K0 amounts to the
evaluation of the proximal operator of the function g,

Kk+1
0 = proxg/(Nρ̄)

(
1

Nρ̄

N∑
i= 1

ρiV
k
i

)
.

where ρ̄ := (1/N)
∑
i ρi. Thus, the update of K0 requires

gathering each Kk+1
i and the associated Lagrange multipliers

Λki in order to form V ki .

Remark 3: The above presented consensus algorithm is
standard (e.g., see [12]) but to the best of our knowledge it
has not been previously used for optimal design of structured
feedback gains via distributed optimization. Recently, con-
vergence of this algorithm was established even for problems
with non-convex objective functions fi [11]. The authors
of [11] also show that additional computational advantage
can be gained by updating only a subset of Ki’s in each
iteration and offer several alternative implementations to
speed computations.

Remark 4: The update of each Ki amounts to the com-
putation of the proximal operator associated with fi,

Kk+1
i = proxfi/ρi

(
Uki
)

However, while the proximal operators of commonly used
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regularization functions are easy to evaluate, the compu-
tation of proxfi/ρi is significantly more involved. In [2],
the proximal operator associated with the closed-loop H2

norm f(K) was computed using the Anderson-Moore al-
gorithm. This approach requires computation of the closed-
loop controllability and observability gramians. In contrast,
the developments of Section II facilitate computation of
proxfi/ρi via a proximal gradient algorithm that avoids the
need for solving large-scale Lyapunov equations.

Remark 5: For the problem of growing connected resis-
tive consensus networks [7], Algorithm 3 in [11] can be
used to solve the Ki-minimization step in the ADMM-based
algorithm explicitly. The key point of departure compared
to the standard ADMM implementation is linearization in
the Ki-minimization step of the function fi with a Lipschitz
continuous gradient around the current K0 iterate. This offers
a significant speed-up and enables an explicit update of Ki.

IV. COMPUTATIONAL EXPERIMENTS

In this section, we employ the ADMM-based consensus
algorithm to design optimal structured feedback gains. This
algorithm is implemented in a distributed fashion by splitting
the problem into N separate subproblems over N different
cores. We have provided a parallel implementation in C++
using pthreads library and executed tests on a machine
featuring an Intel Core i7-3770 with 16GB of RAM to
measure the performance of the algorithm.

We first employ the algorithm to design a sparse optimal
feedback controller for a symmetric system. We randomly
generate a symmetric matrix A with n = 20. We set the
control weight R = I and the state weight matrix Q = I .
Our goal is to find a sparse optimal controller that minimizes
the H2 norm of the closed-loop system. The regularization
function is g(K) = γ ‖K‖1 where γ is a sparsity-promoting
parameter and the `1 norm is a proxy for inducing sparsity
in the controller matrix. We start with γ = 0 and gradually
increase the value of γ. Figure 1 shows how the sparsity
pattern of the controller changes by increasing the value of
γ. For γ = 0, the optimal feedback controller is given by a
full matrix and as γ increases the controller becomes sparser.
In particular, for γ = 9× 107, the controller is diagonal and
by further increasing the value of γ, it remains diagonal to
guarantee stability of the closed-loop system.

Next, we use our algorithm for growing a connected
resistive network with n = 20 nodes. The plant graph
is given by an Erdös-Rényi network with edge probability
1.05 log(n)/n. We choose the control weight matrix R = I
and a state weight matrix that penalizes the mean-square
deviation from the network average, Q = I − (1/n)11T .
Moreover, the incidence matrix of the controller is such that
there are no joint edges between the plant and the controller
graphs. As discussed in Section II-B.2, for consensus net-
works, the controller can be written as a function of the
vector of the edge weights x. Thus, the H2 norm of the
closed-loop system is f(x) and the regularization function
is given by g(x) = γ ‖w ◦ x‖1 where w is the vector of the

(a) γ = 0 (b) γ = 500

(c) γ = 104 (d) γ = 9× 107

Fig. 1: Topology of the controller graphs for a randomly
generated symmetric system with n = 20 states.

weights. Since the plant network is resistive and connected,
all the edge weights are nonnegative, thereby if the added
edges have nonnegative edge weights, the closed-loop system
is stable. We can write the smooth and nonsmooth parts of
the objective function as f(x) + γ wTx and g(x) = I+(x)
where I+(x) is an indicator function for nonnegative orthant.

We solve the problem (10) to find the controller graph
for 500 logarithmically-spaced values of γ ∈ [0.001, 0.3]
using the path-following iterative reweighted algorithm as a
proxy for inducing sparsity [20]. We set the weights to be
inversely proportional to the magnitude of the solution x at
the previous value of γ following by a polishing step that
computes the optimal weights of identified edges; see [7].

As γ increases, the number of nonzero edges decreases and
the closed-loop performance deteriorates. As shown in Fig. 2,
relative to the optimal centralized vector of the edge weights,
xc, the H2 loss decreases as the sparsity of the vector of
the edge weights x increases. In particular, for γ = 0.3,
there is only one nonzero element in the vector of the edge
weights. The identified sparse controller in this case uses
only 0.62% of the edges, relative to the optimal centralized
controller, i.e., card(x)/card(xc) = 0.62% and achieves a
performance loss of 23.47%, i.e., (J − Jc)/Jc = 23.47%.

Next, we employ our algorithm for growing connected
resistive networks with different number of nodes using
multiple cores. The solve times are averaged over 10 trials
and the speedup relative to a single core is displayed in Fig 3.
This figure demonstrates that the algorithm is scalable. In
particular, multi-core execution outperforms running just on
a single core. The speed-up is even higher for larger networks
since overheads of parallel execution are smaller and more
time is spent on actual parallel computation.
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Fig. 2: (a) Sparsity level; (b) performance degradation; and (c) the optimal tradeoff between the performance degradation
and the sparsity level of the optimal sparse x compared to the optimal centralized controller xc. The results are obtained

for a randomly generated Erdös-Rényi network with n = 20 nodes.

Sp
ee

du
p

Number of cores

Fig. 3: Speedup ratio versus the number of the cores used
for growing connected resistive networks with n nodes.

V. CONCLUDING REMARKS

We have considered the problem of designing optimal
structured feedback controllers for large-scale systems. By
exploiting the structure of the H2 norm, we have shown that
this problem can be separated into N subproblems and that it
can be solved efficiently using distributed optimization. We
have utilized an ADMM-based consensus algorithm to design
a sparse controller network that improves the performance
of the closed-loop system. By splitting the problem into
N separate subproblems over N different cores, we have
implemented this algorithm in C++. Our parallel imple-
mentation can be used to solve structured optimal control
problems for large-scale systems, e.g., power networks [21],
[22]. Computational experiments are provided to demonstrate
the utility of the developed approach.
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dynamic output-feedback controllers for interconnected systems,” In-
ternational Journal of Control, vol. 84, no. 12, pp. 2081–2091, 2011.

[4] N. Matni and V. Chandrasekaran, “Regularization for design,” IEEE
Trans. Automat. Control, vol. 61, no. 12, pp. 3991–4006, 2016.
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[9] K. Mårtensson and A. Rantzer, “Gradient methods for iterative dis-
tributed control synthesis,” in Proceedings of the 48th IEEE Confer-
ence on Decision and Control, 2009, pp. 549–554.
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[13] X. Wu and M. R. Jovanović, “Sparsity-promoting optimal control of
systems with symmetries, consensus and synchronization networks,”
Syst. Control Lett., vol. 103, pp. 1–8, May 2017.

[14] F. Lin, M. Fardad, and M. R. Jovanović, “Augmented Lagrangian
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