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Abstract—We study an optimal control problem aimed at adding
a certain number of edges to an undirected network, with a known
graph Laplacian, in order to optimally enhance closed-loop perfor-
mance. The performance is quantified by the steady-state variance
amplification of the network with additive stochastic disturbances.
To promote controller sparsity, we introduce �1 -regularization into
the optimal H2 formulation and cast the design problem as a
semidefinite program. We derive a Lagrange dual, provide inter-
pretation of dual variables, and exploit structure of the optimality
conditions for undirected networks to develop customized proxi-
mal gradient and Newton algorithms that are well suited for large
problems. We illustrate that our algorithms can solve the prob-
lems with more than million edges in the controller graph in a few
minutes, on a PC. We also exploit structure of connected resistive
networks to demonstrate how additional edges can be systemati-
cally added in order to minimize the H2 norm of the closed-loop
system.

Index Terms—Convex optimization, coordinate descent, ef-
fective resistance, �1 -regularization, network coherence, proxi-
mal gradient and Newton methods, semidefinite programming,
sparsity-promoting control, stochastically forced networks.

I. INTRODUCTION

CONVENTIONAL optimal control of distributed systems
relies on centralized implementation of control policies.

In large networks of dynamical systems, centralized information
processing imposes a heavy burden on individual nodes and is
often infeasible. This motivates the development of distributed
control strategies that require limited information exchange be-
tween the nodes to reach consensus or guarantee synchroniza-
tion. Over the last decade, a vast body of literature has dealt
with analysis, fundamental performance limitations, and design
of distributed averaging protocols; e.g., see [1]–[8].

Optimal design of the edge weights for networks with pre-
specified topology has received significant attention. In [2], the
design of the fastest averaging protocol for undirected networks
was cast as a semidefinite program (SDP). Two customized
algorithms, based on primal barrier interior-point (IP) and
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subgradient methods, were developed and the advantages of
optimal weight selection over commonly used heuristics were
demonstrated. Similar SDP characterization, for networks with
state-dependent graph Laplacians, was provided in [3]. The al-
location of symmetric edge weights that minimize the mean-
square deviation from average for networks with additive
stochastic disturbances was solved in [4]. A related problem,
aimed at minimizing the total effective resistance of resistive
networks, was addressed in [6]. In [7], the edge Laplacian was
used to provide graph-theoretic characterization of the H2 and
H∞ symmetric agreement protocols.

Network coherence quantifies the ability of distributed esti-
mation and control strategies to guard against exogenous dis-
turbances [5], [8]. The coherence is determined by the sum
of reciprocals of the nonzero eigenvalues of the graph Lapla-
cian and its scaling properties cannot be predicted by alge-
braic connectivity of the network. In [8], performance limi-
tations of spatially localized consensus protocols on regular
lattices were examined. It was shown that the fundamental
limitations for large-scale networks are dictated by the net-
work topology rather than by the optimal selection of the edge
weights. Moreover, epidemic spread in networks is strongly in-
fluenced by their topology [9]–[11]. Thus, optimal topology de-
sign represents an important challenge. It is precisely this prob-
lem, for undirected consensus networks, that we address in the
paper.

More specifically, we study an optimal control problem aimed
at achieving a desired tradeoff between the network perfor-
mance and communication requirements in the distributed con-
troller. Our goal is to add a certain number of edges to a given
undirected network in order to optimally enhance the closed-
loop performance. One of our key contributions is the formu-
lation of topology design as an optimal control problem that
admits convex characterization and is amenable to the develop-
ment of efficient optimization algorithms. In our formulation,
the plant network can contain disconnected components and
optimal topology of the controller network is an integral part
of the design. In general, this problem is NP-hard [12] and it
amounts to an intractable combinatorial search. Several refer-
ences have examined convex relaxations or greedy algorithms
to design topology that optimizes algebraic connectivity [13] or
network coherence [14]–[17].

We tap on recent developments regarding sparse representa-
tions in conjunction with regularization penalties on the level
of communication in a distributed controller. This allows us to
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formulate convex optimization problems that exploit the under-
lying structure and are amenable to the development of efficient
optimization algorithms. To avoid combinatorial complexity, we
approach optimal topology design using a sparsity-promoting
optimal control framework introduced in [18] and [19]. Per-
formance is captured by the H2 norm of the closed-loop net-
work and �1-regularization is introduced to promote controller
sparsity. While this problem is in general nonconvex [19], for
undirected networks we show that it admits a convex characteri-
zation with a nondifferentiable objective function and a positive
definite constraint. This problem can be transformed into an
SDP and, for small size networks, the optimal solution can be
computed using standard IP method solvers, e.g., SeDuMi [20]
and SDPT3 [21].

To enable design of large networks, we pay particular
attention to the computational aspects of the edge-addition
problem. We derive a Lagrange dual of the optimal control
problem, provide interpretation of dual variables, and develop
efficient proximal algorithms. Furthermore, building on prelim-
inary work [22], we specialize our algorithms to the problem of
growing connected resistive networks described in [13] and [6].
In this, the plant graph is connected and inequality constraints
amount to nonnegativity of controller edge weights. This al-
lows us to simplify optimality conditions and further improve
computational efficiency of our customized algorithms.

Proximal gradient algorithms [23] and their accelerated vari-
ants [24] have recently found use in distributed optimization,
statistics, machine learning, image and signal processing. They
can be interpreted as generalization of standard gradient pro-
jection to problems with nonsmooth and extended real-value
objective functions. When the proximal operator is easy to eval-
uate, these algorithms are simple yet extremely efficient.

For networks that can contain disconnected components and
nonpositive edge weights, we show that the proximal gradi-
ent algorithm iteratively updates the controller graph Laplacian
via convenient use of the soft-thresholding operator. This ex-
tends the iterative shrinkage thresholding algorithm (ISTA) to
optimal topology design of undirected networks. In contrast
to the �1-regularized least squares, however, the step-size has
to be selected to guarantee positivity of the second smallest
eigenvalue of the closed-loop graph Laplacian. We combine the
Barzilai–Borwein (BB) step-size initialization with backtrack-
ing to achieve this goal and enhance the rate of convergence. The
biggest computational challenge comes from evaluation of the
objective function and its gradient. We exploit problem struc-
ture to speed up computations and save memory. Finally, for the
problem of growing connected resistive networks, the proximal
algorithm simplifies to gradient projection which additionally
improves the efficiency.

We also develop a customized algorithm based on the prox-
imal Newton method. In contrast to the proximal gradient, this
method sequentially employs the second-order Taylor series ap-
proximation of the smooth part of the objective function; e.g.,
see [25]. We use cyclic coordinate descent over the set of active
variables to efficiently compute the Newton direction by con-
secutive minimization with respect to individual coordinates.
Similar approach has been recently utilized in a number of

applications, including sparse inverse covariance estimation in
graphical models [26].

Both of our customized proximal algorithms significantly
outperform a primal-dual IP method developed in [22]. It is
worth noting that the latter is significantly faster than the general-
purpose solvers. While the customized IP algorithm of [22]
with a simple diagonal preconditioner can solve the problems
with hundreds of thousands of edges in the controller graph
in several hours, on a PC, the customized algorithms based on
proximal gradient and Newton methods can solve the problems
with millions of edges in several minutes. Furthermore, they
are considerably faster than the greedy algorithm with efficient
rank-one updates developed in [17].

Our presentation is organized as follows. In Section II, we
formulate the problem of optimal topology design for undi-
rected networks subject to additive stochastic disturbances. In
Section III, we derive a Lagrange dual of the sparsity-promoting
optimal control problem, provide interpretation of dual vari-
ables, and construct dual feasible variables from the primal
ones. In Section IV, we develop customized algorithms based
on the proximal gradient and Newton methods. In Section V, we
achieve additional speedup by specializing our algorithms to the
problem of growing connected resistive networks. In Section VI,
we use computational experiments to design optimal topology
of a controller graph for benchmark problems and demonstrate
efficiency of our algorithms. In Section VII, we provide a brief
overview of the paper.

II. PROBLEM FORMULATION

We consider undirected consensus networks with n nodes

ψ̇ = −Lp ψ + u + d (1)

where d and u are the exogenous disturbance and the control
input, respectively, ψ is the state of the network, and Lp is a
symmetric n× n matrix that represents graph Laplacian of the
open-loop system, i.e., plant. Such networks arise in applica-
tions ranging from load balancing to power systems to opinion
formation to control of multiagent systems. The goal is to im-
prove performance of a consensus algorithm in the presence
of stochastic disturbances by adding a certain number of edges
(from a given set of candidate edges). We formulate this problem
as a feedback design problem with

u = −Lx ψ

where the symmetric feedback-gain matrix Lx is required to
have the Laplacian structure. This implies that each node in (1)
forms control action using a weighted sum of the differences
between its own state and the states of other nodes and that
information is processed in a symmetric fashion. Since a nonzero
ijth element of Lx corresponds to an edge between the nodes
i and j, the communication structure in the controller graph is
determined by the sparsity pattern of the matrix Lx .

Upon closing the loop, we obtain

ψ̇ = − (Lp + Lx)ψ + d. (2a)
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For a given Lp , our objective is to design the topology for Lx
and the corresponding edge weights x in order to achieve the
desired tradeoff between controller sparsity and network perfor-
mance. The performance is quantified by the steady-state vari-
ance amplification of the stochastically forced network, from
the white-in-time input d to the performance output ζ,

ζ :=
[
Q1/2

0

]
ψ +

[
0

R1/2

]
u =

[
Q1/2

−R1/2Lx

]
ψ (2b)

which penalizes deviation from consensus and control effort.
Here, Q = QT � 0 and R = RT � 0 are the state and control
weights in the standard quadratic performance index.

The interesting features of this problem come from structural
restrictions on the Lalpacian matrices Lp and Lx . Both of them
are symmetric and are restricted to having an eigenvalue at zero
with the corresponding eigenvector of all ones,

Lp 11 = 0, Lx 11 = 0. (3)

Since each node uses relative information exchange with its
neighbors to update its state, in the presence of white noise,
the average mode ψ̄(t) := (1/n) 11T ψ(t) experiences a random
walk and its variance increases linearly with time. To make the
average mode unobservable from the performance output ζ, the
matrix Q is also restricted to having an eigenvalue at zero as-
sociated with the vector of all ones, Q 11 = 0. Furthermore, to
guarantee observability of the remaining eigenvalues of Lp , we
consider state weights that are positive definite on the orthog-
onal complement of the subspace spanned by the vector of all
ones,Q+ (1/n) 1111T � 0; e.g.,Q = I − (1/n) 1111T penalizes
mean-square deviation from the network average.

In what follows, we express Lx as

Lx :=
m∑
l = 1

xl ξl ξ
T
l = E diag (x)ET (4)

where E is the incidence matrix of the controller graph Lx ,
m is the number of edges in Lx , and diag (x) is a diagonal
matrix containing the vector of the edge weights x ∈ Rm . The
matrix E is given and it determines the set of candidate edges
in controller network. This set can contain all possible edges
in the network or it can only include edges that are not in the
plant network. Many other options are possible as long as the
union of the sets of edges in the plant and controller networks
yields a connected graph. We note that the size of the set of
candidate edges in controller network influences computational
complexity of our algorithms.

It is desired to select a subset of edges in order to balance
the closed-loop performance with the number of added edges.
Vectors ξl ∈ Rn determine the columns of E and they signify
the connection with weight xl between nodes i and j: the ith
and jth entries of ξl are 1 and −1 and all other entries are equal
to 0. Thus, Lx given by (4) satisfies structural requirements on
the controller graph Laplacian in (3) by construction.

To achieve consensus in the absence of disturbances, the
closed-loop network has to be connected [1]. Equivalently, the
second smallest eigenvalue of the closed-loop graph Laplacian,
L := Lp + Lx , has to be positive, i.e., L has to be positive

definite on 11⊥. This amounts to positive definiteness of the
“strengthened” graph Laplacian of the closed-loop network

G := Lp + Lx + (1/n) 1111T

= Gp + E diag (x)ET � 0 (5a)

where

Gp := Lp + (1/n) 1111T . (5b)

Structural restrictions (3) on the Laplacian matrices introduce
an additional constraint on the matrix G,

G 11 = 11. (5c)

A. Design of Optimal Sparse Topology

Let d be a white stochastic disturbance with zero-mean and
unit variance,

E (d(t)) = 0, E
(
d(t1) dT (t2)

)
= I δ(t1 − t2)

where E is the expectation operator. The square of the H2 norm
of the transfer function from d to ζ,

‖H‖2
2 = lim

t→∞E
(
ψT (t) (Q + Lx RLx)ψ(t)

)
quantifies the steady-state variance amplification of closed-loop
system (2). As noted earlier, the network average ψ̄(t) corre-
sponds to the zero eigenvalue of the graph Laplacian and it is
not observable from the performance output ζ. Thus, the H2
norm is equivalently given by

‖H‖2
2 = lim

t→∞E
(
ψ̃T (t) (Q + Lx RLx) ψ̃(t)

)

= trace (P (Q + Lx RLx)) = 〈P,Q + Lx RLx〉
where ψ̃(t) is the vector of deviations of the states of individual
nodes from ψ̄(t),

ψ̃(t) := ψ(t) − 11 ψ̄(t) =
(
I − (1/n) 1111T

)
ψ(t)

and P is the steady-state covariance matrix of ψ̃,

P := lim
t→∞E

(
ψ̃(t) ψ̃T (t)

)
.

The above measure of the amplification of stochastic distur-
bances is determined by ‖H‖2

2 = (1/2)J(x), where

J(x) :=
〈(
Gp + E diag (x)ET

)−1
, Q+ Lx RLx

〉
. (6)

It can be shown that J can be expressed as

J(x) =
〈(
Gp + E diag (x)ET

)−1
, Qp

〉
+

diag
(
ET RE

)T
x − 〈R,Lp〉 − 1 (7)

with

Qp := Q + (1/n) 1111T + Lp RLp.

Note that the last two terms in (7) do not depend on the op-
timization variable x and that the term Lp RLp in Qp has an
interesting interpretation: it determines a state-weight that guar-
antees inverse optimality (in LQR sense) of u = −Lpψ for a
system with no coupling between the nodes, ψ̇ = u+ d.



1078 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

We formulate the design of a controller graph that provides an
optimal tradeoff between theH2 performance of the closed-loop
network and the controller sparsity as

minimize
x

J(x) + γ ‖x‖1

subject to Gp + E diag (x)ET � 0 (SP)

where J(x) and Gp are given by (7) and (5b), respectively. The
�1 norm of x, ‖x‖1 :=

∑m
l=1 |xl |, is introduced as a convex

proxy for promoting sparsity. In (SP), the vector of the edge
weights x ∈ Rm is the optimization variable; the problem data
are the positive regularization parameter γ, the state and con-
trol weights Q and R, the plant graph Laplacian Lp , and the
incidence matrix of the controller graph E.

The sparsity-promoting optimal control problem (SP) is a
constrained optimization problem with a convex nondifferen-
tiable objective function [14] and a positive definite inequality
constraint. This implies convexity of (SP). Positive definiteness
of the strengthened graph Laplacian G guarantees stability of
the closed-loop network (2a) on the subspace 11⊥, and thereby
consensus in the absence of disturbances [1].

The consensus can be achieved even if some edge weights
are negative [2], [4]. By expressing x as a difference between
two nonnegative vectors x+ and x−, (SP) can be written as

minimize
x+ , x−

〈(
Gp + E diag (x+ − x−)ET

)−1
, Qp

〉
+

(γ 11 + c)T x+ + (γ 11 − c)T x−

subject to Gp + E diag (x+ − x−)ET � 0

x+ ≥ 0, x− ≥ 0 (8)

where c := diag
(
ET RE

)
. By utilizing the Schur comple-

ment, (8) can be cast to an SDP, and solved via standard IP
method algorithms for small size networks.

1) Reweighted �1 Norm: An alternative proxy for promoting
sparsity is given by the weighted �1 norm [27], ‖w ◦ x‖1 :=∑m

l = 1 wl |xl |where ◦ denotes element-wise product. The vector
of nonnegative weights w ∈ Rm can be selected to provide
better approximation of nonconvex cardinality function than
the �1 norm. An effective heuristic for weight selection is given
by the iterative reweighted algorithm [27], with wl inversely
proportional to the magnitude of xl in the previous iteration,

w+
l = 1/(|xl | + ε). (9)

This puts larger emphasis on smaller optimization variables,
where a small positive parameter ε ensures that w+

l is well
defined. If the weighted �1 norm is used in (SP), the vector of
all ones 11 should be replaced by the vector w in (8).

B. Structured Optimal Control Problem: Debiasing Step

After the structure of the controller graph Laplacian Lx has
been designed, we fix the structure of Lx and optimize the
corresponding edge weights. This “polishing” or “debiasing”
step is used to improve the performance relative to the solution
of the regularized optimal control problem (SP); see [28,
Sec. 6.3.2] for additional information. The structured optimal

control problem is obtained by eliminating the columns from
the incidence matrix E that correspond to zero elements in the
vector of the optimal edge weights x	 resulting from (SP). This
yields a new incidence matrix Ê and leads to

minimize
x

〈(
Gp + Ê diag (x) ÊT

)−1
, Qp

〉
+

diag
(
ÊT R Ê

)T
x

subject to Gp + Ê diag (x) ÊT � 0.

Alternatively, this optimization problem is obtained by setting
γ = 0 in (SP) and by replacing the incidence matrix E with Ê.
The solution provides the optimal vector of the edge weights x
for the controller graph Laplacian with the desired structure.

C. Gradient and Hessian of J(x)

We next summarize the first- and second-order derivatives
of the objective function J , given by (7), with respect to the
vector of the edge weights x. The second-order Taylor series
approximation of J(x) around x̄ ∈ Rm is given by

J(x̄+ x̃) ≈ J(x̄) + ∇J(x̄)T x̃ +
1
2
x̃T ∇2J(x̄) x̃.

For related developments, we refer the reader to [6].
Proposition 1: The gradient and the Hessian of J at x̄ ∈ Rm

are determined by

∇J(x̄) = − diag
(
ET (Y (x̄) − R)E

)
∇2J(x̄) = H1(x̄) ◦ H2(x̄)

where

Y (x̄) : =
(
Gp + EDx̄ E

T
)−1

Qp

(
Gp + EDx̄ E

T
)−1

H1(x̄) : = ET Y (x̄)E

H2(x̄) : = ET
(
Gp + EDx̄ E

T
)−1

E

Dx̄ : = diag (x̄) .

III. DUAL PROBLEM

Herein, we study the Lagrange dual of the sparsity-promoting
optimal control problem (8), provide interpretation of dual vari-
ables, and construct dual feasible variables from primal feasi-
ble variables. Since minimization of the Lagrangian associated
with (8) does not lead to an explicit expression for the dual
function, we introduce an auxiliary variable G and find the
dual of

minimize
G, x±

〈
G−1 , Qp

〉
+ (γ 11 + c)T x+ + (γ 11 − c)T x−

subject to G − Gp − E diag (x+ − x−)ET = 0

G � 0, x+ ≥ 0, x− ≥ 0. (P)

In (P), G represents the “strengthened” graph Laplacian of
the closed-loop network and the equality constraint comes
from (5a). As we show next, the Lagrange dual of the primal
optimization problem (P) admits an explicit characterization.
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Proposition 2: The Lagrange dual of the primal optimization
problem (P) is given by

maximize
Y

2 trace
(
(Q1/2

p Y Q1/2
p )1/2

)
− 〈Y,Gp〉

subject to ‖diag
(
ET (Y − R)E

) ‖∞ ≤ γ

Y � 0, Y 11 = 11 (D)

where Y = Y T ∈ Rn×n is the dual variable associated with the
equality constraint in (P). The duality gap is

η = yT+ x+ + yT− x− = 11T (y+ ◦ x+ + y− ◦ x−) (10)

where

y+ = γ 11 − diag
(
ET (Y −R)E

) ≥ 0 (11a)

y− = γ 11 + diag
(
ET (Y −R)E

) ≥ 0. (11b)

are the Lagrange multipliers associated with element-wise
inequality constraints in (P).

Proof: The Lagrangian of (P) is given by

L =
〈
G−1 , Qp

〉
+ 〈Y,G〉 − 〈Y,Gp〉 +

(
γ 11 − diag

(
ET (Y −R)E

) − y+
)T
x+ +

(
γ 11 + diag

(
ET (Y −R)E

) − y−
)T
x−. (12)

Note that no Lagrange multiplier is assigned to the positive
definite constraint on G in L. Instead, we determine conditions
on Y and y± that guarantee G � 0.

Minimizing L with respect to G yields

G−1 Qp G
−1 = Y (13a)

or, equivalently,

G = Q1/2
p

(
Q1/2
p Y Q1/2

p

)−1/2
Q1/2
p . (13b)

Positive definiteness of G and Qp implies Y � 0. Further-
more, since Qp11 = 11, from (5c) and (13a) we have

Y 11 = 11.

Similarly, minimization with respect to x+ and x− leads to (11a)
and (11b). Thus, nonnegativity of y+ and y− amounts to

−γ 11 ≤ diag
(
ET (Y −R)E

) ≤ γ 11

or, equivalently,

‖diag
(
ET (Y −R)E

) ‖∞ ≤ γ.

Substitution of (13) and (11) into (12) eliminates y+ and y−
from the dual problem. We can thus represent the dual function,
infG, x± L(G, x±;Y, y±), as

2 trace
(
(Q1/2

p Y Q1/2
p )1/2

)
− 〈Y,Gp〉

which allows us to bring the dual of (P) to (D). �
Any dual feasible Y can be used to obtain a lower bound

on the optimal value of the primal problem (P). Furthermore,
the difference between the objective functions of the primal
(evaluated at the primal feasible (G, x±)) and dual (evaluated
at the dual feasible Y ) problems yields expression (10) for the

duality gap η, where y+ and y− are given by (11a) and (11b).
The duality gap can be used to estimate distance to optimality.

Strong duality follows from Slater’s theorem [28], i.e., con-
vexity of the primal problem (P) and strict feasibility of the
constraints in (P). This implies that at optimality, the duality
gap η for the primal problem (P) and the dual problem (D) is
zero. Furthermore, if (G	, x	±) are optimal points of (P), then
Y 	 = (G	)−1Qp (G	)−1 is the optimal point of (D). Similarly,
if Y 	 is the optimal point of (D),

G	 = Q1/2
p

(
Q1/2
p Y 	Q1/2

p

)−1/2
Q1/2
p

is the optimal point of (P). The optimal vector of the edge
weights x	 is determined by the nonzero off-diagonal elements
of the controller graph Laplacian, L	x = G	 −Gp .

A. Interpretation of Dual Variables

For electrical networks, the dual variables have appealing
interpretations. Let ι ∈ Rn be a random current injected into
the resistor network satisfying

11T ι = 0, E (ι) = 0, E
(
ιιT

)
= Q + Lp RLp.

The vector of voltages ϑ ∈ Rm across the edges of the network
is then given by ϑ = ET G−1ι. Furthermore, since

E
(
ϑϑT

)
= ET G−1 E

(
ιιT

)
G−1 E = ET Y E

the dual variableY is related to the covariance matrix of voltages
across the edges. Moreover, (11) implies that y+ and y− quantify
the deviations between variances of edge voltages from their
respective upper and lower bounds.

Remark 1: For a primal feasible x, Y resulting from (13a)
with G given by (5a) may not be dual feasible. Let

Ŷ := β Y +
1 − β

n
1111T (14a)

and let the control weight be R = r I with r > 0. If

β ≤ γ + 2 r
‖diag (ET (Y − R)E) ‖∞ + 2 r

(14b)

then Ŷ satisfies the inequality constraint in (D) and it is thus
dual feasible.

IV. CUSTOMIZED ALGORITHMS

We next exploit the structure of the sparsity-promoting opti-
mal control problem (SP) and develop customized algorithms
based on the proximal gradient and Newton methods. The proxi-
mal gradient algorithm is a first-order method that uses a simple
quadratic approximation of J in (SP). This yields an explicit
update of the vector of the edge weights via application of the
soft-thresholding operator. In the proximal Newton method a
sequential quadratic approximation of the smooth part of the
objective function in (SP) is used and the search direction is
efficiently computed via cyclic coordinate descent over the set
of active variables.
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A. Proximal Gradient Method

We next use the proximal gradient method to solve (SP).
A simple quadratic approximation of J(x) around the current
iterate xk ,

J(x) ≈ J(xk ) + ∇J(xk )T (x − xk ) +
1

2αk
‖x − xk‖2

2

is substituted to (SP) to obtain

xk+1 = arg min
x

g(x) +
1

2αk
‖x − (xk − αk∇J(xk ))‖2

2 .

Here, αk is the step-size and the update is determined by the
proximal operator of the function αk g,

xk+1 = proxαk g
(
xk − αk∇J(xk )

)
.

In particular, for g(x) = γ ‖x‖1 , we have

xk+1 = Sγαk
(
xk − αk∇J(xk )

)
where Sκ(y) = sign (y)max (|y| − κ, 0) is the soft-
thresholding function.

The proximal gradient algorithm converges with rateO(1/k)
if αk < 1/L, where L is the Lipschitz constant of ∇J [23],
[24]. It can be shown that ∇J is Lipschitz continuous but, since
it is challenging to explicitly determine L, we adjust αk via
backtracking. To provide a better estimate of L, we initialize
αk using the Barzilai-Browein (BB) method which provides an
effective heuristic for approximating the Hessian of the function
J via the scaled version of the identity [29], (1/αk )I . At the
kth iteration, the initial BB step-size αk,0 ,

αk,0 :=
‖xk − xk−1‖2

2

(xk−1 − xk )T (∇J(xk−1) − ∇J(xk ))
(15)

is adjusted via backtracking until the inequality constraint
in (SP) is satisfied and

J(xk+1) ≤ J(xk ) + ∇J(xk )T (xk+1 − xk )

+
1

2αk
‖xk+1 − xk‖2

2 .

Since J is continuously differentiable with Lipschitz continu-
ous gradient, this inequality holds for any αk < 1/L and the
algorithm converges sublinearly [24]. This condition guaran-
tees that objective function decreases at every iteration. Our
numerical experiments in Section VI suggest that BB step-size
initialization significantly enhances the rate of convergence.

Remark 2: The biggest computational challenge comes from
evaluation of the objective function and its gradient. Since the
inverse of the strengthened graph Laplacian G has to be com-
puted, with direct computations these evaluations take O(n3)
and O(nm2) flops, respectively. However, by exploiting the
problem structure, ∇J can be computed more efficiently. The
main cost arises in the computation of diag (ET Y E). We in-
stead compute it using sum (ET ◦ (Y E)) which takes O(n2m)
operations. Here, sum (A) is a vector that contains summation
of each row of the matrix A in its entries. For networks with
m� n this leads to significant speed up. Moreover, in contrast

to direct computation, we do not need to store the m×m ma-
trix ET Y E. Only formation of the columns is required, which
offers memory saving.

B. Proximal Newton Method

In contrast to the proximal gradient algorithm, the proximal
Newton method benefits from second-order Taylor series ex-
pansion of the smooth part of the objective function in (SP).
Herein, we employ cyclic coordinate descent over the set of
active variables to efficiently compute the Newton direction.

By approximating the smooth part of the objective function
J in (SP) with the second-order Taylor series expansion around
the current iterate x̄,

J(x̄+ x̃) ≈ J(x̄) + ∇J(x̄)T x̃ +
1
2
x̃T ∇2J(x̄) x̃

the problem (SP) becomes

minimize
x̃

∇J(x̄)T x̃ +
1
2
x̃T ∇2J(x̄) x̃ + γ ‖x̄ + x̃‖1

subject to Gp + E diag (x̄ + x̃)ET � 0. (16)

Let x̃ denote the current iterate approximating the Newton di-
rection. By perturbing x̃ in the direction of the ith standard basis
vector ei in Rm , the objective function in (16) becomes

∇J(x̄)T (x̃ + δi ei) +
1
2

(x̃+ δi ei)
T ∇2J(x̄) (x̃ + δi ei)

+ γ |x̄i + x̃i + δi |.
Elimination of constant terms allows us to bring (16) into

minimize
δi

1
2 ai δ

2
i + bi δi + γ |ci + δi | (17)

where the optimization variable is the scalar δi and (ai , bi , ci ,
x̄i , x̃i) are the problem data with

ai := eTi ∇2J(x̄) ei

bi :=
(∇2J(x̄) ei

)T
x̃ + eTi ∇J(x̄)

ci := x̄i + x̃i .

The explicit solution to (17) is given by

δi = − ci + Sγ/ai (ci − bi/ai) .

After the Newton direction x̃ has been computed, we deter-
mine the step-size α via backtracking. This guarantees positive
definiteness of the strengthened graph Laplacian and sufficient
decrease of the objective function. We use generalization of
Armijo rule [30] to find an appropriate step-size α such that
Gp + E diag(x̄+ α x̃)ET is positive definite matrix and

J(x̄+ αx̃) + γ ‖x̄+ αx̃‖1 ≤ J(x̄) + γ ‖x̄‖1 +

ασ
(∇J(x̄)T x̃ + γ ‖x̄+ x̃‖1 − γ ‖x̄‖1

)
.

Remark 3: The parameter ai in (17) is determined by the ith
diagonal element of the Hessian ∇2J(x̄). On the other hand,
the ith column of ∇2J(x̄) and the ith element of the gradient
vector∇J(x̄) enter into the expression for bi . All of these can be
obtained directly from ∇2J(x̄) and ∇J(x̄) and forming them
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does not require any multiplication. Computation of a single
vector inner product between the ith column of the Hessian
and x̃ is required in bi , which typically takes O(m) operations.
To avoid direct multiplication, in each iteration after finding
δi , we update the vector ∇2J(x̄)T x̃ using the correction term
δi(ET Y Ei) ◦ ((G−1Ei)T E)T and take its ith element to form
bi . Here, Ei is the ith column of the incidence matrix of the
controller graph. This also avoids the need to store the Hessian
of J , which is anm×mmatrix, thereby leading to a significant
memory saving.

Remark 4: Active set strategy is an effective means for de-
termining the directions that do not need to be updated in the
coordinate descent algorithm. At each outer iteration, we clas-
sify the variable as either active or inactive based on the values
of x̄i and the ith component of the gradient vector ∇J(x̄). For
g(x) = γ ‖x‖1 , the ith search direction is inactive if

x̄i = 0 and | eTi ∇J(x̄) | < γ − ε

and it is active otherwise. Here, ε > 0 is a small number (e.g.,
ε = 0.0001γ). The Newton direction is then obtained by solving
the optimization problem over the set of active variables. This
significantly improves algorithmic efficiency for large values of
the regularization parameter γ.

1) Convergence Analysis: In (SP), J(x) is smooth forGp +
E diag(x)ET � 0 and the nonsmooth part is given by the �1
norm of x. The objective function of the form J(x) + g(x)
was studied in [26], where J is smooth over the positive definite
cone and g is a separable nondifferentiable function. Superlinear
(i.e., quadratic) convergence rate of the quadratic approximation
method for (SP) is implied from [26, Th. 16].

2) Stopping Criteria: The norms of the primal and dual
residuals rp and r±d as well as the duality gap η are used as
stopping criteria. In contrast to the stopping criteria available in
the literature, this choice enables fair comparison of the algo-
rithms. We use (14) to construct a dual feasible Ŷ and obtain y±
from (11) and (10) to compute the duality gap η, and

rp(x, x±) := x − x+ + x−

r+
d (x, y+) := γ 11 − diag

(
ET (Ŷ −R)E

)
− y+

r−d (x, y−) := γ 11 + diag
(
ET (Ŷ −R)E

)
− y−.

to determine the primal and dual residuals.
3) Comparison of Algorithms: Table I compares and con-

trasts features of our customized proximal algorithms and the
algorithm based on the primal-dual IP method developed in [22].

V. GROWING CONNECTED RESISTIVE NETWORKS

The problem of optimal topology design for stochastically
forced networks has many interesting variations. An important
class is given by resistive networks in which all edge weights
are nonnegative, x ≥ 0. Here, we study the problem of growing
connected resistive networks; e.g., see [13]. In this, the plant
graph is connected and there are no joint edges between the
plant and the controller graphs. Our objective is to enhance the
closed-loop performance by adding a small number of edges.

As we show below, inequality constraints in this case amount to
nonnegativity of controller edge weights. This simplifies opti-
mality conditions and enables further improvement of the com-
putational efficiency of our customized algorithms.

The restriction on connected plant graphs implies positive
definiteness of the strengthened graph Laplacian of the plant,
Gp = Lp + (1/n) 1111T � 0. Thus, Gp + E diag (x)ET is al-
ways positive definite for connected resistive networks and (SP)
simplifies to

minimize
x

f(x) + g(x) (18)

where

f(x) := J(x) + γ 11T x

and g(x) is the indicator function for the nonnegative orthant,

g(x) := I+(x) =

{
0, x ≥ 0

+∞, otherwise.

As in Section III, in order to determine the Lagrange dual
of the optimization problem (18), we introduce an additional
optimization variable G and rewrite (18) as

minimize
G, x

〈
G−1 , Qp

〉
+ (γ 11 + diag

(
ET RE

)
)T x

subject to G − Gp − E diag (x)ET = 0

x ≥ 0. (PI)

Proposition 3: The Lagrange dual of the primal optimization
problem (P1) is given by

maximize
Y

2 trace
(
(Q1/2

p Y Q1/2
p )1/2

)
− 〈Y,Gp〉

subject to diag
(
ET (Y − R)E

) ≤ γ 11

Y � 0, Y 11 = 11 (D1)

where Y is the dual variable associated with the equality con-
straint in (P1). The duality gap is

η = yT x = 11T (y ◦ x) (19)

where

y := γ 11 − diag
(
ET (Y −R)E

) ≥ 0 (20)

represents the dual variable associated with the nonnegativity
constraint on the vector of the edge weights x.

Remark 5: For connected resistive networks with the control
weight R = r I , Ŷ given by (14a) is dual feasible if

β ≤ γ + 2 r
max (diag (ET (Y − R)E)) + 2 r

. (21)

A. Proximal Gradient Method

Using a simple quadratic approximation of the smooth part
of the objective function f around the current iterate xk

f(x) ≈ f(xk ) + ∇f(xk )T (x − xk ) +
1

2αk
‖x − xk‖2

2
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TABLE I
COMPARISON OF OUR CUSTOMIZED PROXIMAL ALGORITHMS WITH THE PRIMAL DUAL IP METHOD OF [22]

Algorithm Primal-dual IP method Proximal gradient Proximal Newton

Order 2nd 1st 2nd
Search direction PCG explicit update coordinate descent
Speed-up strategy PCG with preconditioner BB step-size initialization active set strategy
Memory no storage of m ×m matrices no storage of m ×m matrices no storage of m ×m matrices
Most expensive part O(m3 ) O(n2m) O(m2 )
Convergence rate super-linear linear super-linear (quadratic)

the optimal solution of (18) is determined by the proximal op-
erator of the function g(x) = I+(x),

xk+1 =
(
xk − αk∇f(xk )

)
+

where (·)+ is the projection on the nonnegative orthant. Thus,
the action of the proximal operator is given by the projected
gradient.

As in Section IV-A, we initialize αk using the BB heuristics
but we skip the backtracking step here and employ a nonmono-
tone BB scheme [31], [32]. The effectiveness of this strategy
has been established on quadratic problems [29], [31], but its
convergence in general is hard to prove. In Section VI, we
demonstrate efficiency of this approach.

B. Proximal Newton Method

We next adjust the customized algorithm based on proximal
Newton method for growing connected resistive networks. We
approximate the smooth part of the objective function f in (18)
using the second-order Taylor series expansion around the cur-
rent iterate x̄,

f(x̄+ x̃) ≈ f(x̄) + ∇f(x̄)T x̃ +
1
2
x̃T ∇2f(x̄) x̃

and rewrite (18) as

minimize
x̃

∇f(x̄)T x̃ +
1
2
x̃T ∇2f(x̄) x̃

subject to x̄ + x̃ ≥ 0. (22)

By perturbing x̃ in the direction of the ith standard basis vector
ei in Rm , x̃+ δi ei , the objective function in (22) becomes

∇f(x̄)T (x̃ + δi ei) +
1
2

(x̃ + δi ei)
T ∇2f(x̄) (x̃ + δi ei) .

Elimination of constant terms allows us to bring (22) into

minimize
δi

1
2
ai δ

2
i + bi δi

subject to x̄i + x̃i + δi ≥ 0. (23)

The optimization variable is the scalar δi and ai , bi , x̄i , and x̃i
are the problem data with

ai := eTi ∇2f(x̄) ei

bi :=
(∇2f(x̄) ei

)T
x̃ + eTi ∇f(x̄).

The explicit solution to (23) is given by

δi =

{ −bi/ai, x̄i + x̃i − bi/ai ≥ 0

− (x̄i + x̃i) , otherwise.

After the Newton direction x̃ has been computed, we deter-
mine the step-size α via backtracking. This guarantees pos-
itivity of the updated vector of the edge weights, x̄+ αx̃,
and sufficient decrease of the objective function, f(x̄+ αx̃) ≤
f(x̄) + ασ∇f(x̄)T x̃.

Remark 6: As in Section IV-B, we use an active set strategy
to identify the directions that do not need to be updated in the
coordinate descent algorithm. For g(x) = I+(x), the ith search
direction is inactive if {x̄i = 0 and eTi ∇f(x̄) ≥ 0} and it is
active otherwise.

1) Stopping Criteria: The norm of the dual residual rd and
the duality gap η are used as stopping criteria. The dual variable
y is obtained from (20), where Ŷ is given by (14a) and β sat-
isfies (21). At each iteration, η is evaluated using (19) and the
dual residual is determined by

rd(x, y) := γ 11 − diag
(
ET (Y (x) − R)E

) − y.

VI. COMPUTATIONAL EXPERIMENTS

We next provide examples and evaluate performance of our
customized algorithms. Algorithm proxBB represents proximal
gradient method with BB step-size initialization and proxN iden-
tifies proximal Newton method in which the search direction is
found via coordinate descent. Performance is compared with
the PCG-based primal-dual IP method of [22] and the greedy
algorithm of [17]. We have implemented all algorithms in MAT-
LAB and executed tests on a 3.4 GHz Core(TM) i7-3770 Intel(R)
machine with 16 GB RAM.

In all examples, we setR = I and choose the state weight that
penalizes the mean-square deviation from the network average,
Q = I − (1/n) 1111T . The absolute value of the dual residual rd
and the duality gap η are used as stopping criteria. We set the
tolerances for rd and η to 10−3 and 10−4 , respectively. Finally,
for connected plant networks

γmax := ‖diag (ET G−1
p QG−1

p E) ‖∞
identifies the value of the regularization parameter γ for which
all edge weights in the controller graph are equal to zero.

Additional information about our computational experiments,
along with MATLAB source codes, can be found at: www.ece.
umn.edu/˜mihailo/software/graphsp/
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TABLE II
COMPARISON OF ALGORITHMS (SOLVE TIMES IN SECONDS/NUMBER OF ITERATIONS) FOR THE PROBLEM OF GROWING CONNECTED RESISTIVE ERDÖS–RÉNYI

NETWORKS WITH DIFFERENT NUMBER OF NODES n, EDGE PROBABILITY 1.05 log(n)/n, AND γ = 0.8 γm ax

number of nodes n = 300 n = 700 n = 1000 n = 1300 n = 1500

number of edges m = 43 986 m = 242 249 m = 495 879 m = 839 487 m = 1 118 541

IP (PCG) 16.499/8 394.256/13 1 014.282/13 15 948.164/13 179 352.208/14
proxBB 1.279/11 15.353/11 55.944/13 157.305/16 239.567/16
proxN 1.078/4 11.992/4 34.759/4 82.488/4 124.307/4

Fig. 1. (a) Solve times (in seconds); and (b) performance degradation (in
percents) of proximal gradient and greedy algorithms relative to the optimal
centralized controller.

A. Performance Comparison

In what follows, the incidence matrix of the controller graph
is selected to satisfy the following requirements. First, in the
absence of the sparsity-promoting term, the closed-loop network
is given by a complete graph. Second, there are no joint edges
between the plant and the controller graphs.

We first solve the problem (P1) for growing connected re-
sistive Erdös–Rényi networks with different number of nodes.
The generator of the plant dynamics is given by an undirected
unweighted graph with edge probability 1.05 log(n)/n. Table II
compares our customized algorithms in terms of speed and
the number of iterations. Even for small networks, proximal
methods are significantly faster than the IP method and proxN
takes smaller number of iterations and converges quicker than
proxBB. For a larger network (with 1500 nodes and 1 118 541
edges in the controller graph), it takes about 50 hours for the
PCG-based IP method to solve the problem. In contrast, proxN
and proxBB converge in about 2 and 4 minutes, respectively.

Figure 1 compares our proximal gradient algorithm with the
fast greedy algorithm of [17]. We solve problem (P1) for Erdös–
Rényi networks with different number of nodes (n = 5 to 500)
and γ = 0.4 γmax . After proxBB identifies the edges in the con-
troller graph, we use the greedy method to select the same
number of edges. Finally, we polish the identified edge weights
for both methods. Figure 1(a) shows the solve times (in sec-
onds) versus the number of nodes. As the number of nodes
increases the proximal algorithm significantly outperforms the
fast greedy method. Relative to the optimal centralized con-
troller, both methods yield similar performance degradation of
the closed-loop network; see Fig. 1(b).

B. Large-Scale Facebook Network

To evaluate effectiveness of our algorithms on large networks,
we solve the problem of growing a network of friendships. In

Fig. 2. (a) Sparsity level; and (b) optimal tradeoff curves resulting from the
application of proximal gradient algorithm and a heuristic strategy for the Face-
book network.

Fig. 3. Topologies of the plant (blue lines) and controller graphs (red lines)
for an unweighted random network with three disconnected subgraphs.

such social networks, nodes denote people and edges denote
friendships. There is an edge between two nodes if two people
are friends. The network is obtained by examining social net-
work of ten users (the so-called ego nodes); all other nodes are
friends to at least one of these ego nodes [33]. The resulting net-
work is undirected and unweighted with 4039 nodes and 88 234
edges; the data are available at http://snap.stanford.edu/data/.
Our objective is to improve performance by adding a small
number of extra edges. We assume that people can only form
friendships with friends of their friends. This restricts the num-
ber of potential edges in the controller graph to 1 358 067.

To avoid memory issues, we have implemented our algo-
rithms in C++. For γ = c γmax with c = {0.1, 0.2, 0.5, 0.8} and
γmax = 19.525, the proximal gradient algorithm computes the
solution in about 10, 2.6, 0.87, and 0.43 hours, respectively.
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Fig. 4. (a) Sparsity level; (b) performance degradation; and (c) the optimal tradeoff curve between the performance degradation and the sparsity level of optimal
sparse x compared to the optimal centralized vector of the edge weights xc . The results are obtained for unweighted random disconnected plant network with
topology shown in Fig. 3.

Fig. 5. Problems of growing unweighted path (top row) and ring (bottom row) networks. Blue lines identify edges in the plant graph, and red lines identify edges
in the controller graph.

After designing the topology of the controller graph, we opti-
mize the resulting edge weights via polishing.

Figure 2(a) shows that the number of nonzero elements in
the vector x decreases as γ increases and Fig. 2(b) illustrates
that the H2 performance deteriorates as the number of nonzero
elements in x decreases. In particular, for γ = 0.8 γmax , the
identified sparse controller has only three nonzero elements (it
uses only 0.0002% of the potential edges). Relative to the opti-
mal centralized controller, this controller degrades performance
by 16.842%, (J − Jc)/Jc = 16.842%.

In all of our experiments, the added links with the largest
edge weights connect either the ego nodes to each other or three
nonego nodes to the ego nodes. Thus, our method recognizes
significance of the ego nodes and identifies nonego nodes that
play an important role in improving performance.

We compare performance of the identified controller to a
heuristic strategy that is described next. The controller graph
contains 16 potential edges between ego nodes. If the number
of edges identified by our method is smaller than 16, we ran-
domly select the desired number of edges between ego nodes.
Otherwise, we connect all ego nodes and select the remaining
edges in the controller graph randomly. We then use polishing
to find the optimal edge weights. The performance of resulting
random controller graphs are averaged over ten trials and the

performance loss relative to the optimal centralized controller
is displayed in Fig. 2(b). We see that our algorithm always
performs better than the heuristic strategy. On the other hand,
the heuristic strategy outperforms the strategy that adds edges
randomly (without paying attention to ego nodes). Unlike our
method, the heuristic strategy does not necessarily improve the
performance by increasing the number of added edges. In fact,
the performance deteriorates as the number of edges in the con-
troller graph increases from 4 to 27; see Fig. 2(b).

C. Random Disconnected Network

The plant graph (blue lines) in Fig. 3 contains 50 randomly
distributed nodes in a region of 10 × 10 units. Two nodes are
neighbors if their Euclidean distance is not greater than 2 units.
We examine the problem of adding edges to a plant graph which
is not connected and solve the sparsity-promoting optimal con-
trol problem (SP) for controller graph with m = 1094 potential
edges. This is done for 200 logarithmically spaced values of
γ ∈ [10−3 , 2.5] using the path-following iterative reweighted
algorithm as a proxy for inducing sparsity [27]. As indicated
by (9), we set the weights to be inversely proportional to the
magnitude of the solution x to (SP) at the previous value of γ.
We choose ε = 10−3 in (9) and initialize weights for γ = 10−3
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using the solution to (SP) with γ = 0 (i.e., the optimal central-
ized vector of the edge weights). Topology design is followed
by the polishing step that computes the optimal edge weights;
see Section II-B.

As illustrated in Fig. 3, larger values of γ yield sparser con-
troller graphs (red lines). In contrast to all other examples, the
plant graph is not connected and the optimal solution is ob-
tained using the algorithms of Section IV. Note that greedy
method [17] cannot be used here. Since the plant graph has three
disconnected subgraphs, at least two edges in the controller are
needed to make the closed-loop network connected.

Figure 4 shows that the number of nonzero elements in the
vector of the edge weights x decreases and that the closed-loop
performance deteriorates as γ increases. In particular, Fig. 4(c)
illustrates the optimal tradeoff curve between the H2 perfor-
mance loss (relative to the optimal centralized controller) and the
sparsity of the vector x. For γ = 2.5, only four edges are added.
Relative to the optimal centralized vector of the controller edge
weights xc , the identified sparse controller in this case uses only
0.37% of the edges, and achieves a performance loss of 82.13%,
i.e., card(x)/card(xc) = 0.37% and (J − Jc)/Jc = 82.13%.
Here, xc is the solution to (SP) with γ = 0 and the pattern of
nonzero elements of x is obtained by solving (SP) with γ = 2.5
via the path-following iterative reweighted algorithm.

D. Path and Ring Networks

For path networks, our computational experiments show that
for a large enough value of the sparsity-promoting parameter
γ a single edge, which generates the longest cycle, is added;
see Fig. 5, top row. This is in agreement with [15] where it
was proved that the longest cycle is most beneficial for improv-
ing the H2 performance of tree networks. Similar observations
are made for the spatially-invariant ring network with nearest
neighbor interactions. For large values of γ, each node estab-
lishes a link to the node that is farthest away in the network; see
Fig. 5, bottom row. This is in agreement with recent theoretical
developments [34] where perturbation analysis was used to iden-
tify optimal weak links in edge-transitive consensus networks.
Thus, for these regular networks and large enough values of
the regularization parameter, our approach indeed provides the
globally optimal solution to the original nonconvex cardinality
minimization problem.

VII. CONCLUDING REMARKS

We have examined the problem of optimal topology design
of the corresponding edge weights for undirected consensus
networks. Our approach uses convex optimization to balance
performance of stochastically forced networks with the num-
ber of edges in the distributed controller. For �1-regularized
minimum variance optimal control problem, we have derived a
Lagrange dual and exploited structure of the optimality condi-
tions for undirected networks to develop customized algorithms
that are well suited for large problems. These are based on the
proximal gradient and the proximal Newton methods. The prox-
imal gradient algorithm is a first-order method that updates the
controller graph Laplacian via the use of the soft-thresholding

operator. In the proximal Newton method, sequential quadratic
approximation of the smooth part of the objective function is
employed and the Newton direction is computed using cyclic
coordinate descent over the set of active variables. Examples
are provided to demonstrate utility of our algorithms. We have
shown that proximal algorithms can solve the problems with
millions of edges in the controller graph in several minutes, on
a PC. Furthermore, we have specialized our algorithm to the
problem of growing connected resistive networks. In this, the
plant graph is connected and there are no joint edges between
the plant and the controller graphs. We have exploited structure
of such networks and demonstrated how additional edges can
be systematically added in a computationally efficient manner.

ACKNOWLEDGMENT

The authors would like to thank J. W. Nichols for his feed-
back on earlier versions of this manuscript, T. H. Summers
for useful discussion, and M. Sanjabi for his help with C++
implementation.

REFERENCES

[1] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks. Princeton, NJ, USA: Princeton Univ. Press, 2010.

[2] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, pp. 65–78, 2004.

[3] Y. Kim and M. Mesbahi, “On maximizing the second smallest eigen-
value of a state-dependent graph Laplacian,” IEEE Trans. Autom. Control,
vol. 51, no. 1, pp. 116–120, Jan. 2006.

[4] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with
least-mean-square deviation,” J. Parallel Distrib. Comput., vol. 67, no. 1,
pp. 33–46, 2007.

[5] P. Barooah and J. P. Hespanha, “Estimation on graphs from relative mea-
surements: Distributed algorithms and fundamental limits,” IEEE Control
Syst. Mag., vol. 27, no. 4, pp. 57–74, Aug. 2007.

[6] A. Ghosh, S. Boyd, and A. Saberi, “Minimizing effective resistance of a
graph,” SIAM Rev., vol. 50, no. 1, pp. 37–66, 2008.

[7] D. Zelazo and M. Mesbahi, “Edge agreement: Graph-theoretic perfor-
mance bounds and passivity analysis,” IEEE Trans. Autom. Control,
vol. 56, no. 3, pp. 544–555, Mar. 2011.
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terconnection graphs for synchronization of oscillator networks,” IEEE
Trans. Autom. Control, vol. 59, no. 9, pp. 2457–2462, Sep. 2014.

[17] T. H. Summers, I. Shames, J. Lygeros, and F. Dörfler, “Topology design
for optimal network coherence,” in Proc. Eur. Control Conf., 2015, pp.
575–580.



1086 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

[18] M. Fardad, F. Lin, and M. R. Jovanović, “Sparsity-promoting optimal
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